
The German TR 440 Computer:
Software and Its Development

Hans-Juergen Siegert

The TR 440, a large-scale computer developed and manufactured by
the German company AEG-Telefunken, was one of the first commer-
cial time-sharing systems. This article focuses on the TR 440’s software
and software development between 1965 to 1974, describing the
technical highlights and showing how the software development was
managed, who was responsible for various parts, and how and why
certain decisions were made.

The problems of software development in
the late 1960s had more than one dimen-
sion and included programming problems,
project management, and system develop-
ment. To provide an understanding of the
complexities and resulting problems of soft-
ware system development in the late 1960s,
this article describes the software and its de-
velopment of one of West Germany’s most
important large-scale commercial comput-
ing systems, the TR 440, which was devel-
oped and manufactured by the German
company AEG-Telefunken (see the related
sidebar). (The development of the TR 440
hardware and software was partially funded
by the German Ministry of Research and
Technology.1,2)

The TR 440’s impact was felt far and wide
within West Germany as the lessons learned
during its development were applied to the
nascent computer science and computer
engineering community there. This article
shows exciting and forward-looking develop-
ments undertaken by Telefunken’s develop-
ment team, which were unknown in the
West at the time. More specifically, this arti-
cle (one of a set of four in this issue on the
TR 440) focuses on the TR 440’s software
and software development between 1965 to
1974.

AEG-Telefunken, especially the large-scale
software development team, had the policy
of using only German technical terms. Be-
cause there was much pioneering work, new
terms often had to be coined. For the sake
of authenticity, I use those German terms in
this article, while explaining them or giving
corresponding English terms. I have also
translated the original quotations into

English, accepting a loss of authenticity to
give readers a better understanding. Unless
otherwise indicated, the quotations in this ar-
ticle originated from my personal correspon-
dence with the speakers.

Introducing the TR 4
In 1956, the Telefunken board of directors

decided to start a prototype for an electronic
switching system for telecommunications.2 A
small team began to develop not just a
switching system but a large, fully transistor-
ized mainframe computer for universal use,
the TR 4. The team worked in Backnang, a
small town near Stuttgart.

The first TR 4 was installed at the Univer-
sity of Hamburg in 1962. Most TR 4 com-
puters were used at universities, but there
were also other installations, such as the
Bundesanstalt fu€r Flugsicherung (German air-
traffic control) and the Ministry of Finance
in Nordrhein-Westfalen (North Rhine-
Westphalia). These scientific and commer-
cial-administrative customers had an impor-
tant influence on the software of the TR 4
and its successor the TR 440.

In the 1960s, batch processing was the
typical operating mode of large computers.
A stream of batch jobs was sequentially pro-
cessed. The user normally had no access to
the computer and no way of influencing
the operation of his job after delivery because
of the characteristics of the computer soft-
ware at that time. Most programs were writ-
ten in assembly language, and the user
expected only simple job control statements,
an assembler, and a library of a few mathe-
matical subroutines from the computer
manufacturer. A special luxury was a set of

man2010030040.3d 28/7/010 14:32 Page 40

40 IEEE Annals of the History of Computing 1058-6180/10/$26.00 �c 2010 IEEEPublished by the IEEE Computer Society

subroutines to access devices. Manufacturers
therefore provided only limited software.
At that time, nearly all users programmed
and implemented their own application
programs. Generally, the importance of
and the possibilities achievable by software
were underestimated by the user and
manufacturer.

Here is a typical example: In February
1963, the Recheninstitut der Technischen Hoch-
schule Stuttgart (Stuttgart University’s mathe-
matical institute, which also operated the
university’s computer center) informed pro-
spective users about hardware details of the
new TR 4 computer, planned to be installed
in June 1964. Concerning the software,
only this was said:

5.) Program Library
ALGOL60 compiler (already proven, and

successfully used)
about 30 programs for elementary mathemat-

ical functions
about 30 programs for matrix calculus
about 15 programs of various kinds
about 20 programs for organization and

testing.

In another example from 1962, a 12-page
Telefunken flyer (Großrechenanlage TR 4 Kurz-
beschreibung, short description of the large-
scale computer TR 4) described the software
with only a third of a page in a section
headed ‘‘Programming Support:’’

Besides a detailed manual . . . Telefunken pro-
vides a comprehensive system of effective,

harmonized utilities, programs of standard
type for using magnetic tapes, and Superprog-
ramme [Special system programs]. The util-
ities include programs for testing the main
computer, external devices, and programs,
along with organizational utilities for input/
output of 80-column punched cards and
5- to 8-channel paper tape, as well as a program
to communicate with the operator’s type-
writer. The programs of standard type for
work with magnetic tapes include automated
input and output of data, sort and merge pro-
grams as well as a symbolic addressing system
as coordinating program. Superprogramme
are the Verteilerprogramm for automated or-
ganization of parallel execution of multiple
application programs, and the generating for-
mula translator for ALGOL60. For science
and research, in addition to ALGOL60 we
[Telefunken] also provide programs for math-
ematical methods, which begin with elemen-
tary functions and extend over matrix
calculus, polynomial calculations, first-order
differential equations, and Fourier analysis/
synthesis to statistical autocorrelation; all
programs in numerous variations to support
programming.3

Upon reading this, Chris Earnest wrote in
September 2007:

I had nearly forgotten how unimportant soft-
ware was still thought to be in the fifties and
early sixties. Still, a lot of progress had been
made since the early days, as illustrated by
this story that John Cocke told me, which
really happened: In about 1949, the engineers
at MIT’s Lincoln Labs finally finished assem-
bling the Whirlwind computer, the first

[3B2-14] man2010030040.3d 3/8/010 10:20 Page 41

History of Telefunken
The TR 4 and TR 440 large-scale computers were ini-

tially developed by the German company Telefunken,
founded in 1903, and a subsidiary of the German com-
pany AEG since 1941.1–3 AEG and Telefunken merged
in 1967 to form AEG-Telefunken, where the develop-
ment and manufacturing of the TR 4 and TR 440 was
continued. On 1 January 1972, the large-scale computer
division of AEG-Telefunken became the separate com-
pany Telefunken Computer (TC), owned by Nixdorf
Computer and AEG. TC was taken over by Siemens on
18 July 1974, and the new company was named Com-
puter Gesellschaft Konstanz (CGK).4

References

1. P. Strunk, ‘‘Die AEG—Aufstieg und Niedergang

einer Industrielegende’’ [AEG: Rise and Fall of an

Industry Legend], Nicolaische Verlagsbuchhand-

lung Berlin (Sonderausgabe), 2002.

2. E. Thiele, ed., Telefunken nach 100 Jahren—Das

Erbe einer deutschen Weltmarke [Telefunken After

100 Years: The Heritage of a German World

Brand], 2nd ed., Nicolaische Verlagsbuchhandlung

Berlin, 2003.

3. E. Jessen et al., ‘‘The AEG-Telefunken TR 440 Com-

puter: Company and Large-Scale Computer Strat-

egy,’’ IEEE Annals of the History of Computing, vol. 32,

no. 3, 2010, pp. 20–29.

4. H. Janisch, ‘‘30 Jahre Siemens-Datenverarbeitung—

Geschichte des Bereichs Datenverarbeitung

1954-1984’’ [30 Years Siemens Data Processing:

History of the Data Processing Division], Siemens

AG, 1988.

July–September 2010 41

real-time, general-purpose digital computer,
which later evolved into the AN/FSQ-7 com-
puter used in the SAGE air defense system.
The computer used vacuum tubes, so was
huge, and it had taken some three years to de-
sign and build. Component tests had been
successful, and once assembly was complete,
the engineers tried to run a small test program
for the entire computer. It wouldn’t run. They
rechecked all connections, reran the compo-
nent tests, etc., found and fixed a few hard-
ware bugs, then tried to run the test
program again. Still no luck! They repeated
this sequence several times, and although fi-
nally there seemed to be no more hardware
bugs, the test program still wouldn’t run. Fi-
nally an insight—everyone knew how simple
software was, and the test program was
short, but could it have a bug?!? Sure enough!
Once it was fixed, the test was successful.
John postulated that this was the first soft-
ware bug ever identified as such.

In keeping with the importance attached
to software at that time, the software team
in Backnang was small. The team was headed
by Gudrun Beyer and Mr. Url. The focal point
of the development was the coordination be-
tween parallel CPU and I/O device tasks by
the Verteilerprogramm,4 which was a dedi-
cated small part of an operating system. (I
use the abbreviation BS [Betriebssystem] for
an operating system from now on.) The Ver-
teilerprogramm was hardwired and allowed
no more than eight tasks (processes) with
fixed priorities. The software team already
envisioned the possibility of an extension to
a simple monitor (a small BS). Manfred
Evers remembered:

I started to work with Telefunken in 1963 and
took over the Verteilerprogramm from Dr. Url
and the program for the operator’s typewriter
from Mrs. Dr. Beyer. At first, I recall it exactly,
I understood next to nothing. Then came the
many nights on the hardware testing floor to
make the Verteilerprogramm ready for hard-
wiring, and a red face if an error still remained
and the girls in manufacturing had to rewire
the program. Then very soon I got my first
dressing-down: I was summoned to Mr. Gierse
[who managed the computer center of the
Ministry of Finance of North Rhine-Westphalia]
in Düsseldorf and was obliged to watch about
20 magnetic tape drives engaged in the com-
putation of the automobile tax for North
Rhine-Westphalia, until everything came to
a sudden stop! ‘‘Now Mr. Evers it is your
turn,’’ said Mr. Gierse. This was literally
burned into my own ‘‘hardwired memory.’’
My precious Verteilerprogramm had dribbled
away a single interrupt, which I then had to

generate artificially/artistically while all the
others went to lunch. There are things you
never forget!

In 1959, Telefunken founded a new divi-
sion in its plant in Constance: Informations-
technik (Information Technology).2 The TR
4’s development and production was trans-
ferred to Constance in 1963.

The TR 4 software team was headed by
Wolfgang Frielinghaus until 1966. He joined
Telefunken in Backnang on 1 April 1962 and
collaborated on the software development
for the TR 4. In December 1963, he became
head of the TR 4 software group with about
15 members. In 1966, he collaborated on
the specification of the TR 440 system soft-
ware, and on 1 January 1967, he took over
the team responsible for the programming
system and the compilers for the TR 440.5

The job reference for Frielinghaus empha-
sized that he conceived and implemented
the TR 4 Fortran compiler within one year.
In 2007, Frielinghaus noted:

A further big flap arose because a TR 4 FOR-
TRAN compiler was promised to the Univer-
sity of Darmstadt. The implementation was
commissioned to a university. One year be-
fore the delivery date I asked the assistant, re-
sponsible for it, to present his project. All that
existed were two memos with vague ideas. His
doctoral thesis got in the way. I immediately
canceled the contract, wrote a FORTRAN
compiler within four months, and then tested
it. My staff implemented the I/O, the mathe-
matical library, and the source dump. The in-
ternal list management was completely
dynamic and the report of syntax errors was
user-friendly.

The TR 4 software development group was
headed by Günther Schlenstedt from 1966
to 1974, when maintenance and further
enhancements were discontinued. The
group was responsible for system software, a
library of mathematical subroutines, and
some application software such as utilities
for graphics and plotting, sort and merge,
critical path methods and network planning,
and digitally programmed machine tools
(EXAPT).

TR 4 basic software
The TR 4 software developed by Tele-

funken was not always successful. The assem-
bler lost its importance because most
application programs could be written in
Algol since a compiler for Algol 60 was pro-
vided early on by the Munich University of

man2010030040.3d 28/7/010 14:32 Page 42

The German TR 440 Computer: Software and Its Development

42 IEEE Annals of the History of Computing

Technology. Using the TR 4 Verteilerprog-
ramm as a base, a BS for the TR 4 was built
at the Munich University of Technology in
1963 and 1964 by Hans-Rüdiger Wiehle, Ger-
hard Seegmüller, Ferdinand Peischl, and
Wolfram Urich,6 in close cooperation with
the Leibniz Computer Center of the Bavarian
Academy of Sciences and Humanities. The
system philosophy came largely from
Wiehle, Peischl implemented the assembler,
Wiehle implemented a program to modify
the system, and Seegmüller designed the
operating system’s implementation-oriented
structure and implemented it in 1964. (The
German term for an operating system,
Betriebssystem, was coined in the early
1960s, perhaps even within this group.) In a
2007 email, Seegmüller wrote, ‘‘Writing
these lines it became clear to me, that we
used the term Betriebssystem as early as the
end of 1961 or the beginning of 1962 and
not initially in 1963 or 1964 . . .’’

The TR 4 BS was technically ahead of its
time but was hardly noticed by the interna-
tional community (a similar fate befell many
other European achievements). The BS was a
batch-processing system with one main
thread of tasks. Besides this main thread,
other programs could run in parallel, espe-
cially utilities for the operator. Thus, the BS
supported multiprogramming. The hardware,
however, provided no support for access pro-
tection between programs (including the BS)
in main memory. Some other concepts of
the BS also surpassed the hardware capabilities
of that time, particularly the following.

An operator (OP) was a program running
under a BS. This term was derived from math-
ematics and denotes a procedure to perform a
mathematical operation (obeying mathemat-
ical laws). Therefore, in the context of Tele-
funken software, OP always denoted a
program obeying certain rules. OPs could
run conceptually in parallel and were allowed
to change only those devices or memory allo-
cated to them. The software people com-
pared OPs with machine instructions and
inferred that therefore OPs needed a sophisti-
cated super automaton (a BS) to manage their
sequencing.

An important idea was that housekeeping
tasks of the BS should also be implemented as
OPs and not as part of a monitor. This train
of thought leads immediately to the current
concept of system processes. ‘‘Unhooking
all control tasks from the system—except
the few which are for the sequencer—and
structuring them into operative units of

standardized shape allows a much higher
level of universality and flexibility than
with traditional monitor systems.’’6

The super automaton’s basic tasks
included adding and removing OPs. There
were sequences of OPs, and data had to be
transmitted from an OP to its successor OP.
The currently planned sequence was defined
by a control list, which could be changed by
any OP. Therefore, an OP could easily define
any desired OP as its successor depending on
the result of its work. For instance, this fea-
ture was used when an error was detected
during a run; then the OP inserted an error-
handling OP, such as a post-mortem dump,
as its successor. An OP could also behave
like a shell of today. The OP had only to in-
sert itself in the control list as the successor
of the OP it was going to start (its immediate
successor in the list). Because OPs could
change the control list, this planned se-
quence could also be changed subsequently.
If the control list became empty, a special
OP was run that read the next job from an
input device.

There was a system call to define a port for
an OP to handle errors. ‘‘Every modern com-
puting automaton allows a program to han-
dle its errors by itself.’’6

OPs could request hardware resources as
needed. The BS kept track of allocated and
free resources and monitored the use of allo-
cated components.

The paper cited concludes: ‘‘A system of
the kind described is currently being imple-
mented for the Telefunken TR 4 computer
by the computer center of the Bavarian Acad-
emy of Sciences and Humanities.’’5 The refer-
ences contain papers about the Atlas-BS, the
IBM 7090/7094 monitor, dynamic memory
allocation, and concurrent programs.6

As I mentioned earlier, this BS became the
BS for the TR 4 and was transferred to Tele-
funken. Maintenance and further enhance-
ments were made in Constance. Gisela
Hoffmann (together with two Telefunken
programmers) and Gerd Sapper (together
with two experienced staff members of Ham-
burg University) implemented the extension
to a disc operating system from mid-1966
to mid-1967.7 Further enhancements also
carried out under Schlenstedt’s leadership in-
clude long-term data storage, remote batch,
and coupling of two TR 4 systems. Besides
the TR 4 BS, Seegmüller also designed and
implemented the Algol 60 compiler for the
TR 4. In connection with this work, he cre-
ated and implemented innovative testing

man2010030040.3d 28/7/010 14:32 Page 43

July–September 2010 43

aids and a source-code-oriented post-mortem
dump. Seegmüller remembered:

The idea of such a function had its origin in
H.R. Wiehle expressing displeasure in the
spring or summer of 1962 based upon experi-
ences with the ALGOL services in the com-
puter center running the PERM (a computer
built by Munich University of Technology).
Afterwards F. Peischl and I went to a black-
board on the second floor and within a day
designed an (obvious) realization of the mech-
anism required: ‘‘nibbling from the stack.’’8

From TR 4 to TR 440
Work on the TR 4’s successor began in ap-

proximately autumn of 1962. The name
changed several times—TR 14, TR 44, TR *,
TR 400—but finally TR 440 was chosen. In a
1963 memo, Fritz Rudolf Güntsch,2,9 head
of the AEG-Telefunken computer division,
reported on a conversation—presumably
with Fritz Ludwig (F.L.) Bauer (professor of
mathematics and informatics at Munich Uni-
versity of Technology) and Seegmüller—
about the TR 4 successor in a meeting in
Munich during the acceptance process for
the TR 4:

� The instructions of the TR 4 are seen
as unbalanced. The successor should
have a much smaller and more systematic
(compiler-friendly) instruction set.

