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The Complete Specification of a Network by a Single Parameter- 
M. S. Corrington, T. Murakami, and R. W. Sonnenfeldt. (RCA Rev., 
vol. 15, pp. 389-444; September, 1954.) 

This paper is concerned with the transfer function and transient 
response of a linear, stable, two-terminal-pair network. The major 
points are: 1) transfer gain or phase alone does not determine the 
transfer function or the transient response; 2) the real or imaginary 
part of the transfer function is a much more nearly complete speciti- 
cation; 3) the real part of the transfer function, the imaginary part 
of the transfer function, and the step-function response are simply 
related; 4) graphical computation of one from another is convenient 
and acceptably accurate; 5) relatively simple laboratory equipment 
that will present real or imaginary part versus frequency, or real part 
versus imaginary part with frequency as a parameter, is useful in 
network development. This material, with the exception of item 5, is 
not wholly new, but it is nonetheless important, and the present 
article provides a valuable recapitulation of otherwise scattered de- 
velopments and accompanies it with useful graphs, illustrative exam- 
ples, and circuit diagrams. The restrictions on the network are stated 
in terms of its transient response, a convenience analytically in treat- 
ing distributed networks. Fourier integral representations are used. 

parts of the transfer function on a swept-frequency basis. Illustrations 
of plots obtained with the equipment demonstrate its utility. Possible 
applications to teaching should not be overlooked. 

A. D. PERRY 

Extension de la M6thode du Diagramme de Phase G6nBralis6 dans 
l’ktude de la Stabilitd des Systbmes Lineaires (Extension of the 
Method of the Generalized Phase Diagram in the Study of the Sta- 
bility of Linear Systems)-P. Lefevre. (Rev. Ge’nCraZe d’EZectr. vol. 
63, pp. 619-640; October, 1954.) 

The article completes various results generalizing Nyquist’s sta- 
bility criterion according to a method described in a preceding paper.’ 
We will summarize here the main contributions of both papers. 

Under quite general restrictions a stable network possesses a well- 
behaved transfer function free from singularities in a half-plane. 
Under these conditions the real and imaginary parts are Hilbert 
transforms of one another. Computation of the pairs in which one 
member is a finite line segment (Bode’s nomenclature) once for all 
permits approximation of other pairs by graphical addition. This 
analysis is essentially similar to that of Bayard, Weiner and Lee, and 
Bode. There is, as expected, an additive constant to be determined in. 
going from the imaginary part to the real part. 

A single loop feedback system with transmittance (output/input 
ratio) T(p) is considered, and the discussion is based on the complex 
zeros of the equation T(p) -A =O, where a positive or negative nu- 
merical parameter A is introduced in order to display more easily the 
effects of a flat change in the loop transmission. The rational fraction 
r(p) is normalized in such a way that the leading coefficients of its 
numerator and denominator have the same sign; their respective de- 
grees are denoted by 7 and s; p is the order of a possible pole of r at 
p =O, (r the total number of poles of T (counted with their order) on 
the positive half of the imaginary axis (excluding 0 and infinity) and 
N and P are the numbers of zeroes and poles of T-A in the inner 
right half plane. 

If this constant and the imaginary part, or the real part, is known, 
the transfer function is completely specified. [f, in addition, the trans- 
form of the input is specified, the problem of determining the output 
reduces to the calculation of an inverse transform. The authors com- 
pute and plot the step-function response of a system with a finite line 
segment for real or imaginary part of the transfer function, using 
logarithmic time and frequency scales to obtain universal curves. 
More complicated cases are handled by graphical combination of 
these curves. The reader may wish to refer to Floyd’s work, reported 
in Brown and Campbell’s Servomechanisms, for an analysis based on 
the simpler case of linear frequency scale and impulse excitation. 
While the choice of excitation influences primarily the difficulty of 
analysis of the elementary case, the choice of linear or logarithmic 
scales is of importance in application of the results, with the advan- 
tage apparently lying with the latter choice. 

The application of the theorem of logarithmic residues gives 

m = N - P = 2n + (r + (r - s + p)/2 ifr>s 

m=N-P=22n+c~fp/2 ifr6s 

where n is the number of times that the locus of ?Y&J) encircles the 
point h+jO for w running from 0 to m . 

