Bridging the Gap between
Software Development
and Information Security

raditionally, software development efforts in large

corporations have been about as far removed from

information security as they were from human re-

sources or any other business function. Software de-

velopment has also had the tendency to be highly distributed

among business units and thus not
even practiced in a cohesive, coher-
ent manner. In the worst cases, busy
business unit executives trade roving
bands of developers like Pokémon
cards in a fifth-grade classroom (in an
attempt to get ahead). Suffice it to
say, none of this is good.

The disconnect between secu-
rity and development has ultimately
produced software development ef-
forts that lack any sort of contem-
porary understanding of technical
security risks. Today’s complex and
highly connected computing envi-
ronments trigger myriad security
concerns, so by blowing oft the idea
of security entirely, software
builders virtually guarantee that
their creations will have way too
many security weaknesses that
could—and should—have been
avoided. This article presents some
recommendations for solving this
problem. Our approach is born out
of experience in two diverse fields:
software security and information
security. Central among our rec-
ommendations is the notion of
using the knowledge inherent in in-
formation security organizations to
enhance secure software develop-
ment efforts.

PUBLISHED BY THE IEEE COMPUTER SOCIETY |

Don’t stand
so close to me

Best practices in software security
include a manageable number of
simple activities that should be ap-
plied throughout any software de-
velopment process (see Figure 1).
These lightweight activities should
start at the earliest stages of software
development and then continue
throughout the development
process and into deployment and
operations.

Although an increasing number
of software shops and individual de-
velopers are adopting the software
security touchpoints we describe
here as their own, they often lack the
requisite security domain knowl-
edge required to do so. This critical
knowledge arises from years of ob-
serving system intrusions, dealing
with malicious hackers, suffering the
consequences of software vulnera-
bilities, and so on. Put in this posi-
best-intended
development efforts can fail to take

tion, even the
into account real-world attacks pre-
viously observed on similar applica-
tion architectures. Although recent
books'? are starting to turn this
knowledge gap around, the science
of attack is a novel one.

1540-7993/05/$20.00 © 2005 IEEE |

Information security staft—in
particular, incident handlers and vul-
nerability/patch
spent years responding to attacks

specialists—have

against real systems and thinking
about the that
spawned them. In many cases,
they’ve studied software vulnerabili-
ties and their resulting attack profiles

vulnerabilities

in minute detail. However, few in-
formation security professionals are
software developers (at least, on a
full-time basis), and their solution
sets tend to be limited to reactive
techniques such as installing software
patches, shoring up firewalls, updat-
ing intrusion detection signature
databases, and the like. It’s very rare
to find information security profes-
sionals directly involved in major
software development projects.

Sadly, these two communities of
highly skilled technology experts
exist in near complete isolation, yet
their knowledge and experience
bases are largely complementary.
Finding avenues for interdiscipli-
nary cooperation will likely bear
fruit in the form of fielded software
that’s better equipped to resist well-
known and easily predicted attacks.
A secondary benefit of any inter-
disciplinary cooperation is gaining
information security personnel
with a much better understanding
of the applications that theyre
tasked with protecting.

Every silver lining’s
got a touch of gray
A complete description of every
software security best practice is far
beyond this article’s scope, but we

IEEE SECURITY & PRIVACY

Building Security In

Editor: Gary McGraw, gem@cigital.com

Cigital and
KRvW
Associates

Cigital

75

Building

Security In

~

Security External Code Penetration
requirements review review testing
(tools)
Abuse Risk Risk-based Risk .
cases analysis security tests analysis Security
\ operations
L / I\ | l | I\ I/
1 1 1 1 1
Requirements Design Test Code Test Field
and use cases plans results feedback
Figure 1. Software security best practices or “touchpoints.” Although the software
artifacts are laid out according to a traditional waterfall model, most organizations
follow an iterative approach today: best practices are cycled through more than once
as the software evolves.