� The times where the TR 440 had to be pro-
gram compatible with the TR 4 are defi-
nitely gone, since programs needed to be
compiled. It is therefore not worthwhile
to ignore new insights about computer ar-
chitecture and instruction sets.

New hardware and software architectures
emerged at this time, stemming especially
from initial ideas for the transition from sin-
gle-user batch systems to multiuser time-
sharing systems:

� 1961: IBM defined the System/360 princi-
ples of operation and announced the first
computers of this family in 1964.10

� 1961: The Massachusetts Institute of Tech-
nology (MIT) carried out the first experi-
ments with the Compatible Time-Sharing
System (CTSS) for the DEC PDP-1 and
the IBM 709.11,12

� 1962: The first time-sharing-system in the
world was implemented for the DEC PDP-1.

� 1962: British Ferranti realized paging for
their Atlas computer.13

� 1964: The Darthmouth time-sharing sys-
tem is presented, developed by John
Kemeny and Tom Kurz for a GE-265.

� 1965: Corbato presented a paper on Mul-
tics at the 1965 ACM Fall Joint Computer
Conference.14

The AEG-Telefunken board of directors
was indecisive about the TR 440. For exam-
ple, a development stop was ordered on 19
October 1964. On 4 November 1964, Eike Jes-
sen, head of the large-scale computer devel-
opment department in Constance since
1964, and Heinz Voigt, chief architect of
the TR 4 and TR 440 CPUs and project man-
ager of hardware development, sent a letter
to the board of directors in which they
pointed out that Voigt had developed a
new concept for the TR 440.15 He planned
to build it using integrated circuits. It seemed
possible to finish a first computer in time for
the 1967 Hannover trade fair and even to de-
liver one or two computers in 1967 to cus-
tomers. Jessen and Voigt estimated that
eight computers per year could be built
from 1968 on.

It was characteristic of that time that the
letter did not mention system software.
Only in the estimate of the manpower
needed is there a row with a total of 90
man-years (MYs) for programming (see
Table 1). It is highly probable that ‘‘program-
ming’’ included software for debugging and
testing the hardware, perhaps even micro-
programming and tools for computer-aided
design. It is further mentioned that eight
MYs were needed in addition to realize the
program library, for which the sales depart-
ment was responsible.

man2010030040.3d 28/7/010 14:32 Page 44

The German TR 440 Computer: Software and Its Development

Table 1. Estimation of manpower required to develop the TR 440 (in man-years).15

System development 1965 1966 1967 1968 1969 1970 Total

Hardware development 25 25 20 15 6 4 95

Hardware I/O 10 15 15 10 5 2 57

General 5 10 10 5 2 1 33

Programming 20 25 25 10 7 3 90

Total 60 75 70 40 20 10 275

44 IEEE Annals of the History of Computing

Jessen continued the letter as follows:

The valid and frequently raised objection that
programming probably cannot be finished
within the necessary time seems to me less
threatening since we have extended the proj-
ect time to 2.5 years up to the prototype, and
we are going to end our activities for the TR 4
and TR 10 promptly. My opinion is, that the
estimate of the programming effort is viable,
and I am sure that it will allow the realization
of a good software package. The whole pro-
gramming effort for the TR 440 is 90 MY com-
pared with 110 MY for all TR 4 programming
up to now and envisaged for the future.15

It became apparent later that—for what-
ever reason—the manpower needed for soft-
ware development was at least 10 times as
much and the period of time to delivery
more than twice as long. The estimated man-
power curve also did not account for the fact
that software testing could start only when
the hardware was available, so the hardware
and the software testing had to be sequential.
Therefore, any delay in hardware would
cause about the same delay in software.

The final decision to build the TR 440
came only when AEG-Telefunken was
awarded a contract with the German Research
Foundation (DFG) for installing a large com-
puter at the German Computer Center in
Darmstadt. Now a successful realization of
the TR 440 was a matter of prestige for AEG-
Telefunken and the DFG.

Operating system BS1
In 1964, the TR 4 operating system de-

signer Wiehle joined AEG-Telefunken and
became head of the TR 440 BS development
group. The head of the group for the pro-
gramming system and compilers was
Frielinghaus.

Wiehle had far-reaching, fundamental
visions about a BS that would allow an ex-
tremely rich and, insofar as possible, unre-
stricted interaction with hundreds of users
simultaneously. Of course, all the basic com-
ponents of today’s multiprocess BS had to be
designed and invented first, such as resource
management, resource allocation planning
and tasks scheduling, data management for
long-term data storage, and access protection
mechanisms. No paradigm existed for this
kind of operation of a computer system, how-
ever, and there were at most some ideas and
some limited experimental implementations
of parts. This meant that potential customers,
even at universities, had no experience with

dialog systems nor were they familiar with
the technical concepts and notations. For ex-
ample, AEG-Telefunken staff members, espe-
cially Wiehle, were repeatedly asked to
explain the notion of a process. Clearly, con-
flicts were inevitable given the extreme
visions about a BS coupled with hardware
that was not suitable and too expensive for
these visions. For technical or economic rea-
sons, contemporary large-scale computers
had a main memory below 1 Mbyte and
disc storage of 10 to 100 Mbytes on a single
drive. The TR 440 CPU had a clock rate of
16 MHz and achieved approximately
800,000 operations per second.

The time-sharing BS developed by Wiehle
and his team (especially Herbert Meißner and
Mr. Rübin) was called the BS1. Detailed
descriptions of the BS1 are available else-
where,16–19 so I only outline some important
features in this article. Two concepts central
to BS1 were the notion of an Auftrag (order)
and the Nutzenfunktion (benefit or utility
function) used for scheduling jobs. The BS1
had a modular construction with a process
architecture (see Figure 1).

The BS1 managed numerous programs, or
more exactly running OPs. A running OP was
called Operatorlauf (OL). An OL could be sus-
pended for a long time, for example, because
it was waiting for input from a user who had
temporarily left the terminal. The BS1 re-
source planning and scheduling process
(Kontrollfunktion, KFK) used Nutzenfunktionen
(NF) internally. An NF was a time-dependent
function that specified in a simple way the
benefits (Nutzen) to a user if his job was suc-
cessfully finished at a certain time (see
Figure 2). The KFK’s goal was to maximize
the total benefit. In a talk given for
the sales department, Wiehle stated:

According to a widespread view it is totally
clear that the goal of operation is maximal
utilization of all computer components. But
for a computer of the kind of a TR 440 it is a
totally erroneous conception that this could
be a primary goal of operation.17

NFs provided a basis for scheduling tasks.
An NF was computed by the BS from settings
of the computer center and from the user’s
external job specifications, such as the prior-
ity requested and resources required. Recom-
putation was necessary when the computer
operation’s external or internal situation
changed. NFs are far from simple, and ques-
tions arise when one looks at them more

man2010030040.3d 28/7/010 14:32 Page 45

July–September 2010 45

closely. For example, how should an NF be
defined for a conversational job? Does an
NF have to be dynamically modified to
achieve certain operational goals such as a
balance between batch and conversational
jobs?

When maximizing the benefit, it was
explicitly allowed and sensible that a BS
could reject running a job. Wiehle explained
in 1967:

With this I just want to tell you: If we look at
the NF and some consider it as terribly com-
plicated, then on the other side I can tell

you only, this is extremely simple compared
to the assessment one actually needs. I believe
this is something we will inevitably encounter
in the near future in a high degree.17

This kind of computer operations control did
not become accepted, and scheduling today
is still primitive compared with the ideas
devised for the BS1.

BS1 deployed virtual addressing, but no
demand paging. (‘‘Although virtual storage
is appealing in concept, it has yet to be
proven entirely satisfactory in practice.’’20)
Instead, Gebiete (data regions) were trans-
ferred between main memory and secondary
storage. These regions were contiguously
stored in the process address space and in sec-
ondary storage. Therefore, only a single hard-
ware transport instruction was necessary to
transfer a whole region. For example, a re-
gion could contain the program code, the
permanent data, or the dynamic variables
and stack. This concept probably made
sense for optimizing transport times, but it
did not solve other problems, such as han-
dling programs too big for main memory.
The extent to which those other considera-
tions played a role in the decision is
unknown.

man2010030040.3d 28/7/010 14:32 Page 46

The German TR 440 Computer: Software and Its Development

hardware TR440 and devices

BS kernel:
scheduling and planning, process management, memory management
I/O-management, error and exception handling, time management, accounting

public processes:
I/O-processes, process for communication with all terminals,
library processes, computer center administration process, and others

several Standardabwickler (a process which provided
an environment for user programs (OP))

programming systems:
assembler, FORTRAN,
ALGOL, PL/1,
COBOL,
compiler language
compiled user programs

TR4-programs

TR4-processes
(virtual
machine-
monitor)

other programs,
e.g. special
application systems

O
pe

ra
to

re
n

(O
Ps

)

pr
oc

es
se

s

Figure 1. Block diagram of the time-sharing BS1 operating system.

time

benefit

Figure 2. A simple function of benefit

(Nutzenfunktion, NF).

46 IEEE Annals of the History of Computing

Multiaccess and multiterminal services
were mechanisms that gave many users
direct access to the computer from suitable
dialog stations. At any time, users could
interact with their conversational programs
running in the TR 440. It was planned to
allow the start of a (nested) conversation at
any time, without restriction. The traditional
conversation with alternating program out-
put and user input, where the program
would have the initiative, was considered
too restrictive.

This short exposition of the BS1 clearly
reveals the ambitious goals, which were defi-
nitely far beyond the state of the art at that
time, and which in hindsight posed an ex-
treme risk for the company. Therefore, we
can understand today that the potential cus-
tomers were skeptical and there was a deep
gap between development and sales person-
nel. The situation was aggravated by a serious
manpower shortage in the development
group. Wiehle explained in 1967 at the be-
ginning of a talk to the sales department:

The heavy burden on the program develop-
ment group prohibits a special preparation
of these lectures, which therefore have to be
regarded as lectures of the shop floor. It also
can not be the obligation of development,
to engage in a user-oriented presentation,
even if it might be desirable from a marketing
view. The sales-oriented perception must and
can only be expressed by descriptions written
by sales people. Nevertheless we hope our lec-
tures are as supplements to our internal docu-
ments a useful input for the sales people and
can contribute to overburdened developers
no longer being requested to support sales
activities.17

Figure 3 shows that software development
was part of the TR 440 development depart-
ment in 1968. It became apparent later that
this organization did not meet the require-
ments, importance, and necessary environ-
ments for the software. Therefore, software
development was soon separated from hard-
ware development into a new department
(denoted by GR/EP or GR/P) on the same or-
ganizational level as hardware development
(then denoted by GR/ER).

Operating system BS2
In 1967, Helmut Köhler joined AEG-

Telefunken from IBM and took over the lead-
ership of the sales division (GR/V) from
Egbert Ulbrich. He was supposed to increase
TR 440 sales, especially by developing the

commercial market. To enter the commercial
market, a smaller and therefore less expensive
version of the TR 440 seemed necessary. Be-
cause main memory was expensive, minimal
main memory needed for a useful operation
was to be reduced. A goal of 32,000 words
with 52 bits each, and even 16,000 words,
was set. This was outside of the realm of the
BS1 and could be reached only with a plain,
more or less traditional batch BS.

In 1968, Köhler hired Jürgen Esch to de-
sign and implement such a BS for the com-
mercial and administrative market: the BS2.
Esch had just received his doctoral degree
and was head of the computer center of the
University of Technology Hannover, where
his advisor had been Wolfgang Händler.
Esch brought all members of his group
(about 10) with him to Constance, including
Albert Noltemeier, Manfred Römermann,
and Herbert Stuhlmann. Lothar Krause
brought with him his profound TR 4 knowl-
edge, acquired at the Hamburg University
computer center. Later, Günther Stiege from
Siemens joined the group. The group Esch,
as they were called, belonged organization-
ally to the software department (GR/P), but
was separately housed and formed a close
community. To a certain degree, it had its
own way of life.

The TR 440 programming system and the
compilers used with BS1 were also to run
with minor modifications under BS2. The

man2010030040.3d 28/7/010 14:32 Page 47

GR large scale computers F.R. Güntsch
E. JessentnempolevedE/RG

GR/E1 system, devices H. Voigt
GR/E7 programming TR440 H.R. Wiehle

GR/E71 planning, coordination H.-J. Siegert
GR/E72 operating system Rübin
GR/E73 I/O management Rösner
GR/E74 data management Leeb
GR/E75 terminal communication,

TR4 virtual machine M. Evers
GR/E76 Abwickler Pohlmann

GR/E8 programming systems W. Friehlinghaus
GR/E81 assembler R. Durchholz
GR/E82 FORTRAN W. Froehlich
GR/E83 ALGOL H. Zima
GR/E84 COBOL Brandmarker
GR/E85 I/O-procdures, sort Mühlbach
GR/E86 program library Schäfer
GR/E87 command language,

programming utilities P. Namneck
GR/E9 programming TR4 G. Schlenstedt

Figure 3. The AEG-Telefunken TR 440 organization chart shows that

software development was still not a separate department in June 1968.

July–September 2010 47

first version to be delivered allowed batch
processing with one foreground and one
background program.21,22 Batch jobs were
run in background. System administration
programs, such as spooling utilities, ran in
the foreground. To operate the computer,
the BS2 used a dedicated program that ran
with the highest priority.

BS2 occupied a part of main memory,
commencing at the beginning. It consisted
of two regions: a fixed part used for the ker-
nel and loadable modules and a variable
part that was broken into fixed-sized blocks
of 128 words and used for buffers. The sizes
of both parts were fixed at compile time;
thus, the BS2 could be adapted to the size
of main memory.

The remaining main memory (p-region)
was allocated to programs and was broken
down into frames of 1,024 words. One fore-
ground and one background program could
run simultaneously. When started, an initial
amount of frames were allocated. Back-
ground and foreground programs could
dynamically request more frames or free
allocated frames. A background program
could use the whole p-region, but a fore-
ground program was limited in size. Conflicts
were avoided because the maximal demands
on main memory were known and the fore-
ground program did not have access to sys-
tem files. Thus, there was virtual addressing
but no demand paging or program swapping.

A simple file-management system was ori-
ented toward the requirements of high-level
languages, especially Fortran. A user program
could access only eight files, all of which had
to be specified at the command level before
running the program. The BS2 opened the
files before starting the program. On a logical
data-management level, there were records,
on a physical level fixed size blocks. Blocks
were directly transported between the device
and the user program’s address space.

The first version of BS2 (multiprogram-
ming with two programs) was finished in
the spring of 1970.1

For the second version of BS2, batch pro-
cessing with up to eight programs simultane-
ously and remote batch were projected.
Besides this, design and implementation of
substantial enhancements of features were
planned, such as dynamic job scheduling
with priorities and preemption, dynamic re-
source allocation and revocation during pro-
gram operation, code sharing, dynamic lists
with their size adjusted to demands during
the BS2 run, and indexed-sequential file

access. Jobs were to be listed in one of four
queues: express, special, I/O intensive, and
computationally intensive. Jobs in the ex-
press queue were to get absolute priority; all
other jobs would be scheduled to achieve as
high a utilization of all computer compo-
nents as possible. By spring 1971, important
elements of this concept had been imple-
mented, but the entire system was not yet
finished nor acceptance tested.

In the spring of 1971 at the latest, I ques-
tioned the continuation of the BS2 efforts.
My reasons included the fact that entrance
into the commercial market had not
occurred, the enhancements of BS2 inevita-
bly led in the direction of the time-sharing
system BS3 and to a bigger resource demand,
the successful BS3 was already available and
had reasonable resource requirements, al-
ways adapting the programming system and
the compilers to BS2 and BS3 meant duplica-
tion of work, and last but not least, the com-
pany’s financial situation was becoming
more difficult.

After long, intensive considerations, apprais-
als, and conversations Kurt Scheidhauer—
who was the AEG-Telefunken coordinator
responsible for all developments in the divi-
sion N3 (including the large-scale computer
department)—became convinced of these
arguments. With his backing and support,
work on BS2 was stopped in April 1971 before
the second version was finished.1 The first ver-
sion of BS2 was also never delivered to cus-
tomers. After the project was stopped, Esch
and all members of his team left AEG-
Telefunken. Nearly all went to the German
research center Gesellschaft fu€r Mathematik
und Datenverarbeitung near Bonn.