The system is stable for N=O. To translate this into a condition 
for n the knowledge of P is necessary, unless P = 0 as in the Nyquist 
case, but this can be dispensed with if only the effects of varying A are 
studied. The locus of r(jw) is split into simple arcs starting from and 
terminating on the positive real axis for A >O, or on the negative real 
axis for A<O. To every half-turn of such an arc around Ai-j0 will 

Quite complete circuit descriptions and schematics are given for a 
device using modulation techniques to obtain the real and imaginary 

1 M. Demontvignier. P. Lefke. Wne nouvelle mkhode harmonique d’dtude 
de la stabilitd des systkmes limkires,” Rev. G&z. Electr.. vol. 58, pp. 263-279; 
July, 1949. 
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correspond a variation of one unit in N-P; the phase of T&J) at the 
end points of these arcs is 2krr for A>0 and (2k+l)r for h<O. 
Denoting by wk the critical frequencies at which this occurs, a classifi- 
cation of all possible shapes for the simple arcs leads to the following 
result: a variation Am of m = N-P may only occur at wlc if 
[ A 1 < 1 T(+h) / ; this variation is an increase or a decrease by two 
units, depending on whether the slope of the phase of r(jw) at wk is 
positive or negative; if wk is 0 or infinite, the variation Am is only one 
unit in the same conditions. Finally m= N-P is obtained by sum- 
ming Am at all wk where the loop phase is Zk?r or (2kfl)T. 

The result is a function m(A) and will only change when /Al 
crosses one of the critical amplitudes 1 T(+:k) / . The poles P of 
T(p) -A are poles of T and their number P is independent from A, so 
that N(A) is determined for all values of A if it is known for one 
value. In particular it is easy to determine the interval of A in which 
the system is stable, and to find the stability margin: if a decrement 01 
is required for the natural modes, the system ?“@--a) must still be 
stable; the interval of A for which this modified system is stable is a 
function A(a) and the maximum stability margin is that value of 01 for 
which A(a) is reduced to zero. 

Some systems are essentially unstable; this occurs when m(A) and 
P are both even or both odd for all values of A, since then N(A) 

=m(A) -P can never be zero. The occurrence of essential instability 
can be checked from the following properties: 

(a) P is even if the leading coefficient and the constant term of the 
denominator of r(p) have the same sign; P is odd in the opposite case. 

(b) m(A) is even or odd independently from A only in the following 
cases : 

A < 0, T(0) 2 0; then m(A) is even 

A > 0, T(0) $ 0; then m(A) is 
even if r < s 
odd if r > S. 
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A New Method of Synthesis of Reactance Networks-A. Talbot. 
(IEE Monograph no. 77; October, 1953.) 

Network analysis is the process whereby we proceed from the 
component values of some given network to a specification of its 
external behaviour in terms of equations relating the voltages and 
currents at its accessible terminals. The traversing of this path in the 
reverse direction, so as to discover a network with prescribed equa- 
tions governing its external behaviour, is usually described as net- 
work synthesis, and it is in this sense that the author has used the 
phrase. Whereas the operation of analysis is unique and, theoretically, 
straightforward, that of synthesis is not so; in this respect they may 
be compared, for example, with the processes of differentiation and 
integration. The fact that synthesis is not unique is easily seen from 
our knowledge of the existence’of equivalent circuits. 

The theoretical aspects of network synthesis are concerned with 
showing what are the necessary and sufficient conditions to be satis- 
fied by the prescribed external behaviour, in order that it may de- 
scribe a physically-realizable network and, given some such external 
properties, of showing how one network at least may be found which 
possesses them. Classic publications in this field are those by Brune 
and Gewertz, who dealt respectively with one- and two-terminal- 
pair networks. 

The practical aspects of network synthesis are, on the other hand, 
more properly a matter of network design and are concerned with 
obtaining a network that has not only the desired external properties 
but also a form of circuit which can be reproduced accurately with 
physical components. Achieving this usually involves accepting some 
further restrictions on the generality of the available characteristics. 

