
Dependable On-line Upgrading of Distributed Systems

Alexander Romanovsky
University of Newcastle upon Tyne, UK
alexander.romanovsky@newcastle.ac.uk

Iain Smith
Dependable Systems Ltd., UK

iain.smith@dependable-systems.com

1. Introduction
Systems are upgraded to improve their functionality, pro-
vide new services, correct faults and accommodate changes
in the system environment. The number of application
areas in which systems should be able to deliver continu-
ous reliable service is growing. Today’s systems still ex-
perience considerable downtime (in range of 30%-60%) on
upgrading and patching the operating system, middleware,
and applications. On-line system upgrading is nowadays
quickly becoming an issue affecting the success of many
an enterprise. It can, for example, reduce the downtime of
telecommunication services, allow for on-the-fly bug cor-
rections of space mission software and make it possible to
dynamically change a complex Internet application built as
an integration of existing independent web services.

The complexity of modern applications is very high
and on-line upgrading should not be performed in an ad
hoc fashion. Several international organisations (including
OMG and Java Community Process) are working on pro-
posals for specifying models and APIs supporting on-line
system upgrades. There is a need to design general system-
atic and practical methods and techniques supporting de-
velopment and deployment of upgradable systems.

System dependability is a crucial property that must
not be undermined during upgrading or as a result of it.
Besides, it should be possible to use the natural redun-
dancy of having both the upgraded and old software to al-
low for a smooth reversion to the old version if necessary.

2. Aims and topics
The main theme of the workshop is to develop approaches
to dependable systematic on-line system upgrading. The
workshop aims at
• bringing together practitioners, researchers and sys-

tem developers working on the issues related to on-
line upgrading of distributed systems

• developing a better understanding of the problems
that developers face while dealing with on-line sys-
tem upgrading

• defining a research agenda for developing distributed
upgradable systems.

We sought submissions from both industry and acade-
mia on all topics related to on-line upgrading of distributed
systems. These include, but were not limited to:
• software architectures for upgradable systems
• tools and platforms supporting dependable on-line

upgrading
• error detection and recovery during system upgrading
• software engineering issues of developing systems

that are easy to modify on-line
• structuring techniques to make systems upgradable

and on-line upgrading reliable
• formal approaches to reasoning about properties of

systems during and after their upgrading
• exception handling techniques for system upgrade
• fault tolerant techniques guaranteeing consistency of

upgrading
• approaches addressing issues of interoperabil-

ity/compatibility of different versions
• employing redundancy and diversity during and after

system upgrading
• issues of on-line upgrading of complex systems built

of components and legacy code
• techniques to support on-line dealing with interface

changes
• dynamic upgrading of database systems.

3. Workshop program
The workshop program includes the following invited
talks:
• M. E. Segal (Telcordia Technologies, USA). Online

Software Upgrading: New Research Directions and
Practical Considerations

• L. Moser (Eternal Systems, Inc., USA). Online Up-
grades Become Standard.

Regular papers accepted for publication in the work-
shop proceedings are:
• C. Dislis (Motorola Ireland Ltd., Ireland). Improving

Service Availability via Low-outage Upgrades.
• H. Evans (Glasgow University, Scotland). Dynamic

On-line Object Update in the Grumps System.
• C. Jones, A. Romanovsky, I. Welch (University of

Newcastle upon Tyne, UK). A Structured Approach
to Handling On-Line Interface Upgrades.

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

• C. Liu, D. J. Richardson (University of California,
Irvine, USA). Using RAIC for Dependable On-line
Upgrading of Distributed Systems.

• R. P. Bialek (University of Copenhagen, Denmark).
The Architecture of a Dynamically Updatable, Com-
ponent-based System.

• P. Brada (University of West Bohemia in Pilsen,
Czech Republic). Metadata Support for Safe Com-
ponent Upgrades.

• R. Pandey, S. Malabarba, T. Stapko, B. Hashii
(University of California, Davis, USA). Dynami-
cally Evolvable Distributed Systems.

• X. Shan, J. J. Li (Avaya Labs, USA). A Case Study
of Dependable Software Upgrade with Distributed
Components.