Upheavals in personnel
and organization

As I mentioned earlier, the goals of the
BS1 software group were too ambitious, the
time schedules were too tight, and the man-
power was too low. In addition, the potential
customers were skeptical and questioned
whether the software development could be
successful. Hardware and device develop-
ment also had huge technical problems and
large schedule slips. All these problems led
naturally to changes in responsibility for
the various projects.

Early in 1968, Köhler separated software
development from hardware development.
This was an extremely important and innova-
tive action because the needs and culture
in the hardware and software groups were

man2010030040.3d 28/7/010 14:32 Page 48

The German TR 440 Computer: Software and Its Development

48 IEEE Annals of the History of Computing

different then, as they still are today. After
that, the GR/ER department was only respon-
sible for hardware, and Köhler, head of the
sales department, also became head of the
new department GR/P, which was responsible
for software development (programming).

On 9 September 1968, Klaus Bounin was
promoted to the head of operating system de-
velopment (GR/P1). Wiehle, who up until
then had been the head of that group, became
a liaison to a group with the Leibniz Com-
puter Center in Munich, which also devel-
oped a BS for the TR 440 (Betriebssystem-
Mu€nchen, BSM).23–28 This BS was finished,
but never deployed. In October 1971, Wiehle
left AEG-Telefunken.

I joined the AEG-Telefunken sales division
in 1967 to give (potential) customers and the
sales people technical support. Wolfried
Hanefeld and I wrote the first sales-oriented
description of the real software—not just
about visions—called the ‘‘golden bible.’’ I
was then involved in planning BS1 features
and coordinating software development
as head of the group GR/P1, reporting to
Wiehle. In 1969, Köhler became head of the
division for large-scale computers (GR). On
20 May 1969, I became head of the GR/P de-
partment. At that time, the department over-
saw the TR 4 software, the TR 440 software
(except for commercial applications), the
software activities for a TR 440-successor,
and the group of customer-oriented advisory
services for sales and marketing.

Double TR 4 system
In the autumn of 1966, the DFG ordered a

TR 440 computer to be delivered to the Ger-
man Computer Center on 1 July 1968. By
the beginning of 1968, it was obvious that
the system could not be delivered on
time.26 It was also impossible to deliver any
preliminary version of BS1 on time. As an
emergency solution, the double TR 4 system
was born, later derisively also called doppel-
schläfrige TR 4, or double-sleepy TR 4, because
there were two TR 4 virtual machines, and
the TR 440 initially was running with lower
frequency than promised. With this sys-
tem,27 two original TR 4 operating systems,
along with all TR 4 software, could run in
one TR 440. Today this would be described
as two virtual machines with TR 4 hardware
interfaces running on a TR 440 host. This so-
lution was possible since the TR 440 had a TR
4 mode for the execution of TR 4 instructions
because it was already a design goal of BS1 to
run a TR 4 BS as a process.

The BS1’s slow progress

caused great concern

as delivery dates

came closer.

The TR 440 resources, including main
memory and devices, were divided and allo-
cated to the two TR 4 systems. A program,
then called Ämulator (what today we would
call a virtual machine monitor), mapped
the TR 4 hardware onto the TR 440 hardware
and managed the dynamic allocation of the
CPU.

This software was designed and imple-
mented starting in February 1968 by a six-
person team. Project manager Manfred Evers
reported directly to Köhler about this project.
Gisela Hoffmann was an important member
of this team right from the start. She became
responsible for the double TR 4 system in
October 1968 and was in charge of the
system’s delivery, maintenance, and support.
Hoffmann was the first female group leader in
our division and also the youngest.

The design phase took four weeks, coding
and testing an additional four weeks each.28

Extensive acceptance testing was conducted
during the second half of 1968. At the end
of 1968, the computer was delivered to the
customer, followed by a three-month trial
operation.

Software development took longer than
planned because the hardware development
group had to implement changes in the
adaptation unit to TR 440 for some devices
because of hardware bugs. After about an
eight-month delay, the double TR 4 system
was officially put into operation in February
1969. It received its certification of accep-
tance at the end of 1969.1 The double TR 4
system special solution was possible only be-
cause of the highly qualified and competent
Constance software development team.

Birth of the operating system BS3
Coding of a first development version of

BS1 was finished in the autumn of 1969,
but the system was a long way from its
goals.1 For example, it could only run a single
program; multiprogramming was not yet
possible. The BS1’s slow progress caused
great concern as delivery dates came closer.

man2010030040.3d 28/7/010 14:32 Page 49

July–September 2010 49

The next delivery deadline was June 1970 for
the computer center of Bochum University
(Ruhr-Universität Bochum), headed by Hart-
mut Ehlich. The real threaten, however, was
that parts of the company, of customers,
and of the DFG (German Research Council)
had extreme distrust in individual people,
as well as in BS1 concepts and target dates.
The firm’s only chance of success was to
make a complete break with the past, at
least in my opinion.

At the beginning of October 1969, within
a very few days and without informing out-
siders, Scheidhauer and I made the lonely de-
cision to stop development of the BS1 and
replace it with development of the all-new
BS3 operating system headed by Frielinghaus.
Alexander Hoyer took over responsibility for
compiler development from Frielinghaus,
and within a few days, the department GR/
P1 responsible for developing the BS1 was
broken up and, with only a few exceptions,
integrated into a newly formed department
responsible for the BS3 development.

This ‘‘swapping horses in midstream’’ was
a high-risk decision. If unsuccessful, it would
have been the end of the large-scale com-
puter division because there was no other
product to sell. This decision surprised all
the customers but, fortunately, was unani-
mously acclaimed. The BS3 became a com-
plete success and was used in all TR 440
installations as an interactive time-sharing
system. The first delivery of the conversa-
tional BS3 to the computer center of Bochum
University was on time in June 1970.

In a separate section of this article, I de-
scribe the influence of the DFG-Abnahmekom-
mission (DFG-AK) on the development of our
software, and its impact on the success. The
DFG-AK was a DFG committee initially created
to do acceptance testing. Alexander Giedke, a
member of the DFG-AK, remembered:

It is no wonder that turning away from BS1
was a surprise for many involved. Even on
August 31, 1969 when TR 440 customers
met there was not the merest hint about this
turn of events. . . . On November 7, at a DFG
hearing about the TR 440 a first version of
BS3 (batch processing with two Abwickler
(ABW) [an ABW is a process which provides
an environment for one user program, there-
fore two ABWs allow two user jobs running
in parallel]) was demonstrated, and Tele-
funken indicated that BS1 was not being pur-
sued any longer. The hearing comprised not
only a comprehensive survey, but also led to
admissions of the Telefunken company to

users and supporters. The demonstration of
the BS3 operating system showed that there
existed a definitive and feasible concept. . . .

In the main this hearing led to the decision
to continue work with the TR 440 project.26

Operating system BS3
The BS1 development ran parallel to the

development of the programming system
and compilers. To test the compilers, a
testbed was necessary, in this case a BS
with basic data management. BS1 was not
developed enough for this purpose. In search
of a solution, Frielinghaus and his group
came across the Wartungsverteiler (WV),
which was implemented by Jochen Schilling
in the hardware division and which
Wolfgang Froehlich had suggested to use.
Its design was derived from the TR 4 Verteiler-
programm. It was used to control test pro-
grams, and thus it was a special small BS
kernel. An enhanced version of the WV was
used as a testbed for compilers. In a 21
June 2007 letter to me, Frielinghaus recalled:

We built the whole programming system so
that BS1 interfaces were called. To test [the
compilers] I implemented for my staff a Hilf-
sabwickler (HIWI), which called services of
the WV. Therefore we were not compatible
with BS2, but on the other hand it was easy
to extend the HIWI to the BS3 ABW.

A HIWI was a special kind of ABW with
limited functions for running compiler test
programs. The German notation alludes to
a HIWI being a substitute for a full-scale
ABW running under BS1. The abbreviation
HIWI used by the group had a second mean-
ing: it was at that time the abbreviation for a
newly hired academic staff member in a uni-
versity environment.

Based on this test environment, the BS3
operating system was developed under Frie-
linghaus’s leadership. The BS3 system kernel
was based on the WV and was implemented
initially by Schilling and his group, espe-
cially Werner Schwarzmann and Lothar
Stolze, but according to specifications of
the BS3 group. From 1972 on, the BS3
group took over all the development of the
BS3 kernel. In April 1971, Franz Stetter be-
came responsible for the BS3 group, and Frie-
linghaus became project manager for the TR
550 computer software. Frielinghaus still
reported to me because software project
management was part of a small matrix orga-
nization within GR/P (see Figure 4). The TR
550 was the working title for the TR 440’s

man2010030040.3d 28/7/010 14:32 Page 50

The German TR 440 Computer: Software and Its Development

50 IEEE Annals of the History of Computing

successor. The TR 440 software project man-
ager was Joachim Feldmann.

Schilling remembered:

In about 1965 development of the much
more powerful TR 440 computer was begun.
Starting in 1968 as head of a group [GR/
EV11] I was responsible for the development
of software for hardware testing and mainte-
nance, from which evolved the task of pro-
gramming the operating system kernel for
BS3, at first secretly then officially.29

Gerd Sapper, member of the Leibniz Com-
puter Center in Munich, took notes on
7 October 1969:

On Wednesday October 8, 1969 at 9:30 AM a
group of programmers of the departments
N3/GR/P1, P2, P3, EV11 . . . dealt with making
the WV and the HIWI deliverable to TR 440
customers on January 1, 1970. . . . On July 1,
1970 a version ready for interactive terminal
operation was to be delivered. The appoint-
ment of extraordinarily qualified personnel to
this programming group gives good cause to
believe that these dates are realistic. . . . In the
same week I could get a collection of interface
documents and lists from W. Frielinghaus.

Along with the BS1 team members, their
know-how and practical experience with con-
cepts, solutions, and problems of BS1 develop-
ment were also directly transferred to the new
BS3 team. To some extent, even direct usage of
parts of the BS1 code was possible. All the
team members were highly competent, had
an ambitious goal, and pursued this with un-
believable commitment. They worked a lot
of overtime—they could, and did, come to
work at anytime during day or night. Discus-
sions with the Employee Council led to at
least some relaxation of the requirement for
an 11-hour interval between two work days.

By the end of 1969, the BS3 allowed batch
processing with two streams of jobs. In the
time following, it evolved rapidly through
some maintenance versions (MV1 to MV18)
into a comfortable time-sharing system with
up to three CPUs, remote terminal access,
and several computers connected (basic
networking).

Technical highlights of BS3
The BS3 reused several BS1 concepts,

including an OL and the ABW. It also used
an OP, which was a program running in the
environment provided by an ABW; therefore,
it obeyed certain rules. Examples were com-
pilers, loaders, shells, or compiled application

programs written by users. An ABW was a BS
resource and could be dynamically allocated
to OPs, or be preempted. From the view of
the BS3 kernel, an ABW was a process. The
TR 440 CPU had a special ABW mode in
which an ABW was executed. Around
1970,1,30–33 the BS3 had seven ABWs. An
ABW’s main tasks were managing, starting,
and providing services for an OL and provid-
ing interfaces for system kernel calls, file
management, I/O services, and data access.

man2010030040.3d 28/7/010 14:32 Page 51

P Software development Dr. Siegert

P11 Project manager software TR440 and TR86S Feldmann
P12 Project manager software TR550 Frielinghaus
P2 Integration and quality assurance Muhlbach

¨hcSgniniartlanretnI12P utt
hcilheorFecnarussaytilauQ22P

P23 Integration and acceptance testing M. Hofmann
P24 Program analysis and measurements Mersmann

¨hcS.rDsdiagnitseT52P afer
htonK.rDsmetsysnoitacilppA3P

¨G1snoitacilppA13P utinger
tsoR2snoitacilppA23P

zluhcS3snoitacilppA33P
zneB4snoitacilppA43P

rengaWretnecretupmoC4P
relppeK.JspuorggnitarepO14P
relppeK.JnoitartsinimdA014P
negahtseW1retnecretupmoC114P

).mmok(negahtseW2retnecretupmoC214P
trehcoB3retnecretupmoC314P
areggniP4retnecretupmoC414P

trehcoB5retnecretupmoC514P
¨MecivreS24P oller

hcstiwomicaJnoitallatsnidnagninnalP34P
P44 Helpdesk and training of operators Niepelt

rettetS.rDmetsysgnitarepO5P
P51 Technology and coordination H. Meyer

renruhT.rD)KFK(gniludehcS25P
nnamhuL.rD1secivresmetsyS35P

tdrahkruB.rD)WBA(relkciwbA45P
tdrahlegnE1tnemeganamataD55P
enheoH.rD2tnemeganamataD65P

eidatS2secivresmetsyS75P
zlomhcSrelipmoC6P

.N.N1relipmoC16P
dlognaM2relipmoC26P

).mmok(zlomhcS3relipmoC36P
reniarK.rD4relipmoC46P

allozsP5relipmoC56P
rethciR.U6relipmoC66P

yerfednI7relipmoC76P
srevEmetsysetilletaS7P

relhcihcStnemeganameciveD17P
¨mnellahcSlenrekmetsyS27P uller

znieHtnemeganamyromeM37P
ekmerBegarotsyradnoceS47P

regsneM.rDsecivedgolaiD57P
reyeM.P.rDnoissimsnartataD67P

nniLmetsysgnimmargorP8P
tdrahbeG.lrF1metsysgnimmargorP18P

rapsaK.rD2metsysgnimmargorP28P
yemlhuK3metsysgnimmargorP38P

tdimhcS.E4metsysgnimmargorP48P
ttalB5metsysgnimmargorP58P

¨K.rD6metsysgnimmargorP68P aäb
ssearB.rD7metsysgnimmargorP78P

¨

Figure 4. Software development (GR/P) organization chart (1 June

1974).

July–September 2010 51

Concurrent execution of OLs was not possible
within an ABW, but a sequence of OLs was
supported, and services for the management
of chains of OLs were provided. Every OL
could insert a new OL in this chain at any po-
sition. In later versions, OL nesting was possi-
ble, so an OL could start another OL and wait
until it stopped. If an OL had to be blocked,
or would probably have to wait for a long
time, then the BS kernel’s control function
(KFK) sent a message to the ABW. The ABW
then preempted the OL, called BS3 kernel ser-
vices to write the OL’s frames to disc, and be-
came free to run another OL.

BS3 processes executed either in privileged
system mode or in the ABW mode. A process
running in system mode was denoted System-
akteur, which needed direct access to hardware
components or a device. It had no or short
waiting times. Processes to serve slow periph-
eral devices with long waiting times were
run in ABW mode and could be preempted.

Figure 5 shows the processes running in
system mode:

� Operateurvermittler (OPV), for communica-
tion with the operating person;

� Trommelvermittler (TRV), administration
and drivers of drums implemented by
Schwarzmann in Schilling’s team;

� Plattenvermittler (PLV), administration and
drivers of hard discs implemented by
Schwarzmann in Schilling’s team;

� Notschleife (NSL), a process to handle sys-
tem errors; and

� Warteschleife (WSL), a process to be run
when no other process was ready to use
the CPU.

Figure 5 also shows the processes running in
ABW mode:

� Kontrollfunktion (KFK), overall scheduling
process;

� Satellitenvermittler (SAV), connection with
the satellite computer TR 86S and its de-
vices, especially all terminals;

� Lochstreifenvermittler (LSV), administration
and drivers of paper tape devices directly
connected to the TR 440;

� Schreibmaschinenvermittler (SV), connec-
tion to the control typewriter;

� Kartenleservermittler (KLV), administration
and drivers of punched-card devices di-
rectly connected to the TR 440;

� Druckervermittler (DRV), administration
and drivers of line printers directly con-
nected to the TR 440; and

� ABW.

The BS3 had a system architecture that is
still in use today (see Figure 4). Logical
addresses of devices were used, which was
uncommon at that time. It was not mono-
lithic like other BSs at that time, but was a
process-oriented BS, where many parts of

man2010030040.3d 28/7/010 14:32 Page 52

The German TR 440 Computer: Software and Its Development

system kernel

processes system mode

ABW modeprocesses

WSL

ABW ABW DRV *) *) *)KLV SV SLV SAV KFK

NSL PLV TRV OPV

priority

0 1 7 8 9 10 11 12 13 14 15 16 17 18 19 20

user modeOPs

OL OL

*) A process reserved for special tasks of a
computer center

For abbreviations see list in text

Figure 5. Block diagram of the BS3.32

52 IEEE Annals of the History of Computing

classical BS kernels were implemented as
processes. I/O services were separated from
the user programs, long before IBM did this.
The system kernel was small and managed
only processors, main memory, devices, and
transport channels to devices. This manage-
ment covered only reservation and release
of components as well as hardware-oriented
transport orders to and from devices. Thus,
the system kernel provided an abstract hard-
ware interface for processes and concealed
special hardware characteristics. The concept
was new at the time, but it is fundamental for
today’s operating systems.