The paper by Dr. Talbot is a theoretical treatment of a problem 
proper to this second category. The problem is that of determining the 
element values in a two-terminal-pair reactance network from a 
knowledge of its chain or cascade matrix (or equally well its imped- 
ance or admittance matrix). The construction of such networks is 
usually simplified by having the network arranged as a tandem con- 
nection of simple sections each of which is responsible for producing 
one or more of the poles of loss. This fact was recognised many years 

ago and several writers have shown how any physically-realizable 
reactance network can be expressed as a tandem connection of the 
simplest possible sections-what Darlington has called the ‘Lcanonical 
tandem sections.” 

As the chain matrix of a tandem connection of networks is the 
product of the chain matrices of the individual networks, then the 
most natural way of tackling the problem is to take the given chain 
matrix and attempt to factorize it. If the factors can be found and 
can be suitably restricted, then each may be realized as one of the 
tandem sections. 

How this factorization could be carried out was shown inde- 
pendently by both Piloty and Cocci. The factorization gave at once 
the simplest possible factors, and the corresponding network sec- 
tions required pairs of coupled coils with unit coefficient of COU- 

pling. In practical applications, by imposing certain initial restrictions, 
it is usually possible to ease the requirement of tight coupling, often 
to the extent of dispensing with it completely. 

Dr. Talbot’s contribution has been to analyze this general prob- 
lem of factorization and to show how factors of arbitrary degree, and 
not necessarily the smallest degree, may be split off from the chain 
matrix in one operation. The whole process is somewhat analogous to 
the numerical factorization of a polynomial-normally one would do 
it by removing linear or quadratic factors, one at a time, but there is 
no reason why one should not remove cubic or quartic or quintic 
factors, for example, in one operation. 

At the outset it is necessary to decide the respective sizes of the 
two factors into which the given matrix is to be split. Then by pre- or 
post-multiplication of the given matrix by the inverse of one of the 
required factors, it is possible to obtain four polynomial equations,of 
the form 

FP - HQ = SV, 

where the letters denote odd or even polynomials in the complex fre- 
quency variable p (or X) =iZ?rf. Three of these polynomials, F, H, and 
V, say, will be known as parts of the original matrix, while the other 
three, P, Q, and S, belonging to the factors, are to be found. The 
main part of the paper is taken up with a most detailed study of this 
type of equation and its solution under the restrictive conditions set 
by the problem, namely that P, Q, and S shall belong to a physically 
realizable matrix. The difficulty of solution lies in arranging that 
these conditions shall be met; once these arrangements have been 
made, by a careful choice of the degrees of the polynomials, the 
actual solution can proceed numerically. The author suggests that 
the unknown coefficients can conveniently be found by solving the 
linear simu!tanPous equations obtained by equating corresponding 
powers of p. He also refers in passing to a method involving continued 
factions, but promises to publish this later. 

Apart from the academic interest of the method of solution itself, 
which may be considerable, it is difficult to see what the paper offers 
that is new and valuable in circuit theory as distinct from mathe- 
matics. Considering again the polynomial factorization analogy, it 
is normally much more convenient, and certainly easier, to break up 
the polynomial into its primitive linear and quadratic factors than 
into factors of higher degree. This is also true of the chain matrix, 
as the author admits. He suggests that by doing this, however, we 
may have lost something because the probability of being able to 
realize a given factor matrix without mutual inductance increases 
with the degree of the matrix. He illustrates this by an example of a 
matrix of degree 5 (with 5 poles of loss, one at p = m and two each at 
p = L-i/&) which can be realized in one lump as a kind of bridged-T 
section without mutual coupling, but which always requires coupled 
coils when realized as a tandem connection of simpler sections. This, 
of course, is a well known phenomenon. 

What the author overlooks is that if we have split our given matrix 
into its simplest factors to start with, it is quite easy to multiply any 
two or three adjacent factors together and arrive at the larger factors 
that may have the desirable non-coupled properties in their network 
forms. Moreover, all the different combinations can be tried out 
fairly quickly by taking different sets of factors. This could not be 
done unless one had all the primitive factors available. In any practi- 
cal design one would not hesitate to find all the factors, even at some 
increase of computing, in order to be able to try every possibility of 
eliminating coupled coils with suitable combinations in this way. 
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