
Panel: Empirical Validation—What, Why, When, and How

Robert J. Walker (Chair)
University of Calgary
Calgary, Canada

rwalker@cpsc.ucalgary.ca

Lionel C. Briand
Carleton University
Ottawa, Canada

briand@sce.carleton.ca

David Notkin
University of Washington

Seattle, USA
notkin@cs.washington.edu

Carolyn B. Seaman
University of Maryland, Baltimore County

Baltimore, USA
cseaman@umbc.edu

Walter F. Tichy
Universität Karlsruhe
Karlsruhe, Germany
tichy@ira.uka.de

All research requires validation, and where analytic solu-
tions are not possible or not practical, empirical validation
is necessary. Software engineering research covers a vast
array of problems over which the level of maturity in our
knowledge varies markedly.
Opinions as to the methodology to apply to SE research

appear to be in disagreement, as a large variety of possi-
bilities exist [7]. Tichy promotes quantitative, controlled,
statistically-analyzable experimentation [6]. Kitchenham
et al. recognize the value of “observational studies” in
addition to formal experimentation [3], but emphasize
industrial-context, quantitative evaluation, and statistics.
Seaman promotes the value of qualitative evaluation [5].
Murphy et al. suggest that a different treatment is needed
for emerging technologies than for more mature ones [4].
Briand et al. state that “each discipline needs to develop its
own body of experience and strategies to answer its most
pressing research questions” [1, p. 398].
Without some consensus, an SE researcher is faced with

a difficult task of convincing their peers that their selected
methodology is appropriate, let alone the details of their val-
idation. This panel session strives to address these issues in
order to determine where a consensus does and does not
exist. Brief synopses of each panelist’s thoughts follow.

Lionel C. Briand

Quantitative and qualitative evaluation are not really alter-
natives but are rather complementary. For example, when
assessing the impact of a new technology in a controlled
experiment, it may not be a good idea to assume that your
research hypothesis is the unique reason for the results you
observe. Questionnaires are commonly used to obtain qual-
itative but structured feedback from the experimental sub-
jects for additional evidence of causation.

We need to study both current practices and new tech-
nologies. The former is needed to better understand what is-
sues people are actually facing when developing and main-
taining large software systems. The latter is needed to im-
prove software quality and productivity.
Level of control is usually associated with internal and

external validity. Fully controlled experiments usually take
place in an artificial setting, for obvious practical reasons.
In this case a very good internal validity is usually obtained
(i.e., the treatment is likely to cause the effect) but external
validity suffers from the fact that the setting may not reflect
actual project conditions. When performing field studies,
collecting data on actual projects and interviewing project
participants, you then find yourself in the opposite situation.
In the end, when an important question arises regarding,

for example, the evaluation of a new technology, both con-
trolled experiments and field studies are necessary to build
a credible body of evidence.

David Notkin

“Software engineering research is poorly evaluated and as-
sessed” is a statement made by many in the community in
print and perhaps more so in private. Although I believe
that we have to make serious and significant improvements,
I reject this statement as inaccurate and dangerous.
The statement is inaccurate because it makes assump-

tions that are not true; I address two of these assumptions.
First, there is a strong implication that to get industrial
adoption of a result, one must have empirical evidence for
its utility. Empirical evidence may be material, and in some
cases essential, but the general issue of technology trans-
fer is extremely complicated. The Brooks–Sutherland Re-
port [2] discussed how government, industry, and academic
institutions play key roles in the development and trans-
fer of influential technologies, with the process being an

���������	
���	�������	�����������
������������� !�"���#�����������

extremely dynamic one. Second, it generally appeals to
“real science” as an example of what we should become.
There are a number of reasons why this is inappropriate, not
the least being an idealized but imprecise understanding of
what research in these other fields looks like. Furthermore,
the combination of heavily different environments (in terms
of the kinds of software produced, the educational and ex-
perience backgrounds of the software engineers, etc.) with
the uniquely rapid rate of change in our field makes the sit-
uation different from other “real science” fields.
The statement is dangerous because it encourages re-

searchers to focus on problems that can evaluated in par-
ticular ways rather than on problems that need to be solved.
We need to have strong demands about evaluation and as-
sessment, but realize that one size does not fit all. Not all
ideas nor claims are the same, and they should not generally
be placed into pigeonholes. What is fundamentally impor-
tant is for the claims to be appropriately justified: heavy
claims demand heavy evaluation. Additionally, we need to
have a sense of the lifetime of different ideas. Ideas in their
early stages need to be given some room to grow, without
overly restrictive expectations about their evaluation. More
mature ideas need more mature evaluation.
Let’s not strangle ourselves, and our chances of having

an influence, by hiding behind a few specific approaches
to evaluation of our work. Rather let’s be demanding but
flexible in this dimension.