The BS3 had virtual addressing, but like
the BS1 it had no paging at first. Instead,
whole data regions (Gebiete) were swapped
between main and secondary memory.
There were distinct data regions for, among
other things, the program instructions, for
constants, for variables, and for the stack.
Data regions could perhaps be called seg-
ments today. The goal of choosing data
regions as transport units was reducing I/O
time. To further aid this goal, the transport
was executed with just a single I/O instruc-
tion, if possible. Therefore, the allocation
policy was to store data regions in contiguous
blocks of secondary storage, to the extent
possible. It was unnecessary to store data
regions contiguously in real memory, but
they were of course contiguous in virtual ad-
dress space. This was possible because the
transport instructions on the hardware level
allowed scattered reading and writing. Thus,
several parts of an incoming data stream
could be stored in different frames (different
real addresses), and correspondingly for out-
going data streams.

The BS3 handled two kinds of user jobs:
batch jobs (Stapelauftrag) and interactive
jobs (Dialogauftrag or Gespräch).

The KFK, a BS3 system process, handled
the strategic planning of resource allocation.
Also called logical planning, strategic plan-
ning was done on a high level, often before
a program can start. For example, if it was
known how many hard disk blocks an OL
needed, then that number of blocks could
be reserved for the OL before starting it; after-
ward, when running, the OL claimed blocks
and only then were real blocks allocated. Re-
sponsibility for the KFK lay with Herbert
Meißner, who had also been responsible for
the BS1’s KFK. Resources to be planned by
the KFK were not only hardware compo-
nents, but also software components such
as ABWs or other processes. The BS3’s KFK

did not use the NF concept; it used the classi-
cal algorithms of today, such as priorities for
batch jobs, preemption of jobs if more impor-
tant jobs arrive, multiqueue round-robin
scheduling for conversational jobs, and
good usage of CPUs and main memory. The
system had to achieve an adequate compro-
mise, defined by the computer center, for
the classical problem of high utilization of
the hardware components versus short re-
sponse times. These goals are incompatible,
however, and the situation was aggravated
because the financiers demanded an ex-
tremely high degree of CPU usage and
made the procurement of a new computer
dependent on it. On the other hand, espe-
cially in a conversational operating mode,
high productivity of users demanded good
response times from the computer system.

In conversational operation, up to 48 ter-
minals could be active simultaneously—in
later BS versions many more. Terminal users
could communicate with their programs
and influence their behavior. This was possi-
ble for interactive programs, which most
compiler-generated programs were.

Another BS3 feature was data and file
management with permanent data storage.
The developers called this feature langfristige
Datenhaltung (LFD, long-term data storage).
Permanently stored data was managed and
secured by the BS3 against unauthorized ac-
cess and loss. Problems and solutions are
known today, but the solutions often had
to be invented then. Lothar Stolze, who
came from Schilling’s group to the BS3
group, was the head of the LFD group.

Secondary storage was divided into four
segments, the address limits of which were
fixed before compilation of the BS. Three of
the four segments were used for data regions,
LFD, and the documentation system TEL-
DOK (which I explain later on). The fourth
segment was not dedicated to a special
purpose and could freely be assigned by a
computer center.

A hard disk was divided into blocks, each
the size of a frame. In each of the four seg-
ments, numbering started with zero. The
blocks allocated to an object could be
scattered.

For administrative purposes, several files
were combined into a database. The BS3 sup-
ported public, standard, and LFD databases.

The public database consisted of the sys-
tem’s program library, including the com-
pilers, programming system subroutines,
utilities mountable to user programs (such

man2010030040.3d 28/7/010 14:32 Page 53

July–September 2010 53

as mathematical subroutines), and defini-
tions of macros and commands. The library
was set up at system start and allowed read-
only access for all users.

A standard database was created at the be-
ginning of each job, batch or conversational.
It included the temporary library for the job,
including the temporary files, the compiler-
generated mountable objects, the lists for
backtracking nested subroutine calls in case
of a program error, the lists to generate
source-code-related dumps, and the descrip-
tions of loadable programs. In addition, a
user could create further private databases,
which like the standard database were
deleted at the end of a job.

The LFD database let a user permanently
store files on a hard disk that were not
deleted at the end of a job. The file descrip-
tion and other file metadata were also stored
in this database. The main index had an
entry for each known username. The advan-
tage was that all files for a user were in only
one subtree, so each user had his own file
namespace. In addition, it was easy to keep
unauthorized users from storing files and to
control disk quotas.

There were also shared files, access to
which was coordinated by the reader-writer

algorithm. Separate passwords for reading
and writing protected a file from unauthor-
ized access. Processes communicated using
the Depot, a shared message buffer area in
main memory. Its size was 1,000 words, and
it was divided into two parts. The first part
consisted of message buffers of five words
each, and the second was unformatted, so
access had to be synchronized. As always,
special algorithms and agreements were
necessary to ensure freedom from deadlocks
and the ability of an operator (person) to
take action at any time.

BS3 services were called using the SSR sys-
tem call instruction. Table 2 shows examples
of system kernel calls.

As I already mentioned, file-access services
were not part of the system kernel but were
located in the ABW. File types were sequential
access, random access with record numbers,
and random access with short record labels.

The following selection of important
milestones34 connected with delivered MVs
(maintenance versions) shows the BS3’s
rapid evolution:

� MV9 (April 1971): Central (error) log file,
reduction of main memory used by BS3.

� MV10 (August 1971): LFD allows daily
saves.

� MV11 (February 1972): Further reduction
of main memory used by BS3 through seg-
mentation of the kernel, shared regions,
and code sharing of compilers and appli-
cations; centralized buffer management;
one process to serve all devices of a type
(multiplexing device drivers); dynamic
scheduling of main memory and second-
ary storage; adjusting priorities as needed;
services for removable disks (WSP414);
connection of several TR 86S satellite
computers in parallel or in cascades;
graphic terminals (SIG100) with scroll
ball; graphics utilities; and hierarchy of
catalogs for all databases.

� MV12 (June 1972): Two or three CPUs
supported,35 restart and rerun; reduction
of terminal response times, LFD enhance-
ments, enhanced management of mod-
ules of secondary memory, mass storage
available (semiconductor-based memory,
priced and sized between main memory
and hard disks, used by the system as
fast drum storage), 96 terminals, and
line-oriented displays (SIG50).

� MV13 (December 1972): Enhancements of
rerun and restart; 10 ABWs; batch jobs
read from removable disks; data stations

man2010030040.3d 28/7/010 14:32 Page 54

The German TR 440 Computer: Software and Its Development

Table 2. Example BS3 system kernel calls (SSR-Befehle).

Address

Symbol Numeric Service

A 0 0 Release an I/O device

B 0 1 Get relative machine time

BP 0 26 Get relative process time

C 0 2 Continue a halted process

D 0 3 Get date

E 0 4 Renew blocked I/O orders

F 0 5 Continue a process in user mode

FA 0 3 Continue a process in ABW mode

G 0 6 Request access to message queue

HLT 0 7 Cancel OL

I 0 8 Get ID (program number) of own OL

J 0 9 Get status of other process

K 0 10 Waiting for short time

KA 0 30 Waiting for input from operator

L 0 11 Delete blocked I/O orders

M 0 12 Output to operator, and waiting for input

N 0 13 Output to operator

NS 0 31 Start NSL

O 0 14 Cancel other process

P 0 15 Request an I/O device

PL 0 27 Transport order for PLV

Q 0 16 Halt a process

54 IEEE Annals of the History of Computing

(DAS 3200) with card readers, line print-
ers, and a terminal for control connected
to TR 86S; plotter; peripheral devices
using paper could also be connected to
TR 86S; IBM-compatible magnetic tapes;
and enhanced generation of the BS.

� MV13N (June 1973): Connecting TR 86S
with TR 86S over a long-distance line of
48 Kbaud.

� MV14 (October 1973): LFD provides record-
oriented saving and restoring, restart of
TR 86S during interactive terminal ses-
sions, demand paging (an ABW service,
not part of the system kernel as usual), re-
source scheduling lets an OL request ad-
ditional resources, files for sequential
access can be larger than 2 Gwords, fur-
ther enhancements of system generation;
segmentation of the ABW, nesting of OLs
up to the depth eight, and system kernel
is identical for all installations.

� MV15 (June 1974): Saving of preempted
jobs over system booting, line-oriented
display SIG51, file type with random ac-
cess and record keys, 22 processes, further
enhancements of system generation, and
enhancements of system errors’ diagnosis.

� MV16 (December 1974): Random-access
files larger than 2 Gwords, user restart, re-
movable disk WSP430, operator-oriented
management services for removable
disks, dial-up terminals, magnetic tapes
using ISO standards, several files on a sin-
gle magnetic tape, and files needing more
than one magnetic tape.

This list clearly shows the rapid progress
toward reducing system resources, getting
higher reliability, automating system genera-
tion, connecting the newest devices, and net-
working. Also of importance were changes in
system concepts to be able to implement new
functions, achieve better performance, and
facilitate enhancements and maintenance
(for more and more customers). A big success
was operating up to three CPUs simultane-
ously. Thus, AEG-Telefunken had one of the
first—possibly the first—multiprocessor mul-
tiprocess time-sharing systems, which was in-
stalled in mid-1972 at the Munich Leibniz
Computer Center.

TR 86S satellite system
and networking

An important and seminal decision at the
start of the TR 440 development was to con-
nect character-oriented devices, especially ter-
minals, not directly to the TR 440, but to a

satellite computer (TR 86S). The TR 86S was a
medium-scale, real-time computer for process
control. In a basic configuration, the TR 86S
was connected to the TR 440 with a
high-speed coaxial cable. At first, only teletype-
writers and alphanumerical displays in
teletypewriter mode were used as terminals.
Later, there were also alphanumerical displays
in line mode and graphical displays (vector
graphics) with one-button trackballs. Periph-
eral devices such as paper-tape readers and
writers, line printers, punched-card readers
and writers, or data stations could be con-
nected directly to the TR 440, or preferably to
a TR 86S. A typical data station included a
punched-card reader, a line printer, and a type-
writer for control by an operator. Some of these
devices could be connected over dedicated,
leased, or (low-speed) dial-up lines. This was a
first, but important step toward decentralized
computing, allowing remote access to the com-
puter from devices installed near a user’s office.

Later, from about 1972 on, several satellite
computers could be connected to a TR 440 or
another TR 86S, resulting in a tree-like cas-
cade. The satellite computer’s software was
built in such a way that it was independent
of the TR 86S’s position in the tree. The satel-
lite computers could also be connected by
leased lines of 48 kilobits per second (kbps),
fast at that time (1973). Thus, a TR 86S with
terminals or other devices could be installed
near a user. In a further development step,
a TR 440 or another mainframe computer
could be connected to a TR 440 with a TR
86S in between. These were fundamental
achievements leading to decentralized com-
puting and computer networks, both central
concepts of today’s information technology.

The satellite system36,37 consisted of two
main parts: the Satellitenvermittler (SAV) in
the TR 440 and the TR 86S operating system,
also called Konsolverteilerprogramm (KVP) or
Satellitenprogramm (SAP). Design and imple-
mentation was done in a group under the
Manfred Evers’ leadership.

For processes running in the TR 440 under
the BS3, the SAV provided an interface for
accessing terminals and other devices con-
nected to the TR 86S. The SAV gathered all
output for all TR 86S devices and assembled
it into large data blocks. The SAV sent these
blocks to the SAP at the SAP’s request. Analo-
gously, the SAV received a block of input data
from a TR 86S, extracted from it the input of
the different TR 86S devices, and distributed
that to the corresponding processes waiting
for it. If the input from a device was not yet

man2010030040.3d 28/7/010 14:32 Page 55

July–September 2010 55

The importance of

decentralized

computing and

networking was clear

early on to the people

responsible for

development.

complete, it was gathered and stored on sec-
ondary storage until the last part of the input
from the device arrived. The TR 440 always
had to accept data blocks from a TR 86S.
These restrictions were for the purpose of
deadlock avoidance in the TR 86S software.

The main goals in designing the satellite
system were

� removing from the TR 440 the
high load of interrupts caused by char-
acter-oriented I/O to and from interactive
terminals,

� removing the burden from the TR 440
caused by the numerous protocols used
in accessing terminals and other periph-
eral devices, in operating transmission
lines, and in connecting to other main-
frame computers,

� relieving the TR 440 from always having
to translate characters according to the
many different character sets and charac-
ter codes used for the devices,

� putting all processing with tight real-time
requirements into the TR 86S, and

� providing a uniform device-independent
interface for all devices connected to the
TR 86S.

The SAP included device drivers for all de-
vices connected to a TR 86S. A device driver
served all devices of a class and gathered
their input. The SAP aggregated the input
into blocks and sent it to the TR 440. Incom-
ing blocks from the TR 440 were decomposed
into output strings and given to the appropri-
ate device drivers or forwarded in blocks to a
connected TR 86S. Thus, the number of inter-
rupts for the TR 440 was small compared to
the number of interrupts caused by all the
TR 86S devices. The SAP knew essential parts

of the TR 440 commands. Therefore, it was
possible to discard input not within a batch
or conversational job, interrupt and cancel
terminal output, display input characters on
a graphics terminal at a location predefined
in a previous output sequence, or recognize
the final character of an input sequence.

There were tight real-time requirements
for input from devices, but not for output.
Nevertheless, output delays, especially when
recording an input character, could not be
allowed to exceed about 100 ms. The neces-
sary real-time behavior was achieved by
techniques similar to those used in today’s
real-time operating systems:

� The SAP was memory resident, meaning
no secondary storage connected to a TR
86S.

� The SAP had a highly modular design;
each job was accomplished by executing
a sequence of modules (a sequence of
simple tasks).

� The maximum processing time a module
used for its task was known, and the mod-
ules were defined so that this maximal
time was compliant with the real-time
requirements.

� Scheduling was based on fixed priorities
allocated to the SAP modules.

� A module could be interrupted only
briefly by a device interrupt and was im-
mediately continued after initial basic in-
terrupt handling. As one would expect,
there was no preemption by the schedul-
ing algorithms; a module had to release
the processor after finishing its task.

New tasks were created by executing a mod-
ule (task) or by the basic interrupt handler.
When a module released the processor then
scheduling allocated the processor to the
module of highest priority that had a task
to execute. The only exception was when a
module could not finish its task but had to
wait for another module. In this case, a tem-
porary transfer of priorities was made.

The SAP was designed so that deadlocks
could not occur and bottlenecks were
avoided. As I already described, modules
were interrupted only briefly by devices. In-
ternal communication between modules
took place by making an entry in a module-
specific task queue. Scheduling was based
on priorities. Modules handling input from
devices had higher priority than modules
handling output to devices. The TR 440 was
not allowed to send data blocks to the SAP

man2010030040.3d 28/7/010 14:32 Page 56

The German TR 440 Computer: Software and Its Development

56 IEEE Annals of the History of Computing

at any time, but only on request by the SAP.
Furthermore, a SAP could tell the TR 440 or
another TR 86S on the path to the TR 440
that it could no longer accept data destined
for a specific TR 86S further down in the
tree. This approach prevented output bottle-
necks in the TR 86S. By reducing the output,
the progress of terminal sessions was slowed
down, which also diminished the input
load from devices. Furthermore, it was rec-
ommended that a data line going from a TR
86S toward the TR 440 had to have a higher
transmission rate than the sum of the trans-
mission rates of all lines coming in from de-
vices or other TR 86Ss, so a back up of
input streams could be avoided. Alterna-
tively, handshaking protocols could have
been used to control the data flow. This
approach was not implemented because it
led to additional interrupts.

The importance of decentralized comput-
ing and networking was clear early on to
the people responsible for development. Our
customers also expressed such requirements.
In the early 1970s, the TR 440 software devel-
opment department began exploring and
planning all facets of connections between
computers, a few years after the ARPA net-
work was begun. For example, fundamental
concepts and concrete development steps
were documented in a memo at the begin-
ning of 1973.38 The ideas expressed therein
are still valid today—for example, that a lon-
ger useful life of a TR 440 could be achieved
by integration into a network with load shar-
ing or with computers of different function-
ality or power. This let the advantages of
time-sharing systems be combined with the
advantages of number crunchers. At the
end of 1973, Evers and I visited the US to
get information about current and upcoming
features of computer networks.