/

76

IEEE SECURITY & PRIVACY u

can provide a high-level description
of the most effective software secu-
rity touchpoints available today.

Requirements:

Abuse cases

The concept of abuse case develop-
ment is derived from use case devel-
opment. In an abuse case, the
developer considers software’s delib-
erate misuse and ponders its corre-
sponding effect. When addressing
user input, for example, the devel-
oper can construct a series of abuse
cases that describes in some detail
how malicious users can and will at-
tempt to overflow input buffers, in-
sert malicious data, and so on. An
abuse case depicts these scenarios as
well as how the software should re-
spond to them. As with their use case
counterparts, each abuse case then
drives a requirement and correspond-
ing test scenario for the software.

Design: Business

risk analysis

Assessing the business impact likely
to result from a successful software
compromise is a critical undertak-
ing. If no one explicitly tackles this
issue, a security analysis will fall short
in the “who cares?” department. A
good risk analysis considers ques-
tions of the project’s cost to the par-
ent organization sponsoring the
software in terms of both direct cost
(liability, lost productivity, and re-

work) and indirect cost (reputation
and brand damage).

Design:

Architectural risk analysis

Similar to a business risk analysis, an
architectural risk analysis assesses the
technical security exposures in an
application’s proposed design and
links them to business impact. Start-
ing with a high-level depiction of
the design, the analysis team consid-
ers each module, interface, interac-
tion, and so forth against known
attack methodologies and their like-
lihood of success. To provide a for-
est-level view of a software system’s
security posture, the analysts typi-
cally apply such analyses against a
design’s individual subcomponents
as well as to the design as a whole.
Attention to security’s holistic as-
pects is paramount: at least 50 per-
cent of all security defects are
architectural in nature.

Test planning: Security
functionality testing

Just as testers typically use functional
specifications and requirements to
create test scenarios and test plans
(especially those testers who under-
stand the critical notion of require-
ments traceability), security-specific
functionality should be used to de-
rive tests against the target software’s
security functions. These kinds of
investigations generally include tests

SEPTEMBER/OCTOBER 2005

that verify security features such as
encryption, user identification, log-
ging, confidentiality, authentica-
tion, and so on. These are “positive”
security features for white hats.

Test planning:

Risk-driven testing
Thinking like a good guy isn’t
enough: you have to don your
black hat and think like a bad guy.
Risk-based test scenarios are the
natural result of the process of as-
sessing and prioritizing software’s
architectural risks. Each architec-
tural risk and abuse case considered
should be described and docu-
mented down to a level that clearly
explains how an attacker might go
about exploiting a weakness and
compromising the software. Such
descriptions can help generate a
priority-based list of test scenarios
for later “adversarial” testing.

Implementation:

Code review

The design-centric activities de-
scribed thus far focus on architec-
tural flaws built into software design,
but they completely overlook im-
plementation bugs that the coders
might introduce during coding. Im-
plementation bugs are both numer-
ous and common (just like real bugs
in the Virginia countryside) and can
include nasty creatures such as the
notorious buffer overflow, which
owes its existence to the use (or mis-
use) of vulnerable APIs. Code re-
view processes—both manual and
(even more important) automated
with a static analysis tool—attempt
to identify security bugs prior to the
software’s release.

System testing:
Penetration testing

System penetration testing, when
used appropriately,
human and procedural failures made

focuses on
during the software’s configuration
and deployment. The best kinds of
penetration testing are driven by
previously identified risks and are

engineered to probe risks directly to
ascertain their exploitability.

Fielded system:
Deployment

and operations

Careful configuration and cus-
tomization of any software applica-
tion’s deployment environment can
greatly enhance its security posture.
Designing a smartly tailored deploy-
ment environment for a program re-
quires following a process that starts at
the network-component level, pro-
ceeds through the operating system,
and ends with the application’s own
security configuration and setup.