Carolyn B. Seaman

One of the principles of empirical investigation in any field
is triangulation. This is the premise that any stated find-
ing should be supported by more than one piece of ”evi-
dence”. Another way of saying this is that any data gener-
ated by an empirical study cannot be considered valid unless
the same information has been generated from two different
data sources, by using two different empirical methods, or
by using two different measurement instruments.
Taking triangulation seriously in empirical studies of

software engineering means that software engineering em-
pirical researchers must broaden their repertoire of empiri-
cal methods. Qualitative research methods constitute a large
body of well-defined, mature empirical methods that have
not been fully employed in the study of software engineer-
ing. Qualitative research is empirical research in which the
data is expressed textually or in images, rather than in quan-
tifiable terms. Qualitative methods were originally devel-
oped principally for the study of human behavior, under the
premise that such a subject is too complex to be captured
adequately quantitatively. Thus, the qualitative approach al-
lows the researcher to capture the full complexity of a phe-
nomenon without having to abstract away important details
that do not fit into a quantitative model.
Much of the complexity of many research questions in

software engineering comes from the role of humans in the
development and maintenance of software, and the fact that
software itself is a product of human intellect. Thus, the use
of qualitative methods in software engineering research pro-
vides a way to deal with the complexities of these questions,
as well as providing excellent opportunities for triangula-
tion, when used in conjunction with quantitative methods.

Walter F. Tichy

The quantity of empirical research in SE has increased dra-
matically. A sizeable proportion of papers in most major
SE publications and conferences now presents empirical re-
sults. Now that quantity is up, quality must be improved
as well. Some of the empirical work is unsatisfactory, for a
variety of methodological reasons. I think reviewers have to
be both more careful and more understanding: more careful
in checking the validity of the results, and more understand-
ing regarding what can be achieved in a single paper. There
is no “silver bullet experiment” that will provide the final
answer for a research question, nor can an empirical paper
be rejected solely on the grounds of the results appearing
“obvious” to the reviewer.
I think we should give up on correlating volume metrics

(counting attributes of various documents in the life cycle)
with cost estimates. Experiments have shown that the pre-
dictive power of volume metrics is poor and “tuning” them
does not carry over from one project to another. Instead, we
need to figure out better models of software development
processes to achieve better estimates.
Besides metrics, there are many other pressing questions

regarding the effectiveness of software tools and methods
that can only be answered empirically.

References

[1] L. Briand et al. Empirical studies of object-oriented artifacts,
methods, and processes. Empiric. Softw. Eng., 4(4):387–404,
1999.

[2] F. P. Brooks, Jr., I. E. Sutherland, et al. Evolving the High Per-
formance Computing and Communications Initiative to Sup-
port the Nation’s Information Infrastructure. The National
Academies Press, 1995.

[3] B. Kitchenham et al. Preliminary guidelines for empirical
research in software engineering. IEEE Trans. Softw. Eng.,
28(8):721–734, 2002.

[4] G. Murphy, R. Walker, and E. Baniassad. Evaluating emerg-
ing software development techniques. IEEE Trans. Softw.
Eng., 25(4):438–455, 1999.

[5] C. Seaman. Qualitative methods in empirical studies of soft-
ware engineering. IEEE Trans. Softw. Eng., 25(4):557–572,
1999.

[6] W. Tichy. Should computer scientists experiment more?
Computer, 31(5):32–40, 1998.

[7] M. Zelkowitz and D. Wallace. Experimental models for vali-
dating computer technology. Computer, 31(5):23–31, 1998.

2

���������	
���	�������	�����������
������������� !�"���#�����������

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