A 1972 company flyer explained it this
way: ‘‘Further evidence for the open user-
friendly nature of the TR 440 system is its
adaptability to computers of other manufac-
turers. Dialog between computers is more
and more becoming reality.’’39

Programming system
The programming system (PS) was a kind

of layer between the BS and the OPs.40,41

OPs were user programs, application pro-
grams, or standard programs (such as com-
pilers), but the PS was not a single program.
It consisted of several units stored in a pro-
gram library. Some units were programs
ready to be loaded and run (OPs); others

were program components to be linked
with a user program. Some examples of the
PS units include linker, loader, I/O subrou-
tines for different programming languages,
testing aids, back-tracing programs, dump
programs, and a shell (TR 440 command
language interpreter).

Frielinghaus led the group responsible for
the PS and compilers. In 1969, Alexander
Hoyer became the head of this group, until
he suffered a severe car accident in 1972,
upon which Eberhard Schmolz became the
head on 1 August 1972. Schmolz had been
with the Telefunken research institute in
Ulm and came to AEG-Telefunken in Con-
stance in the late summer of 1968 to work
on the Cobol compiler. On 1 April 1973,
the group was split into two: one group
responsible for the PS, and the other for
compilers. Norbert Linn became head of the
programming system group, and Schmolz of
the compiler group.

The TR 440 command language (shell),
designed by Peter Namneck, was used with
batch and interactive jobs. A job consisted
of data blocks, together with commands
that specified what the computer should do
(with the data). The shell extracted the com-
mands and executed them. Commands
started with a special escape character ^ to
distinguish them from data. The syntax and
semantics of commands were the same for
batch and conversational jobs, which was
unusual at that time. Other features also
pointed far into the future and are still funda-
mental and important for shells today:

� For all applications, the same syntactical
structure was used—for example, ^
COMPILE, LANGUAGE= . . . for all compilations.

� Commands to start or close batch and
conversational jobs obeyed the same
rules as other commands.

� The parameters (specifications) for a com-
mand were named. A parameter consisted
of a parameter name and a value, written
as <parameter name>=<parameter value>.
Command and parameter names could
be abbreviated, provided the abbrevia-
tion was unambiguous. Abbreviations
were indicated with a ‘‘.’’ following.
The parameters were also associated
with a position, so the names could be
dropped when a predefined sequence of
parameters was used. Some parameters
were required, and others were optional.
For instance, the compile command had
to specify the source code and the

man2010030040.3d 28/7/010 14:32 Page 57

July–September 2010 57

language—for example, with abbrevia-
tions you could write: ^ COM.,S.=mysour-

cefile,LANG.=ALG60

� Parameters could be regarded as local shell
variables, to which values could be assigned.
For example, if users wanted to compile
several Algol programs, they could declare
^*LANGUAGE(COMPILE)=ALG60 and then
would not have to specify the language in
subsequent compile commands.

� The shell had a separate shell memory for
each user in which the variables had pre-
defined initial values that the user could
modify. The shell memory was always
valid during job execution, and its life-
time could be extended by exporting it
at the end of the job and importing it at
the beginning of a later one.

� It was possible to define (new) commands
with (new) parameters for (new) programs.

� Command sequences could be dynami-
cally changed by using a conditional
branch command to jump to another
command in the sequence, depending
on the state of programs and other shell
variables. This allowed, for example, dif-
ferent command sequences depending
on whether a program reported an error
or not.

Peter Jäger made the following remarks
about the TR 440 command language on
his Internet page:

The software products still comprised hun-
dreds or thousands of punched cards or mag-
netic tapes the size of cake plates. But already
the computation of a huge quantity of math-
ematical and physical values for printed
pocket books and data collections astonished
the experts. Electronic data processing tech-
nology had evolved at a speed which can
only be described as breathtaking even from
today’s viewpoint. Disk stacks the size of a
large deep-freeze cabinet already showed
what lay ahead. In my view at that time, the
Telefunken TR 440 computer was among the
most progressive technologies of all. The com-
mand language was impressively simple, but
nevertheless absolutely reliable. By contrast,
the Job Control Language (JCL) which then
had to be learned for the IBM was a long
way from being user friendly.42

In 1986, the German computer magazine
Computerwoche also reported on the TR 440
installed at Osnabrück University:

Our [Osnabrück University] computer center
has been operating a computer of the type

TR 440 since September 1, 1977. According
to current plans it will be in use until the mid-
dle of 1988. . . . The owner of a TR 440 in the
year 1986 finds himself in the happy position
of being able to benefit from the numerous
software packages developed by the manufac-
turer as well as by various former TR 440
users, even though all around us these com-
puters have been taken out of service, and
the TR 440 has become almost quaint. The
heyday of the TR 440 was characterized by
very good professional cooperation between
the computer manufacturer and users of the
computer, as well as by an intensive exchange
of software between TR 440 computer centers,
some of which ported powerful software from
the US to the TR 440, and passed it on to
other centers. . . . An essential reason that we
are not at all despondent about still operating
the TR 440 today and even for two more years
is the excellent user interface. BS3 and the
comfort of its command language were far
ahead of their time, in their capabilities as
well as their underlying concepts. What
some suppliers of today praise as a modern
and trend setting user interface is for the TR
440 user ‘‘old hat.’’ Regarding the aspect
‘‘comfort of the user interface’’—so important
for a university computer center—the TR 440
is substantially more advanced than nearly all
large scale computers which replaced it. A
discarded TR 440 was recently delivered to
Nikolaus-Kopernikus-University at Thorn in
Poland, and a second one will follow; thus
not only generations of German students
and scientists have been educated using the
TR 440, but soon generations of Polish stu-
dents and scientists will be as well.43

Compiler
At the time of the TR 440 development,

software was always bundled, meaning that
it was included in the price of the central
computer hardware—software was ‘‘free of
charge!’’ Even after IBM unbundled its soft-
ware in 1969,44 TR 440 software remained
bundled. Therefore, customers demanded
a broad range of software products from
their manufacturer, and sales people had a
tendency to promote sales by offering
additional software for free. At that time,
customers often implemented their applica-
tion programs by themselves; this was
especially true for customers in the university
environment. These were the basic reasons
why AEG-Telefunken had to provide
compilers for a broad range of programming
languages: a functionally rich assembler
(Telefunken Assembler, TAS), Algol60, Basic
Combined Programming Language (BCPL),
Basic, Cobol, Fortran, PL/1, RPGII, and

man2010030040.3d 28/7/010 14:32 Page 58

The German TR 440 Computer: Software and Its Development

58 IEEE Annals of the History of Computing

General-Purpose Simulation Language V
(GPSS V), and RPG, an IBM language for
business applications, initially designed for
generating reports from data files. (Com-
mon compiler techniques are outside this
article’s scope, as are the scope of a language
as implemented for the TR 440.) The fea-
tures of the programming languages met
standards and were often also geared to
those of other important manufacturers.
Our company was active in many national
and international standards committees.
All compilers mentioned were designed
and implemented by the compiler group
within large-scale software development
(GR/P) except PL/1 and BCPL, both of
which I cover later.

Two important features of our compilers
were linking of procedures of different lan-
guages and testing aids. Both features were
groundbreaking then and are still unusual
today to the extent that they were imple-
mented for the TR 440.

Linking of different language procedures
was done by the linker/loader.40 A procedure
could be linked to a main program possibly
written in a different language or to another
procedure, maybe also in a different lan-
guage, and recursively. Linking procedures
written in assembly language was straightfor-
ward. A programmer of such a procedure had
to obey the rules given by the programming
language of the calling main program or pro-
cedure. A programmer of a main program in
assembly language calling a procedure
written in another language had to obey the
calling conventions and use the data types
of that other language. If the calling program
or procedure was written in a high-level lan-
guage and was calling a procedure written
in another high-level language, then well-

known problems arose: data types had to be
compatible, or at least convertible, and call-
ing conventions (including the stack layout)
had to be adjusted. Stubs, invisible to the
user, were provided by the programming sys-
tem and inserted by the compilers to convert
data and calling conventions between differ-
ent languages. In some cases, there were
even special extensions made to a language
to make it possible to use procedures of cer-
tain other languages. For example, Algol60
was extended with a COMMON-area as regularly
needed in Fortran subroutines. Figure 6
shows the possibilities for linking procedures
of different languages.

All testing aids were user oriented and al-
ways referred to the source language of a
main program or procedure, even when differ-
ent programming languages were used. Here
are some of the important testing aids:40,45

� At compile time the compiler tried to con-
tinue translating at the closest possible
point after an error was found. The goal
was to find all syntactic and semantic
errors (at least of those that could be rec-
ognized at compile time) with one
compiler run. A user could also request
various lists, such as a list of declared var-
iables with all line numbers of the source
code where each was referenced.

� There were compiler options to include
dynamic controls, such as testing whether
indices stayed within their bounds,
whether formal and actual parameters
were compatible when calling a subrou-
tine, whether loop variables were changed
in a way not allowed, and so forth.

� When an error occurred while running a
program, a source-code-related error mes-
sage was given, indicating possible reasons
for the error. Furthermore, a source-code-
related dump was available, including a
list of all valid variables with their names
and current values, and the current nest-
ing of subroutines giving the exact loca-
tion (even within a line of code) of the
subroutine call in the source and the
name of the called subroutine.

� The source-code-related dump could be
output not only when an error had
occurred, but also by using a special proce-
dure call with parameters specifying what
data to include in the dump. After dump-
ing, the program was continued.

� The execution of any program could be
traced from instruction to instruction at
the source code level.

man2010030040.3d 28/7/010 14:32 Page 59

TAS

ALGOL 60

COBOL

FORTRAN

A → B A procedure written in language A can
call a procedure written in language B

Figure 6. Linking of procedures written in various

programming languages.

July–September 2010 59

� In a source program, a user could define
trace points, at which a source-code-related
dump was initiated. To keep the dumps
small and easy to read, it was possible to
specify details of what to record, such as
which variables to include. The dumps
could be stored in the computer, letting
the user decide on an error or at the end
of the program which of the dumps were
of interest (backtrace).

� With interactive programs, Kontroller-
eignisse (KE, control events) played an im-
portant role. In the compile command,
users could specify a generation of a con-
versational program and could define
KEs, associating each with a source line.
In the command used to start a program
run, they could specify which KEs were
initially active and which were passive. If
an active KE was reached, the program
was halted and a message with the name
of the KE was sent to the terminal. Users
could then work entirely at the source
code level; they did not need to know
any machine-oriented feature. They
could query or set the variable values,
make KEs active or passive, turn on or
off testing aids compiled into their pro-
gram, and continue or stop their program.

� In conversational mode, users could inter-
rupt their program at any time and then
could begin a dialog with the ABW or
the user program. For example, they
could post new commands having priority
or could use any of the testing aids dis-
cussed earlier. At the end of the dialog,
they could cancel or continue their
program.

The compilers designed and implemented
in the compiler group used a common struc-
tural concept with a common intermediate
language (before code generation), influ-
enced by Donald Knuth and by work on
compiler compilers as well as by compiler
writing systems. In practice, only a common
concept with similar intermediate languages
remained for the TR 440 compilers because
they were not developed at the same time
and because code optimization was different
for each language, since it was extremely im-
portant at that time to attain good bench-
mark results.

A universal intermediate language (inter-
mediate code) for all compilers, a two-stage
optimization concept (language and ma-
chine related) on the level of the intermedi-
ate code, and common code generation

were completely specified for TR 440’s
successor.

BCPL for writing systems code
Already in 1969, we in the software de-

partment believed that it was important
with respect to productivity, reliability, and
quality to no longer write compilers in as-
sembly language but in a higher-level lan-
guage, and that memory requirements and
runtime of the compilers would be accept-
able. Members of the compiler group worked
on this subject intensively, examining cur-
rent languages and even considering design-
ing and implementing their own language
for this purpose. Finally, however, we
decided to adopt Martin Richards’ BCPL com-
piler, a decision not unanimously welcomed.
In 1970, the BCPL compiler was adapted to
the TR 440 and enhanced.46 We were able
to get Richards as a consultant for this
work. Hoyer had a significant influence on
this farsighted and correct decision. At first,
BCPL was used only internally for writing
compilers and later for parts of the operating
system, but in June 1973 (with the BS3 main-
tenance version MV13N), it was also deliv-
ered officially to customers.

The Combined Programming Language
(CPL, 1963), BCPL (1967), B (1969), and C
(1971) belong to the same family of lan-
guages and evolved from each other over
time.47 CPL, a language influenced by Algol,
was developed by English universities in
Cambridge and London. Richards designed
a simplified version called BCPL and imple-
mented a compiler for it during his research
stay at MIT. The BCPL compiler was itself
written in BCPL, a feature which was impor-
tant for our selection decision. The compiler
generated an intermediate code called
OCODE, which could either be interpreted
at runtime or translated into machine
instructions by a code generator. To port
the compiler to the TR 440, we wrote a
code generator that was also used to generate
executable compiled programs.

For a long time, there were many heated
discussions with customers who did not be-
lieve that system software could be written
using higher-level languages. They feared
that too much performance would be lost
and that memory requirements would be
too high. At that time, all our main compet-
itors’ relevant system software was not writ-
ten in a higher-level language, so we could
not present real-world examples to our
customers.

man2010030040.3d 28/7/010 14:32 Page 60

The German TR 440 Computer: Software and Its Development

60 IEEE Annals of the History of Computing

Despite this, the large-scale software de-
partment forcefully pushed for the use of
BCPL as a systems programming language,
even for the operating systems, because it
expected substantial advantages. These
expectations proved true in the course of
development. Today, using higher-level
languages for system software goes without
saying.

A new approach for the PL/1 compiler
With the PL/1 compiler, the software de-

velopment department made or continued
making important strides into the future. As
I explained earlier, the PL/1 compiler was
not implemented by the compiler group; it
was bought in May 1973 and ported to the
TR 440. Testing aids and other TR 440-
specific functions were added.

The source code of the PL/1 compiler and
all rights to it were acquired from MIT for
about 600,000 DM (according to current ex-
change rates about $400,000). The compiler
was developed within the Multics project,
started as a joint venture between MIT, Gen-
eral Electric, and Bell Labs. At the beginning
of 1973, the compiler was finished and run-
ning on a GE-645. It was written in PL/1
and, therefore, could be ported to the TR
440 by bootstrapping. In May 1973, after
careful preparation, a three-week evaluation
of the PL/1 compiler and the bootstrap proce-
dure was conducted at MIT by Eberhard
Schmolz and Hanno Krainer.

For the bootstrap process, the PL/1 com-
piler’s source code, itself consisting of many
large PL/1 programs, was translated by a
working PL/1 compiler into intermediate
code and written on magnetic tapes. This
was done using IBM 370 computers at the
German IBM research center in Böblingen,
near Stuttgart. The magnetic tapes were
taken to the TR 440 compiler group in Con-
stance and, using the TR 440, translated in
one pass into a program that could run on
the TR 440. After some transformations, the
original PL/1 compiler could be compiled
on a TR 440, completing the bootstrapping
process. The PL/1 compiler was then ready
for use and was the basis for further
developments.

Schmolz remembered:

The results of a night’s work filled two or
three magnetic tapes. We used the following
ingenious stratagem at least ten times: my fa-
ther lived in Vaihingen, a suburb of Stuttgart.
Equipped with written authority, he drove the

By concentrating all

software development

in one place and in one

department, synergies

could be achieved and

software quality could

be improved.

short distance to the IBM computer center at
6 AM, picked up the magnetic tapes, drove to
the Stuttgart main railway station, and gave
the tapes to the crew of the express train
from Stuttgart to Constance. In Constance
we picked up the tapes from the crew at
about 9 AM, and could then immediately
work with the IBM results of the night before.

This PL/1 compiler acquisition was re-
markable in several respects. First, the soft-
ware developers were aware of the
international scene and did not work cut
off by themselves in Constance. Second, the
company was cost conscious, since buying
the PL/1 compiler was less expensive than
implementing it by ourselves and made it
available sooner. Third, this was possible
only because the compiler group already
had experience with bootstrapping and com-
pilers written in higher-level languages from
their work adapting the BCPL compiler.
Fourth, it was a courageous step because
there was not yet another example of this
in Germany. The technical risks were high,
as became apparent during the bootstrap pro-
cess. Although PL/1 development at that
time was important for IBM, and accordingly
their PL/1 compilers were very good, the
resources needed for the bootstrap were so
high that compiler runs in Böblingen were
possible only at night, and several large
mainframes had to be coupled together to
cope with the load.

Further evidence of the PL/1 project’s suc-
cess was that Siemens ported the TR 440 PL/1
compiler to their 7700 computer family in
1975.

Application software
As I mentioned earlier, TR 440 software

remained bundled. This was true for the

man2010030040.3d 28/7/010 14:32 Page 61

July–September 2010 61

For a long time,

software development

was unable to get

sufficient computer time

for testing.

application software as well. The portfolio of
application software was primarily defined by
the customers of university computer cen-
ters. Their requirements extended from ad-
ministrative and planning tasks to judicial
information systems. To a lesser extent, ap-
plication software was influenced by govern-
mental offices.

