Modularity in the New Millenium: A Panel Summary

Premkumar Devanbu, (Panel Chair)
Bob Balzer, Don Batory, Gregor Kiczales, John Launchbury, David Parnas, Peri Tarr (Panelists)

1 Introduction (Chair’s Statement)

Pamas’ seminal work [2]) on separation of concerns
in design has led to diverse innovations in programming
language design, to support modularity. However, there
has been a growing sentiment in many quarters that there
are some concerns that stubbornly resist tidy confinement,
when using established modularization mechanisms in pro-
gramming languages. A diverse set of new approaches have
cmerged in response: aspects [1], monads [5], mixin lay-
ers [3], and multi-dimensional separation of concerns [4].
These approaches arose more or less independently of each
other, and have (to varying degrees) developed technical
maturity, real-world credibility and strong user bases. We
are also now beginning to see strong scholarly comparisions
of the intellectual foundations and practical utility of these
different aproaches. This panel aims to support this trend.

In this panel, we bring together leading experts (Profs.
Batory, Kiczales, and Launchbury, and Dr. Tarr) in these
different areas. Each represents a particular perspective on
how to evolve and adapt the old idea of modularization to
deal with new challenges such as security, fault-tolerance,
distribution, and auditing. In addition, we also have two
pioneering researchers (Profs. Balzer and Pamnas) to pro-
vide us with a historical perspective on the evolution (sic)
of program modularization and evolution techniques.

Position statements of some of the panelists follow, pre-
sented in alphabetical order of their names:

2 Panel Statement: Don Batory

The future of software engineering lies in automation.
Perhaps the most successful example of automated soft-
ware engineering is relational query optimization (RQO). A
query is specified in a declarative domain-specific language
(SQL), mapped to an inefficient relational algebra expres-
sion, optimized by rewrite rules, and then an efficient query
evaluation program is generated. RQO is also a great ex-
ample of the holy grail problem of automatic programming
transforming a declarative specification to an efficient pro-
gram. Feature Oriented Programming (FOP) aims to gen-
eralize this powerful paradigm to other software domains.
An FOP domain model is a set of operators that define an
algebra. Each operator implements a feature that is charac-

teristic of programs in that domain; compositions of these
operators define a specific program. FOP is ideally suited
for product-lines and program generators. AHEAD is both
a model and tool suite for FOP that is based on step-wise
refinement, the paradigm that builds complex applications
from simple applications by progressively adding features.
The AHEAD tool suite has been bootstrapped, where its
150+K LOC are being generated from simple, declarative
specifications. Optimizations in our tool building process
are now being introduced to make it like RQO.

3 “It’s the cross-cutting”: Gregor Kiczales

The idea of separation of concerns is not new; it is a basic
element of modern thought.

We are however, constantly renewing our tools for sep-
arating, composing and otherwise operating on concerns
throughout the lifecycle. We have seen several such evo-
lutions, including the most recent major success, object-
orientation.

The critical idea in aspect-oriented programming (AOP)
is that no single decomposition can capture all the concerns
in a complex system in a modular way. This incredibly sim-
ple idea is, in retrospect, nearly obvious. But until AOP
we spent countless hours (days, weeks...) refactoring a sys-
tem over-and-over trying to get a structure in which all con-
cemns are modular. The frustration of working with single
decompositions of complex systems led to the realization
that choosing a nice structure for modularizing many con-
cems inherently means that some others cannot be modular,
if they have to live within that primary structure. We call
such concerns crosscutting, because they cut across the nat-
ural lines of the rest of the system.

The rapid uptake of AOP in industry is because develop-
ers find that adopting AOP tools like AspectJ is simple and
natural their own experience helps them understand cross-
cutting concemns at a deep intuitive level.

4 Panel Statement: David Parnas

To a man with a hammer, everything looks like a nail. To
a Computer Scientist, everything looks like a language de-
sign problem. Languages and compilers are, in their opin-
ion, the only way to drive an idea into practice.

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the 25th International Conference on Software Engineering (ICSE’03)
0270-5257/03 $17.00 © 2003 |IEEE

My early work clearly treated modularisation as a design
issue, not a language issuc. A module was a work assign-
ment, not a subroutine or other language element. Although
some tools could make the job easier, no special tools were
needed to use the principal, just discipline and skill.

When language designers caught on to the idea, they as-
sumed that modules had to be subroutines, or collections
of subroutines, and introduced unreasonable restrictions on
the design. They also spread the false impression that the
important thing was to learn the language; in truth, the im-
portant thing is to learn how to design and document.

We are still trying to undo the damage caused by the
early treatment of modularity as a language issue and, sadly,
we still try to do it by inventing languages and tools.

5 Panel Statement: Peri Tarr

Mulii-dimensional separation of concerns (MDSOC) al-
lows developers to encapsulate overlapping, interacting and
crosscutting concerns, including features, aspects, variants,
roles, business rules, components, frameworks, etc., simul-
tancously. One does not have to choose between, say, a
data decomposition and a feature decomposition, since both
can coexist, and each can be used when appropriate. All
concerns are first-class components that can be integrated
flexibly. MDSOC further supports developers by allowing
concerns to be identified throughout the software lifecycle
and relationships among concerns to be managed. MDSOC
grew out of earlier work on subject-oriented programming.
It retains the same style of composition, while adding the
ability to extract concerns from existing software and main-
tain multiple decompositions simultaneously. The approach
has been successful at feature-based development and inte-
gration, inserting probes, retrofitting and reusing design pat-
terns, and unanticipated extension and adaptation, and has
shown promise with creating and evolving product lines, ex-
tracting concerns from legacy software and reconciling dif-
ferent views and perspectives. Our first-generation tool, Hy-
per/J, was less successful at “uniform crosscutting,” where
common functionality is applied uniformly in multiple con-
texts, and did no semantic checking. Aspect} pointcuts,
with their powerful patterns, address uniform crosscutting
more effectively, and mixin layers provide semantic check-
ing and predictability. In our current work on a new Con-
cern Manipulation Environment (CME), we are introduc-
ing componentry to address these and other limitations. We
have used Hyper/J to build a portion of the CME, and have
identified many other places where the more powerful ca-
pabilities of the CME itself could be brought to bear.

6 Conclusion

This paper presents a brief summary of some of the pan-
elist’s positions. We hope that the contents will serve to

encourage colleagues to attend the pancl at the conference,
and to stimulate further discussion.

References

{11 G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of Aspect]. In European
Conference on Object Oriented Programming, 2001.

[2} D. Parnas. The criteria to be used in decomposing systems
into modules. Communications of the ACM, 14(1):221-227,
1972

[3] Y. Smaragdakis and D. Batory. Implementing layered designs
with mixin layers. In European Conference on Object Ori-
ented Programming, 1998.

[4] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. S. Jr. N

degrees of separation: Multi-dimensional separation of con-

cerns. In International Conference on Sofiware Engineering,

1999.

P. Wadler. The essence of functional programming. In Con-

ference Record of the Nineteenth Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Lan-

guages, pages 1-14, Albequerque, New Mexico, 1992.

5

—_—

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the 25th International Conference on Software Engineering (ICSE’03)
0270-5257/03 $17.00 © 2003 |IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