• M. R. V. Chaudron (Eindhoven University of Tech-
nology, The Netherlands), F. van de Laar. (Philips
Research Laboratories, The Netherlands). An Upgrade
Mechanism Based on Publish/Subscribe Interaction.

• M. Solarski (FOKUS, Germany), H. Meling. (Nor-
wegian University of Science and Technology, Nor-
way). Towards Upgrading Actively Replicated Serv-
ers on-the-fly.

4. Problem scope
This Dependable On-line Upgrading of Distributed Sys-
tems workshop broadens the discussion from the 'simple'
upgrading of objects in a closed environment to the asyn-
chronous integration of upgraded components (objects,
tasks, interfaces, etc.) in a distributed, independently man-
aged, heterogeneous environment in which dependability is
key. Inevitable in this environment is the possibility of
upgrade errors and mismatches.

The scope of the problem is daunting. A complete so-
lution will have to address many issues from the installa-
tion of unanticipated changes (bug fixes) to the installa-
tion of significant changes in interfaces and function in
large distributed systems, all while minimising the im-
pact on the running system and maintaining its depend-
ability and security.

Dependability demands (of reliability and performabil-
ity) lead to the distinction between anticipated (planned)
and unanticipated change, and sizing the scope of the
change (no external impact, functional, interface). Unan-
ticipated changes, typically bug fixes, often have no exter-
nal impact and can be applied independently, while planned
functional changes usually require synchronisation or
managed late binding to handle the changed inter-
faces/functions.

Large, complex systems also impose the practical re-
quirement for asynchronous upgrades, and the concurrent
support of multiple versions of any component. Handling
interface differences may involve techniques from self-
describing messages with sophisticated version identifiers

to dynamic rebuilding of communication links. Upgrading
of complex systems requires employing structured tech-
niques that clearly identify the scope of upgrading (this
can be defined either off-line or on-the-fly). Some up-
grades replace simple elements of system structure, while
others may replace a number of interconnected compo-
nents.

The challenges of scaling to large systems may require
automated upgrade distribution and runtime replacement
mechanisms. Simply guaranteeing that all impacted com-
ponents have been upgraded is non-trivial, while recognis-
ing the components that may not be upgraded (because of
interdependencies etc.) further complicates the process.
Some components may be readily quiesced in a saved state
prior to replacement, while long running components will
have to have their state transferred to the upgrade.

The systems must remain dependable both during and
after upgrade. Some level of transactional ACID (Atomic-
ity, Consistency, Isolation and Durability) properties is
required with the ability to commit or rollback the
changes. The fault handling process must recognise and
resolve faults resulting from the introduction of upgrades.

Finally, the upgrade process must always be secure
against intrusion and unauthorised use.

The papers accepted for the workshop address many of
the issues outlined above and we believe that we have put
together a strong workshop program. In particular, paper
by Dislis supplies a practical example of the need to re-
duce upgrade outages, Evans uses containers each combin-
ing a number of JVMs to control the upgrades, Liu and
Richardson take the redundant array (RAIC) approach to
upgrading, Jones et al provide an overview of the problem
of on-line interface changes with an approach to handling
the resulting faults, Bialek proposes a layered architecture
to handle state transfers, Brada puts forward an upgrade
scheme based on revision ID metadata, Pandey et al address
evolution of Java programs with an emphasis on introduc-
ing type-safe dynamic program modification and an adap-
tive security model, Shan and Li give an example of using
modelling to validate the architecture prior to upgrade,
Chaudron and van de Laar describe publish/subscribe up-
grading, Solarski and Meling introduce a technique for
runtime upgrading of distributed replicated software.

Workshop web page: www.cs.ncl.ac.uk/people/alexa-
nder.romanovsky/home.formal/doluds.html

Acknowledgments. We are grateful to Mark E. Segal
and Louise Moser for accepting our invitations to deliver
invited talks, and to the authors of all submitted papers for
their interest in the workshop theme. Our sincere thanks
go to the members of the workshop Steering and Program
Committee: Cliff Jones, Jenny Li and Francis Tam.

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