Part of the applications software was
developed for the TR 4, and later for the TR
440, under the supervision of Schlenstedt.
TR 440 software for commercial applications
was developed by a group in Bonn, headed
by Neumann, reporting to the sales depart-
ment. In June 1974, this group was trans-
ferred to GR/P and moved to Constance.
The group for application software became
GR/EP3 and was headed by Knoth. By con-
centrating all software development in one
place and in one department, synergies
could be achieved and software quality
could be improved.

To convey a feeling for the breadth of
application software, I present a short
summary.48,49

A comprehensive library of mathematical
procedures was supplied, including elemen-
tary and special functions, programs for inte-
gration and approximation, and linear
algebra programs. For plotters and interactive
graphics displays, customers got a rich set of
subroutines. Programs for sorting and mathe-
matical statistics rounded out this segment.

A modern and convenient database sys-
tem was implemented to serve as the basis
for important nonnumeric applications. It
provided data-management and data-access
services for large data collections, but not a
query language. Data were permanently
stored on the computer system. The data
structures were specified as in Cobol. Access
was sequential, indexed-sequential, and ran-
dom with record numbers. It was possible
to associate multiple indices with an
indexed-sequential record. Records that had

a logical connection could be linked by a
chain of pointers. A compression algorithm
for sequences of zeros or blanks was included.

The Telefunken documentation system
(TELDOK) used the database system and pro-
vided rapid and precise retrieval of stored
information (documents) as answers to
particular questions. To support this, docu-
ments had to be associated with descriptors
that could be chosen freely or restricted to
words of a thesaurus or dictionary. Every doc-
ument and every descriptor was assigned
a unique internal number by the system.
TELDOK was based on a thesaurus, index of
documents (ordered by the name of the doc-
ument), inverted indices (links to documents
ordered by their descriptor), abstracts of the
documents, and the documents themselves.
For retrieval, the search expression consisted
of logical combinations of weighted descrip-
tors. Search could also be done within docu-
ments already found.

Both the database system and TELDOK, as
well as similar products of Siemens (Golem,
Sesam, Prisma) and Software AG (Adabas),
were partially funded by the German Minis-
try of Research and Technology.50

A management information and enter-
prise resource-planning system was devel-
oped to support management in achieving
company goals. In contrast to pure retrieval
systems, the contents of the database
changed rapidly, because of continually
arriving new information.

An application system for production
planning and control, PSS, was also based
on the database system. As with other man-
agement information systems, the contents
of the database changed continuously. The
system consisted of PSS-STP Stu€cklistenpro-
zessor (handling material lists), PSS-APL
Arbeitsplanprozessor (planning the logical se-
quence of work), PSS-BEDA Bedarfsermittlung
(determining required resources), PSS-
MAWI Materialwirtschaft (materials manage-
ment), and PSS-KAP Kapazitätsplanung
(capacity planning).

BKN was a Fortran program to schedule
tasks within a network and calculate critical
paths, deadlines, resource allocations, and
costs, among other things. It could handle
large networks of up to about 10,000 nodes.
It was used, for example, to plan TR 440
(hardware) production. It failed to be of
value for scheduling software production,
mainly because preparing the ever-changing
input for this method was extremely time
consuming and the real dependencies of

man2010030040.3d 28/7/010 14:32 Page 62

The German TR 440 Computer: Software and Its Development

62 IEEE Annals of the History of Computing

software units always deviated from those of
the input since dependencies were not as
strict. Therefore, the real progress of software
development never matched what was
calculated.

The Programming Language for Interac-
tive Teaching (Planit) was a general-purpose
system for computer-supported education,
including all necessary tools, from the
authoring language to the tutor program to
the statistical evaluation of the student’s
answers. Planit was based on a development
of the US System Development Corporation
(SDC). It had already been ported to IBM
and Siemens computers. A first version for
the TR 440 was available in 1973.

And finally, the Exapt program was an ap-
plication for digitally programmed machine
tools (drills, lathes, and milling machines).
The program handled not only geometric
data, but also technical attributes of materials
and tools. It was based on the Exapt lan-
guage, designed in the 1960s by German uni-
versities and widely used in Germany for this
kind of application. The name Exapt was
derived from ‘‘extended subset of APT.’’ APT
(automatically programmed tools) was
designed in the late 1950s by MIT.

Internal computer centers
For a long time, software development

was unable to get sufficient computer time
for testing. It was not available early, in the
necessary quantity, nor on sufficiently stable
computer systems. The situation improved
after more computers were installed for test-
ing software and after the TR 440 computer
centers were transferred to the software de-
velopment department.

The second TR 440 was installed on the
testing floor in December 1968. It was used
both for testing additional hardware develop-
ments and for software tests. This was an unac-
ceptable situation for software development
and led to severe slips of milestone dates.

The installation of TR 440 number four
(June 1970), number eight (June 1971), and
number 12 (November 1971) led to a signifi-
cant improvement. These computers were
installed at and operated by the AEG-
Telefunken computer center in Constance,
which operated already three large TR 4s.
The software people were still unhappy, how-
ever, because frequent hardware changes led
to instabilities, and software development
was not a priority, just one customer among
others. Of course, the permanent conflicts
between the computer center and software

people had a serious negative effect on soft-
ware progress.

The TR 440 part of the AEG-Telefunken
computer center was transferred as the inter-
nal ‘‘computer center for development’’ into
the software department (still GR/P) of
the newly founded company Telefunken
Computer on 1 May 1972, as group GR/P4.
Under the leadership of Dietrich Wagner
(who joined AEG in October 1967 as a pro-
grammer with the AEG computer center in
Constance, and later was head of the com-
puter operations group there), comprehen-
sive and professional operation of the
computer center was quickly established. Jür-
gen Keppler was appointed the head of the
computer operations groups. Figure 4 shows
the organizational chart.

Through the organizational addition of
the computer center to software develop-
ment, priorities could be adjusted flexibly
and properly, and all conflicts could be
resolved directly at a low level. As a result
of this and finally having adequate hardware
resources, software development was no lon-
ger hampered by a lack of computer time.

The development computer center con-
sisted of five subcenters (RZ1 to RZ5). In
each RZ1 to RZ3, a large TR 440 was installed
with numerous peripheral devices in accor-
dance with the products offered by the com-
pany. RZ4 had five TR 86S satellite systems,
likewise with numerous peripheral devices,
terminals, and data transmission lines. The
sales department computer center operated
TR 440 number 33 until it was also integrated
into the development computer center as
RZ5 on 1 February 1974.

In October 1973, TR 440 number four was
replaced by TR 440 number 27, resulting in
one TR 440 with a single CPU and two TR
440s with two CPUs each in the computer
center. Some TR 440s were either directly
connected and had common hard disks or
were connected over a TR 86S.

RZ1 to RZ4 were dedicated to software de-
velopment. During the day, the developers
could get direct access to the computer
(block time). In the evening and at night,
there was a closed-shop operation by opera-
tors in several shifts. Accordingly, the com-
puter center employed approximately 30
operators (as of 30 July 1974) and about as
many other coworkers. Initially, about 65
operators came from AEG.

There was a special group responsible for
preparing and scheduling the jobs for the
closed-shop operation. Wagner remembered,

man2010030040.3d 28/7/010 14:32 Page 63

July–September 2010 63

‘‘There were giant decks of punched cards;
every day more than a ton of paper was
printed on; we had a giant stock of material
with storage racks for pallets; the stocks
were in an air-conditioned room to prevent
electrostatic charge, causing the paper in
the fast line printers to stick together.’’

The newest stable version of the system,
also delivered to the customers, was always
run in RZ5. Computer time was provided
for customers and all company departments,
in particular for sales, demonstrations, trade
fairs, acceptance tests, benchmarking, and
tests under high, user-oriented load. Software
development could get computer time only
when there was nothing else to be done.

The software development department’s
internal development computer center was
the largest TR 440 computer center at that
time and, in every respect, was progressive,
as can also be seen by two more examples:

� A computer connection to Constance was
established during the CeBIT trade fair in
Hannover (probably in 1974), about 400
miles away, demonstrating remote data
processing.

� A large, secure data archive was realized. A
central part was a huge paternoster archive
cabinet—a cabinet containing a chain of
compartments moving in a continuous
loop, like rosary beads—holding magnetic
tapes. The number of a magnetic tape was
input on a keyboard, whereupon the tape
arrived, ready to be taken. The cabinet was
developed in cooperation with a com-
pany, which later on sold such cabinets
to other computer centers as well.

On 1 February 1975, Wagner left the Com-
puter Gesellschaft Konstanz, and Keppler
succeeded him as head of the group.

Project management and organization
With increasingly powerful hardware

appearing, software demands also escalated.
Software became voluminous, and its imple-
mentation required more and more resour-
ces, notably large development teams.
Many software projects failed; others could
be finished only with substantial delays of
many months and with huge cost increases.
A well-known example for that was IBM
OS/360—a batch-oriented multiprocessing
operating system—in the second half of the
1960s.51 At the end of the 1960s, the prob-
lems connected with developing large soft-
ware became more pressing. A discussion of

that, and a survey, took place at the famous
1968 Garmisch conference on software engi-
neering, where Köhler and Wiehle repre-
sented AEG-Telefunken.

It was no surprise that TR 440 software de-
velopment also had the typical problems; it
was a large, groundbreaking project. I have
already discussed some of the technical prob-
lems; now I concentrate only on issues of
project management.

At the end of the 1960s, it was not known,
and not proven, how to manage large soft-
ware projects. Looking at the international
discussions about an appropriate project
management model at the time, one could
discern two camps.

The first camp believed any project man-
agement to be deadly for a project. Instead,
a few highly qualified people should be
charged with the product development, not
be bothered by managers, work without ex-
ternal rules, have absolutely unconstrained
working hours, and never be asked about
their project status. After some months or
years, the team would show up and present
a finished and excellent product. This belief
was supported by the way many successful
projects were completed at that time.

The second camp believed that managing
software was as appropriate as managing
projects of other engineering disciplines.
But this had not been proven in real-world
projects; if anything, the long list of large
failed software projects was evidence to the
contrary. In addition, the specific features
successful software project management
should have, compared with management
in other disciplines, was still a research issue.

Because of the situation the TR 440 soft-
ware development faced, it became clear to
me that a project management process had
to be established in order to be successful.
As soon as the enormous pressure on the pro-
grammers decreased a little after the first
deliveries of the time-sharing system, this
goal was pursued. Kurt Scheidhauer backed
this plan wholeheartedly, but my immediate
boss, Köhler, questioned whether there was
enough manpower to be able to afford it.
After all, there was still considerable deadline
pressure on the software team, and introduc-
ing management procedures would require a
significant amount of manpower. Obviously,
the project management process could not
be developed without external help and ex-
pert knowledge, which at that time was not
available in Germany. In the US, however,
software companies were forced to use

man2010030040.3d 28/7/010 14:32 Page 64

The German TR 440 Computer: Software and Its Development

64 IEEE Annals of the History of Computing

comprehensive management methods, pro-
cedures, and checks if they wanted to sell
their products to the military. These were so
costly that they could be justified only for
military applications. A direct transfer to
the commercial market was therefore impos-
sible, but some companies had adapted their
software management procedures to the
commercial market—for example, Computer
Sciences Corporation (CSC). Using that
knowledge made sense for us.

In the autumn of 1969, Scheidhauer estab-
lished contact between CSC, headquartered
in El Segundo, California. After technical dis-
cussions and conversations with potential
consultants in El Segundo, three chief consul-
tants (Christopher Earnest, Robert E. Trainer,
and Robert W. Walsh Jr.) were delegated by
CSC to our software development department
for several months in 1970 to develop the
management concepts as a full-time job to-
gether with us. They brought their families
to Germany. Some other CSC employees
(among them Joel Erdwin and Sheldon
Sidrane) were in Constance for shorter peri-
ods of time, to help with special issues.

In the course of developing and finalizing
the management rules, regular meetings were
held with the CSC consultants, all heads of
the software groups and me. In those meet-
ings not only the essentials were discussed
and finalized, but also all the details down
to the wording level. In that way, we
achieved a project management process
custom-tailored for our software depart-
ment,52 and all software personnel with man-
agerial functions were involved in the
definition process. Therefore, the knowledge
about the new project management model
was spread broadly, and it was accepted with-
out major reservations or resistance. The proj-
ect management process documentation was
finished in July 1970. Immediately afterward,
the new guidelines were introduced and
implemented step by step, including the nec-
essary organizational changes. The other Ger-
man and probably even European computer
manufacturers had nothing comparable at
that time and even years later.

Essential for the success of software devel-
opment was not only the technical quality,
but also the top management’s and the cus-
tomers’ confidence in the product and in
the people associated with it. The new project
management process played an important
role in that, particularly regarding documen-
tation, quality assurance, change control,
error management, and progress reports.

Documenting was an integral part of de-
velopment, as important as designing or pro-
gramming. In addition to the technically
oriented material, all other project-related
documents had to be included as well,
including project approvals and quality or
progress reports. The previous behavior, to
take just a few notes with some catchwords
about the design on a slip of paper, or to
keep the design only in one’s head, was
now no longer acceptable. When we started
enforcing the new rules I was often asked
by staff members, ‘‘Shall I document, or de-
liver on time?’’ Unfortunately my answer in
most cases had to be, ‘‘Deliver on time, and
document later.’’ All project documents
were structured and numbered in a way
that filing of documents could be the same
for all. At that time, we had to distribute
paper copies of the documents. Had we
been able to store the documents as shared
files on a computer, then handling would
have been much simpler and more efficient.

For quality assurance, I formed a new
group under the leadership of Kurt Mühl-
bach, organizationally on the same level
as the software development groups (see
Figure 4). Documents created within every
phase of development were a basis for the
work of other teams because they contained
interface descriptions. It was therefore impor-
tant to describe interfaces clearly and to pro-
tect them from uncontrolled changes. The
same was of course true for software modules,
which were also the basis for other work—for
example, when testing partially integrated
components. The basic idea was for the qual-
ity assurance group to do acceptance testing
for documents and software units, with fea-
tures previously frozen. After official accep-
tance, the software developers could make
changes only in response to error reports or
approved change requests.

Hence, changing ‘‘accepted’’ documents
or software units was possible only when a
corresponding change request was approved.
The change control board met once a week to
decide on change requests. Permanent mem-
bers were the head of the GR/P, the software
group leaders, sales department representa-
tives, and the head of the systems support
group (Klaus Auerbach). All change requests
together with the final decisions were docu-
mented. Thus, everyone in the company
knew exactly which requests had been
received and if, how, and when they were
to be implemented. Of utmost importance
was that everyone, including all the

man2010030040.3d 28/7/010 14:32 Page 65

July–September 2010 65

customers, could submit a change request.
Thus, we had implemented a fast and trans-
parent procedure for the software developers,
sales people, and customers to articulate
wishes and receive decisions.

All problems and errors reported were reg-
istered. The time to their resolution was
monitored. Errors or problems could induce
further change requests. There were error
statistics, and errors were associated with soft-
ware components. In this way, we got an early
warning about possible problems with a cus-
tomer or with a software component that
might be badly designed or implemented.

Progress reports replaced development
reports. The main differences were that the
reports were now on all levels and that con-
tent was specified, more formalized, and
extended. For example, milestones for each
project were now always defined and reported
on. Important was a milestone chart, showing
the changes of milestone dates at successive
reporting dates. See Figure 7 for a real exam-
ple from the TR 440 development, though
perhaps not typical. Because the features to
be realized when reaching a milestone
could not be changed without quality con-
trol, this trend analysis had extreme educa-
tive power, indicating problems early, and
enabling management to take countermeas-
ures. (A horizontal line might have indicated
that the project was running smoothly, but
it might also have been a warning sign that
nobody cared about the project.)

Figure 4 shows the fully implemented or-
ganization, corresponding with the project

management features developed with CSC.
There was also a small restricted matrix
structure with two project managers, one for
the TR 440 (Feldmann) and one for its succes-
sor, the TR 550 (Frielinghaus). At that time,
the GR/P had approximately 300 employ-
ees,53 62 of them working in the computer
center, among them 30 operators. The staff
included about 217 programmers, seven
group leaders, two project managers, and
13 secretaries. Of the programmers, 43 had
doctorates, 92 had a university diploma, 33
were engineers who had graduated from a
technical college, 17 had not finished their
scientific studies, and 32 had some other edu-
cation. More than 90 percent of the employ-
ees with a university degree had studied
mathematics, physics, or another subject of
the natural sciences, or engineering. The
target staffing level was 313 people.

The financial problems of AEG-Telefunken’s
large-scale computer division2 became
permanent after 1970 or 1971, so there was
a continual reduction of the number of
employees until the company was taken
over by Siemens AG. New targets for the num-
ber of employees came nearly every month.
In addition, as more parts of the TR 440 soft-
ware were completed, people were transferred
from that project to work on the TR 550.
Because of our technology-oriented rather
than project-oriented organization, transfer
to work on TR 550 did not mean quitting
the old software group; for example, the com-
piler group developed all compilers for all
target machines.

DFG-AK
At the time, the DFG partially funded

the computers installed at German univer-
sities and research agencies. When AEG-
Telefunken signed the contract of purchase
for a TR 440 for the German Computer Cen-
ter (DRZ) in the spring of 1967, the DFG
created the DFG-AK, a committee to do user-
oriented TR 440 acceptance testing. The lead-
er of the DFG-AK was Dieter Haupt, professor
of computer science at the RWTH Aachen
University, head of its computer center and
chairman of the DFG-Rechnerkommission, a
DFG committee for evaluating proposals to
buy computer systems, technically and finan-
cially. A positive assessment was prerequisite
for funding.

The DFG-AK members were seven com-
puter experts from the DRZ and the RWTH
Aachen. The group’s initial mission was to
monitor the TR 440’s development and to

man2010030040.3d 28/7/010 14:32 Page 66

The German TR 440 Computer: Software and Its Development

1.5. 1.6. 1.7. 1.8. 1.9. 1.10. 1.11. 1.12.1.1. 1.2. 1.3. 1.4. 1.5.

1.5.72

1.4.72

1.3.72

1.2.72

1.1.72

1.12.71

1.11.71

1.10.71

1.9.71

1.8.71

1.7.71

1.6.71

1.5.71

reporting date

mile
sto

ne
da

teA

B

C

D, E

F

G

G removable disk, version 3
F removable disk, version 2

E (x) removable disk, version 1
D (o) magnetic tape IU-function

C mass storage, project investigation
B magnetic tape IBM F-format
A multiprocessors, project investigation

Figure 7. A milestone chart from the TR 440 development.

66 IEEE Annals of the History of Computing

prepare the DRZ installation of hardware
and software. Soon however, the group
began to directly influence the concepts
and implementation of the TR 440 operating
system.

The DFG-AK played an important role in
the TR 440 large-scale computer develop-
ment, notably in software development.
In an internal paper, Alexander Giedke
described the TR 440 development from the
DFG-AK viewpoint.26

In June 1967 the DFG-AK together with an-
other committee, the Apparateausschuss,
looked at the concepts Telefunken had devel-
oped, and Telefunken’s newly coined terms
for describing attributes and features of the
TR 440 caused difficulties right from the
start. For example the term ‘‘process,’’ which
was said to be of fundamental significance,
remained obscure. Because these new terms
were not defined in the available documents,
having to become acquainted with the new
system was for everyone a tough nut to
swallow.26

The DFG-AK feared too much system over-
head and saw other weaknesses in the
concepts:

Telefunken estimated an overhead of about
1%, but the first version of the BS [BS1] al-
ready required about 35 K to 50 K of the 128
Kwords of main memory. The necessary
displacement out of main memory of the
contents of already-completed programs also
posed problems. . . . It was not possible to ini-
tiate such displacement by operator services;
it had to be done ‘‘automatically.’’ But that
could hardly be realized in a way that appro-
priately accounted for the many possible
states of operation. Therefore it was no won-
der that the way to achieve reasonable opera-
tion was absolutely unclear. . . . Together with
Telefunken we looked for other operating
concepts, where among other things the ben-
efit function was to be replaced by a simple
control using program priorities. . . . The
DFG-AK believed that the BS needed so
much main memory that multiprocessing op-
eration of the computer had to be questioned,
even with a reduced BS.

At the end of 1967 and the beginning of
1968 Telefunken could not provide machine
time for test runs as contracted. Binding doc-
umentation was still missing. Only internal,
partially confidential, handwritten notes
were available to the DFG-AK as the basis for
their work. . . . At the beginning of 1968 it
was obvious that the system would not be
ready to be delivered on July 1, 1968, as

contracted. . . . A prerelease version BS07 of
BS1 was planned for delivery at the end of
1968, but was not yet ready in mid 1968,
and as in the past, the DFG-AK still had a neg-
ative opinion of it . . . Not before July 10, 1968
was time available for the first program tests
on the only TR 440 computer, which was
also to be delivered to the DRZ in Darmstadt.
On December 9, 1968 acceptance testing for
the double TR 4 system started. . . . The state
of BS1 development was still of concern.
Tests conducted in the autumn of 1969 did
not show the expected progress at all. Devel-
opment was not yet completed, and comple-
tion could not be expected in the next few
months.

It is no wonder that abandoning BS1 was a
surprise for many people involved , since no in-
dication of this turn of events was evident at a
user congress held on August 31, 1969. . . . On
November 7, 1969 there was a hearing
(DFG, German Ministry of Education and Re-
search, customers/users, other interested per-
sons) in Constance about the TR 440. Here
Telefunken made it known that BS1 was
no longer being pursued. A first version of
BS3, batch processing with two ABWs, was
demonstrated.26

During this hearing the funding agencies
arrived at the conclusion that BS3 was a reli-
able basis for further development and subse-
quent installations.

With BS3 there existed a definitive and feasi-
ble software concept. In essence the hearing
led to the decision to continue the TR 440
project. Milestones for software development
were defined, whose dates and contents were
afterwards largely met.26

These quotes show that the importance of
the DFG-AK was mainly based on four facts:
The group spent a lot of time in Con-
stance and had direct contact with the soft-
ware teams. It was a critical partner with
inside knowledge, querying and reviewing
the development, and making suggestions
for the realization. Therefore, the software
developers had to explain and defend their
ideas and consider possible weaknesses dur-
ing design. This required patience and addi-
tional effort from everyone involved, but
was helpful overall. As a result, this review
process as well as the group’s selecting and
conducting acceptance tests provided a kind
of external quality assurance.

� The group represented the views of the
customers and funding agencies at that
time, and articulated their wishes.

man2010030040.3d 28/7/010 14:32 Page 67

July–September 2010 67

The DFG-AK was a

critical partner with

inside knowledge,

querying and reviewing

the development, and

making suggestions for

the realization.

� The group played an important role in cre-
ating and maintaining the confidence of
the customers in Telefunken developments.

Giedke summarizes the importance of the
DFG-AK as follows:

For Telefunken, the increase in knowledge
presumably was considerable and essential.
But the way was painful, especially the path
of development of the BS, which was going
through a tedious ripening from a design
without practical relevance to real world ori-
ented solutions. Without doubt the exchange
of experience between the company and the
DFG-AK was instrumental in the success of
the project, because the DFG-AK acted not
only as a surveying committee, but also as a
critical consultant.26

Besides the DFG-AK, another working
group was established in 1970 at Bochum
University, supervised by Hartmut Ehlich, a
professor and head of the computer center.
This group was to prepare for the installation
of a TR 440 at Bochum University and was in
close contact with the DFG-AK and Telefunk-
en’s software people. The group’s work was
instrumental in the computer being installed
rapidly and operating satisfactorily.54

Last but not least, the external TR 440 cus-
tomers’ association (STARG) also influenced
software development with the following
tasks:

� coordinating the TR 440 computer centers
and the TR 440 users,

� collecting wishes and proposals concern-
ing the TR 440,

� evaluating proposals for enhancement of
TR 440 software from a user’s point of
view, and

� acting like a fire brigade when computer
centers needed help.

In periodic meetings, numerous and substan-
tial program developments of the STARG
members themselves were also presented.

The end of large-scale computer
development

To be successful in the large-scale com-
puter business, it was absolutely necessary
to show the customers paths to the future.
Therefore, as early as 1969, AEG-Telefunken
set up a project group to deal with a successor
computer system to the TR 440, with the
working title TR 550 (among others). The or-
ganizational structure was a small matrix
organization. Technological responsibilities
were with the development groups; for exam-
ple, all operating systems were to be devel-
oped by the BS group. Orthogonal to that
was the project-oriented coordination by TR
440 and TR 550 project managers in the
hardware and software departments, comple-
mented by temporary ad hoc working groups
for specific issues.

Different approaches to developing the TR
550 system were surveyed and often pursued
further. At the same time, there were many
discussions about close cooperation with
other computer manufacturers, within and
outside of Europe. (See other work in this
issue for details.2 Also see the ‘‘Further Read-
ing’’ sidebar for other works n this topic.) The
background of these efforts was twofold. The
AEG-Telefunken management knew that be-
cause of restricted financial resources it was
nearly impossible to develop large-scale com-
puters alone in the long run, and the German
government therefore pushed for a coopera-
tion or merger with a European computer
manufacturer, first of all Siemens AG.

On 18 July 1974, the large-scale computer
development in Constance was taken over by
Siemens AG, forming a separate company
called Computer Gesellschaft Konstanz (CGK).
Before this takeover, manpower was reduced
to a number stipulated by Siemens. Because
Siemens had just formed Unidata together
with CII (France), ICL (Great Britain), and
Philips (The Netherlands), and as CII was re-
sponsible for large computers, there was no
room for a large-scale computer manufac-
tured by CGK.

Consequently, Siemens immediately
stopped all work on a successor to the TR
440. Software development was reduced to
absolutely necessary maintenance so that

man2010030040.3d 28/7/010 14:32 Page 68

The German TR 440 Computer: Software and Its Development

68 IEEE Annals of the History of Computing

TR 440 systems could be operated by the
computer centers as long as possible (until
a Unidata system was available for replace-
ment) and so that already produced TR
440s could be sold. Because CGK was
founded only because of heavy pressure by
the German government, neither Siemens
nor Unidata had any interest in it—there
was even strong rejection.55 The Siemens
management was not prepared and did
not know how to make best use of the com-
petent and highly qualified people in
Constance.

There were discussions on all levels, down
to the group level, about the software devel-
opers’ future work. The software develop-
ment groups with Siemens Munich saw no
way to give larger software projects to CGK,
perhaps fearing competition. There were sev-
eral consequences of this:

� A small software group remained with
CGK, maintaining TR 440 software and
doing contract work for Siemens.

� Many people in software development left
CGK, including myself at the beginning of
1975, after which I became a professor
of computer science at the University of
Technology Munich. Frielinghaus then
took over software development until he
also got a new management job with Sie-
mens Munich, whereupon Klaus Auer-
bach became the head of CGK software
development.

� Approximately 90 software developers
were delegated as individuals or as small
teams to software groups of Siemens
Munich, therefore commuting on week-
ends between Constance and Munich (a
four- or five-hour journey at that time).
Among those were Feldmann and
Schmolz, both of whom later attained
higher management positions with
Siemens.

� Together with the large-scale computer di-
vision, AEG-Telefunken had also sold
their optical document reader division to
Siemens. The large high-speed document
reader machines, previously developed
by AEG-Telefunken, became CGK’s cen-
tral product, and CGK turned into a prof-
itable company.

For Germany, the transfer of knowledge
that had been gained with the TR 4 and TR
440 development was important for the
rapid buildup of computer science and com-
puter know-how. This transfer included

For Germany, the

transfer of knowledge

that had been gained

with the TR 4 and TR

440 development was

important for the rapid

buildup of computer

science and computer

know-how.

numerous students using the TR 440 at
universities and staff leaving AEG-Telefunken
to work for universities, research institutes,
governmental agencies, and industrial com-
panies. The final report of Telefunken Com-
puter covering the TR 440 development—
funded by the 2. DV-Programm der Bundesre-
gierung (the second data processing program
of the German government)—said:

At the beginning of the TR 440 project only a
few experienced people were available. The
main reasons were that electronic data pro-
cessing was a very young discipline, especially
in Europe, and at that time there was next to
no education in computer science. . . . In addi-
tion to the primary result of the project,
namely the large scale TR 440 computer sys-
tem, we have to note as an indirect result
the technical and scientific knowledge which
was gained in the complex areas of electronic
data processing and of managing large proj-
ects. This knowledge has been passed on by
intensively pursued training and education.1

Acknowledgments
First of all, I thank Chris Earnest, who criti-
cally reviewed and corrected my English ver-
sion of this article and gave invaluable hints
for improvements so that things became
clearer and more understandable for readers.
My grateful thanks go to Manfred Evers, Joa-
chim Feldmann, Wolfgang Frielinghaus,
Wolfgang Froehlich, Alexander Giedke, Fritz-
Rudolf Güntsch, Heinz-Gerd Hegering, Gisela
Hoffmann, Eike Jessen, Jürgen Keppler, Dieter
Michel, Albert Noltemeier, Gerd Sapper, Kurt

man2010030040.3d 28/7/010 14:32 Page 69

July–September 2010 69

Scheidhauer, Eberhard Schmolz, Gerhard
Seegmüller, Franz Stetter, Günther Stiege,
Hanni Stolze, Heinz Voigt, Dietrich Wagner,
and Hans-Rüdiger Wiehle. They helped me
prepare this article with different kinds of sup-
port, from supplying documents to diligently
reading and enhancing parts of the article. Be-
sides this, they told me anecdotes and gave
important suggestions. In particular, Wiehle
closely examined the sections on the TR 4
and TR 440 BS1—a special thanks for this.

I also owe many thanks to Wolfgang Füßl
and Hartmut Petzold of the Deutsches Mu-
seum (German Museum [of Technology]) in
Munich. The Deutsches Museum Library
has accepted into its archive the TR 440
documents that I had or got from others, so
the documents, including most of those
cited here, are available for future scientific
research.

Finally, I thank the anonymous reviewers
for their helpful comments

References
1. Telefunken Computer, ‘‘Vielfachzugriffssystem TR

440, Schlußbericht’’ [Multiaccess System TR 400,

Final Report], II. Datenverarbeitungsprogramm der

Bundesregierung, Teilprogramm 4, Dec. 1973.

2. E. Jessen et al., ‘‘The AEG-Telefunken TR 440

Computer: Company and Large-Scale Com-

puter Strategy,’’ IEEE Annals of the History of

Computing, vol. 32, no. 3, 2010, pp. 20–29.

3. Telefunken, ‘‘Großrechenanlage TR 4, Kurzbe-

schreibung’’ [Large Scale Computer TR 4, Short

Description], KB006/1, 1962.

4. E. Ulbrich, ‘‘Struktur und Arbeitsweise der Tele-

funken-Digitalrechenanlage TR 4’’ [Structure

and Principles of Operation of the Telefunken

Digital Computer TR 4], IEEE Trans. Electronic

Computers, 1963.

5. Computer Gesellschaft Konstanz, ‘‘Zeugnis für

Wolfgang Frielinghaus’’ [Job Reference for

Wolfgang Frielinghaus], 1976.

6. H.R. Wiehle et al., ‘‘Ein Betriebssystem für

schnelle Rechenautomaten’’ [An Operating

man2010030040.3d 28/7/010 14:32 Page 70

The German TR 440 Computer: Software and Its Development

Further Reading
For those interested in additional reading on the TR

440, AEG-Telefunken, and any related topics, the follow-
ing resources provide a wealth of information.

E.G. Coffman Jr. and P.J. Denning, Operating Systems

Theory, Prentice-Hall, 1973.

Computer Gesellschaft Konstanz, ‘‘Die Kopplung von

Fremdsystemen an das Rechensystem TR 440 über

KOMSYS’’ [Coupling Computers of Other Manu-

facturers with the TR 440 Computer using

KOMSYS], 440.B9.07, Ausgabe 0975, Sept. 1975.

Computer Gesellschaft Konstanz, ‘‘Teilnehmer-

Rechensystem Kurzbeschreibung’’ [Multiaccess

System: Short Description], . 440.B0.04, Ausgabe

0375, Mar. 1975.

‘‘Computer Gesellschaft Konstanz: Siemens-

verträglich’’ [CGK: Peaceable with Siemens],

Computerwoche, no. 16, 1976.

‘‘TR 445 DP und Cyber 7276 im Verbund—

Großrechnerkoppelung zwischen Universitäten’’

[TR 445 Double Processor and Cyber 7276 in a

Network: Connection of Large Scale Computers of

Universities], Computerwoche, //no. 17, 1977.

‘‘Umstellungshilfe mit BMFT-Förderung—Ausmusterung

der TR 440 erleichtert’’ [Transition Aids with BMFT’s

Subsidies�TR 440s Putting out of Service Easier],

Computerwoche, no. 11, 1982.

‘‘Nixdorf zwischen MDT und IBM. Eine deutsche

Erfolgsstory—vom Einmannbetrieb zum

internationalen Super-Systemhaus (Teil 2)’’ [Nix-

dorf between MDT and IBM. A German Success

Story�from One-Person Business to a Large

International System Company (Part 2)],

Computerwoche, no. 46, 1987.

P.J. Denning, ‘‘The Working Set Model for Program

Behavior,’’ Comm. ACM, vol. 11, no. 5, 1968,

pp. 323–333.

P.J. Denning, ‘‘Virtual Memory,’’ ACM Computing

Surveys, vol. 2, no. 3, 1970, pp. 153–190.

P.J. Denning, ‘‘Third Generation Computer Systems,’’

ACM Computing Surveys, vol. 3, no. 4, 1971,

pp. 175–216.

J.B. Dennis and E.C. Van Horn, ‘‘Programming

Semantics for Multiprogrammed Computations,’’

Comm. ACM, vol. 9, no. 3, 1966, pp. 143–155.

E.W. Dijkstra, ‘‘The Structure of the THE-

Multiprogramming System,’’ Comm. ACM,

vol. 11, no. 5, 1968, pp. 341–346.

R. Engelhardt et al., ‘‘Rechnerverbund beim TR 440’’

[Networks with TR 440], Elektronische Rechenanla-

gen, vol. 17, no. 1, 1975, pp. 13–17.

R. Engelhardt, J. Huber, and S. Luhmann, ‘‘Daten-

haltung im Teilnehmer-Betriebssystem TNS 440’’

[Data Management in the Multiaccess Operating

System TNS 440], Telefunken Computer, Beiträge

11, 1972.

H. Fischer, P. Namneck, and L. Stolze, ‘‘Datensi-

cherheit auf Großrechnern’’ [Data Security in

70 IEEE Annals of the History of Computing

system for Fast Computing Automatons],

Elektronische Rechenanlagen, 1964.

7. G.R. Sapper, ‘‘Telefunken TR 4,’’ 2004; http://

www.qsl.net/dj4kw/index.htm.

8. G. Seegmüller, ‘‘Some Remarks on the Computer

as a Source Language Machine,’’ Proc. Int’l Feder-

ation of Information Processing (IFIP) Congress,

vol. 62, North-Holland, 1962, pp. 524–525.

9. W. Wulf et al., ‘‘Curriculum Vitae Prof. Dr.-Ing.

Fritz-Rudolf Güntsch’’, Medieninformation

Nr. 8, Pressestelle TU Berlin, 2002.

10. S. Rosen, ‘‘Electronic Computers: A Historical

Survey,’’ ACM Computing Surveys, vol. 1, no. 1,

1969, pp. 7–36.

11. J. Bellec, ‘‘Information Technology Industry

Time Line,’’ 2006; http://perso.orange.fr/

jeanbellec/information_technology_1.htm to

http://perso.orange.fr/jeanbellec/information

technology 5.htm.

12. J.B. Dennis, ‘‘A Multiuser Computation Facility

for Education and Research,’’ Comm. ACM,

vol. 7, no. 9, 1964, pp. 521–529.

13. Ferranti, ‘‘Die Atlas Rechenanlage’’ [The Atlas

Computer], Ferranti; Faltblatt No. 1 in einer

Reihe von Skizzen unserer Rechenanlagensys-

teme, [Flyer 1 in a Series of Short Introductions

of Our Computer Systems], 1962.

14. F.J. Corbato et al., ‘‘An Introduction and Overview

of the Multics System,’’ Proc. AFIPS 1965 FJCC,

vol. 27, part 1, Spartan Books, pp. 185–196.

15. E. Jessen, ‘‘Stellungnahme zum Entwicklungsvor-

haben TR 400’’ [Statement to the Development

Project TR 400], internal letter via Güntsch to

Peltz, AEG-Telefunken, 4. Nov. 1964.

16. H.R. Wiehle, ‘‘Operating Systems at AEG-

Telefunken,’’ Proc. Conf. Pioneering Software

in the 1960s in Germany, The Netherlands,

and Belgium,’’ 2006.

17. H.R. Wiehle, ‘‘Vorträge der Grundprogramment-

wicklung (E44) für den Vertrieb über die Grund-

programmierung des TR 440’’ [Lecture by the

System Programs Development Group (E44) for

Sales People about TR 440 System Programs],

internal memo, Telefunken, 1967.

[3B2-14] man2010030040.3d 30/7/010 14:46 Page 71

Large-Scale Computers], Elektronische Rechenanla-

gen, vol. 21, no. 6, 1979, pp. 297–304.

H. Forster et al., ‘‘Planung und Verwaltung

von Betriebsmitteln im Teilnehmer-

Betriebssystem TNS 440’’ [Resource Planning

and Managing in the Multiaccess Operating

System TNS440], Telefunken Computer,

Beiträge 9, 1972.

J. Fotheringham, ‘‘Dynamic Storage Allocation in the

ATLAS Computer, Including an Automatic Use of a

Backing Store,’’ Comm. ACM, vol. 4, no. 10, 1961,

pp. 435–436.

B. Gebhardt, ‘‘Interaktives Arbeiten am Terminal’’

[Interactive Work at a Terminal], Telefunken Com-

puter, Beiträge 10, 1973.

C.A.R. Hoare, ‘‘Towards a Theory of Parallel Program-

ming,’’ Proc. Int’l Seminar Operating Systems Tech-

niques, 1971.

C.A.R. Hoare, ‘‘Monitors: An Operating System Struc-

turing Concept,’’ Comm. ACM, vol. 17, no. 10,

1974, pp. 549–557.

E. Jessen, ‘‘Das TR 440-Großrechensystem an deut-

schen Hochschulen,’’ [TR 440 Large-Scale Com-

puter System at German Universities], press

release, AEG-Telefunken, 11 Nov. 1971.

E. Jessen and E. Ulbrich, ‘‘TR 440 als Teilnehmersys-

tem’’ [TR 440 as multiaccess system]. In Datenver-

arbeitung mit Mehrfachzugriffssystemen [data

processing with multiaccess systems]. Haus der

Technik, Essen, 1968.

E. Jessen, D. Michel, and H. Voigt, ‘‘Structure,

Technology, and Development of the AEG-

Telefunken TR 440 Computer,’’ IEEE Annals of

the History of Computing, vol. 32, no. 3, 2010,

pp. 30–38.

T. Kilburn et al., ‘‘One-Level Storage System,’’ IRE

Trans., vol. EC11, no. 2, 1962, pp. 223–235.

J.E. Morrison, ‘‘User Program Performance in Virtual

Storage Systems,’’ IBM Systems J., vol. 12, no. 3,

1973, pp. 216–237.

K. Radius, ‘‘Probleme der Entwicklung von

Großrechenanlagen’’ [Problems in Developing

Large-Scale Computers]. Vortrag vom 3. Jul. 1968

bei der Arbeitsgemeinschaft für Forschung des

Landes NRW, AEG-Telefunken DVO 060,

Oct. 1968.

D.M. Ritchie and K.L. Thompson, ‘‘The Unix Time-

sharing System,’’ Comm. ACM, vol. 17, no. 7,

1974, pp. 365–375.

Südkurier, ‘‘Telefunken Computer und Unidata

nähern sich an’’ [Telefunken Computer and

Unidata Get Closer to Each Other], Su€dkurier,

12 Dec. 1973.

Telefunken Computer, ‘‘Time-Sharing Computing-

System—Introduction,’’ VS1, N31.B0.04 E,

1972.

H.R. Wiehle, ‘‘External Characteristics of Computer

Operations: Toward Large Conversational Time-

Sharing Systems,’’ IEEE Annals of the History of

Computing, vol. 32, no. 3, 2010, pp. 4–18.

July–September 2010 71

18. E. Jessen, ‘‘Das Betriebssystem des Rechners

TR 440’’ [The Operating System of the TR 440

Computer], Teilnehmer-Rechensysteme,

W. Händler, ed., Oldenbourg Verlag, 1968,

pp. 114–123.

19. P. Namneck, H.-J. Siegert, and H.R. Wiehle, ‘‘TR

440 Grundprogramme 1—Einführung’’ [TR 440

System Programs 1: An Introduction], AEG-

Telefunken, Großrechner, Oct. 1968.

20. R.F. Rosin, ‘‘Supervisory and Monitor Systems,’’

ACM Computing Surveys, vol. 1, no. 1, 1969,

pp. 37–54.

21. AEG-Telefunken, ‘‘TR 440 Betriebssystem BS2

(erste Ausbaustufe)—Einführung’’ [TR 440

Operating System BS2 (First Stage): Introduc-

tion], Schrift DBS182/0470, 1970.

22. G. Stiege, ‘‘Zum Betriebssystem BS2’’ [About

Operating System BS2], Datenverarbeitung 3,

Beihefte der Technischen Mitteilungen, AEG-

Telefunken Berlin, 1970, pp. 112–115.

23. K. Lagally, Das Projekt Betriebssystem BSM [The

Project Operating System BSM], tech. report

7509, Technische Universität München, Institut

für Informatik, 1975.

24. G. Goos, J. Jürgens, and K. Lagally, The Operat-

ing System BSM Viewed as a Community of Paral-

lel Processes, tech. report 7208, Technische

Universität München, Fakultät Mathematik,

1972.

25. A. Jammel and H. Stiegler, ‘‘Managers versus

Monitors,’’ Information Processing, B. Gilrichst,

ed., North-Holland, 1977, pp. 827–830.

26. A. Giedke, ‘‘Die Entwicklung des TR 440,’’

unpublished draft, 1974, German Museum

library.

27. AEG-Telefunken, ‘‘Bedienungshandbuch

Doppel-TR 4-System auf TR 440—Ämulator-

Erläuterungen und Verteilerprogramm’’

[Operation Manual Double-TR 4-TR 440

System—Ämulator Explanations and Distribu-

tion Program], user manual N3/GR 70,

Sept. 1968.

28. G. Hoffmann, ‘‘Das Doppel-TR 4-System’’ [Dou-

ble TR 4 System], Vortrag, handwritten, unpub-

lished, 1969, German Museum library.

29. J. Schilling, ‘‘Digitalrechner-Geschichte: TR 4—

Ein paar Gedanken zur Rechner-Historie in

Deutschland’’ [Digital Computer History: TR 4 �
A Few Thoughts about the Computer History in

Germany], 2004; http://www.pc-profiler.ch/

geschichte.htm.

30. AEG-Telefunken, ‘‘Unterlagensammlung TR 440

- Betriebssystem-Kern’’ [Collection of Docu-

ments about TR 440: Operating System Kernel],

internal document, N31.B1.11, Jul. 1970.

31. F.v. Sydow, ‘‘Die TR-440-Staffel—vom mittleren

Rechensystem bis zum dialogfähigen Teilnehmer-

Rechensystem’’ [The TR 440 Family of

Computers: From Middle Computer to Conver-

sational Time-Sharing System], Datenverarbei-

tung 3, Beihefte der Technischen Mitteilungen

AEG-Telefunken Berlin, 1970, pp. 101–104.

32. J. Piper et al., ‘‘Das Teilnehmer-Betriebssystem

BS3’’ [The Multiaccess System BS3], Datenverar-

beitung 3, Beihefte der Technischen Mitteilun-

gen AEG-Telefunken Berlin, pages 115–122,

1970.

33. H. Niesporek, ‘‘Die AEG-TELEFUNKEN Datenver-

arbeitungsanlage TR 440’’ [The AEG-Telefunken

Computer TR 440], 1972.

34. Telefunken Computer, ‘‘Leistungserweiterung

des TR 440-Systems durch MV8 bis MV16’’

[Enhancements (Performance and Services) of

the TR 440 System from MV8 to MV16], inter-

nal memo, VS33, 19 Sept. 1974.

35. G. Stadie, ‘‘Der TR 440 mit zwei Rechnerkernen

und Massenkernspeicher’’ [TR 440 with Two

CPUs and Mass Storage], Datenverarbeitung 3,

Beihefte der Technischen Mitteilungen, AEG-

Telefunken Berlin, 1970, pp. 132–133.

36. M. Evers, ‘‘Datenfernverarbeitung im Teilneh-

mersystem des TR 440’’ [Remote Data Process-

ing in the TR 440 Multiaccess System],

Telefunken Computer, Vortrag, Best. Nr.

N31.B9.01, 1972.

37. M. Evers and W. Hoheisel, ‘‘Das Satellitensystem

des Telefunken-Rechensystems TR 440’’ [Satel-

lite System of the Telefunken Computer TR

440], Datenverarbeitung 3, Beihefte der Techni-

schen Mitteilungen AEG-Telefunken Berlin,

1970, pp. 122–124.

38. H.-J. Siegert, ‘‘Rechnerverbundnetz’’ [Computer

Network], software development documents,

Telefunken Computer, 29 Jun. 1973.

39. Telefunken Computer, ‘‘Telefunken Computer—

Logik setzt sich durch’’ [Telefunken Computer —

Logic Wins], Firmenprospekt, 1972.

40. E. Schmidt et al., ‘‘Zum Programmiersystem

des Telefunken-Rechensystems TR 440’’ [The

Programming System of the Telefunken Com-

puter TR 440], Datenverarbeitung 3, Beihefte

der Technischen Mitteilungen, AEG-Telefunken

Berlin, 1970, pp. 124–131.

41. Telefunken Computer, ‘‘Programmiersystem—

Einführung’’ [Programming System: Introduc-

tion], VS1, N31.B0.02, 1972.

42. P. Jäger, http://www.jaegers-home.de/person.

htm.

43. ‘‘DV-Oldies: Antiquität oder leistungsgerechtes

System’’ [Data Processing Oldies: Antique or

System with Still Adequate Services], Computer-

woche, no. 35, 1986.

44. IBM Highlights, 1885–1969, tech. report

1406HA02, IBM, Dec. 2001.

45. H. Krainer, ‘‘Testmöglichkeiten im Teilnehmer-

Rechensystem TR 440’’ [Testing (User Programs)

man2010030040.3d 28/7/010 14:32 Page 72

The German TR 440 Computer: Software and Its Development

72 IEEE Annals of the History of Computing

in the Multiaccess System TR 440], Telefunken

Computer, Beiträge 10, 1972.

46. H. Pszolla and F. Eberhardt, ‘‘BCPL, eine

Sprache zum Schreiben von Compilern’’ [BCPL,

A Language for Writing Compilers], Beiträge 1,

Telefunken Computer Konstanz, 1972.

47. O’Reilly Media, ‘‘History of Programming Lan-

guages,’’ 2004; http://www.oreilly.com/pub/a/

oreilly/news/languageposter_0504.html.

48. H. Voltz, ‘‘Anwendungssysteme für den TR 440’’

[Application Systems for the TR 440], Datenverar-

beitung 3, Beihefte der Technischen Mitteilungen

AEG-Telefunken Berlin, 1970, pp. 136–140.

49. Telefunken Computer, ‘‘Beispiele zur problemori-

entierten Software des Teilnehmer-Rechensystems

TR 440’’ [Examples of Application-Oriented

Software for the Multiaccess System TR 440],

Beiträge 7, 440.ZZ.50.07, Dec. 1972.

50. ‘‘Software-Subventionen noch ansteigend—

MDT 1978 auf dem Bonner Fördergipfel’’

[Software Subsidies Still Rising: MDT 1978 at

the Bonn Summit for Subsidies], Computer-

woche, no.5, 1978.

51. M. Campbell-Kelly and W. Aspray, Computer: A

History of the Information Machine, Basic Books,

1996.

52. AEG-Telefunken, ‘‘Software Projektmanage-

ment’’ [Software Development Project Manage-

ment], internal document, 23 Jun. 1970.

53. H.-J. Siegert, ‘‘Stand der Software-Entwicklungen—

Vortragsnotizen zu Kooperationsgesprächen mit der

Siemens AG’’ [State of Software Development:

Lecture Notes for Cooperation Talks with Siemens

AG], internal document, Telefunken Computer,

30 Jul. 1974.

54. H. Zoller, ‘‘RUB trauert um Professor Hartmut

Ehlich’’ [RUB (Bochum University) is Mourning

Professor Hartmut Ehlich], 2002; http://www.

ruhr-uni-bochum.de/pressemitteilungen-2001/

msg00402.html.

55. H. Janisch, ‘‘30 Jahre Siemens-Datenverarbeitung—

Geschichte des Bereichs Datenverarbeitung

1954-1984’’ [30 Years of Siemens Data Pro-

cessing: History of the Data Processing

Department from 1954 to 1984], Siemens

AG, 1988.

Hans-Jürgen Siegert is a

retired professor of computer

science from the Munich Uni-

versity of Technology and was

a director of the Institute of

Informatics and also responsi-

ble for its computer center.

His interests include operating

systems, real-time systems, networking, robotics,

simulation, and project management methods. Sie-

gert studied physics and received a doctor’s degree

in engineering from Stuttgart University. He is an

IEEE Life Member and a member of ACM and GI

(Gesellschaft für Informatik e.V.).Contact him at

siegert@in.tum.de.

man2010030040.3d 28/7/010 14:32 Page 73

July–September 2010 73

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Helvetica
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