Kumbaya (for

software security)

With the software security touch-
points we’ve just listed in mind, let’s
turn to the issue at hand: how infor-
mation security professionals can best
participate in the software develop-
ment process. If youre a CISSP, an
operational security professional, ora
network administrator, this Bud’s for
you. Let’s go back through the activ-
ities we just covered and give some
recommendations relevant to both
software developers and information
security practitioners.

Abuse cases

Folding information security into
abuse case development is such low-
hanging fruit that the fruit itself is
dirt-splattered from the latest thun-
derstorm. Simply put, information
security professionals come to the
table with the (rather unfortunate)
benefit of having watched and dis-
sected years of attack data, built
forensics tools,® created profiles of
attackers, and so on. This might
make them jaded and surly, but at
least they intimately know what
theyre up against.

Many abuse case analysis efforts
begin with brainstorming or “white
boarding” sessions during which the
development team describes an ap-
plication’s use cases and functional
requirements while a room full of

experts pontificate about how an at-
tacker might attempt to abuse the
system. Properly participating in
these exercises involves carefully and
thoroughly considering similar sys-
tems and the successful attacks
against them. Getting past your own
belly button is especially important
to abuse case success, so consider
other domains that could be relevant
to the application under review
while you're at it. Once again, real
battle experience is critical. Infor-
mation security people are likely to
find (much to their amusement) that
the software developers in the room
are blissfully unaware of many of the
attack forms found daily beyond the
network perimeter. Of course,
many of the uninformed are also
naturally ~ skeptical ~ unbelievers.
While converting these skeptics, try
to avoid succumbing to the ten-
dency toward hyperbole and exag-
geration that is unfortunately
common among security types.
There’s nothing worse than a blus-
tery security weenie on his high
horse about some minor skirmish.
Don't overstate the attacks you've
seen and studied, just stick to the
facts and be prepared to back up
your statements with actual exam-
ples. Knowledge of actual software
technology a plus.

Business risk analysis

The most important people to con-
sult when assessing software-
induced business risks are the
business stakeholders behind the
software. In organizations that al-
ready practice business-level tech-
nology analysis, this tends to be
quite well understood. (Unfortu-
nately, technological assessment of
the business situation stops well be-
fore the software level in most of
these organizations.) Enhancing a
standard approach is easy with a few
additional questions: What do the
people asking for this software think
about security? What do they ex-
pect? What are they trying to ac-
complish that a successful attack

www.computer.org/security/ B |[EEE SECURITY & PRIVACY

might thwart? What worries them
about security?

The value information security
professionals bring to answering
these questions comes from their
wealth of experience in seeing secu-
rity impacts first-hand when similar
business applications were compro-
mised. It gives them the opportu-
nity to knowledgeably answer
several other security-related ques-
tions: What sorts of costs have simi-
lar companies incurred from
attacks? How much downtime was
involved? What was the resulting
publicity in each case? In what ways
was the organization’s reputation
tarnished? Information security
people can provide input and flesh
out a conversation with relevant sto-
ries. Here again, take care to not
overstate the facts. When citing in-
cidents at other organizations, be
prepared to back up your claims
with news reports and other third-
party documentation.

Architectural risk analysis

Now we're getting to the technical
heart of the software development
process. For architectural risk
analysis to be effective, security an-
alysts must possess a great deal of
technology knowledge covering
both the application and its under-
lying platform, frameworks, lan-
guages, functions, libraries, and so
on. The most effective information
security team member in this situa-
tion 1s clearly one who is a technol-
ogy expert with solid experience
around particular software tools.
With this kind of knowledge under
his or her belt, the information se-
curity professional can provide real-
world feedback into the process. If
the analysis team is discussing a par-
ticular network encryption proto-
cols relative strengths and
weaknesses, for example, informa-
tion security can provide perspec-
tive to the conversation. All
software has potential weaknesses,
but was component X involved in
any actual attacks? Are there known

Building Security In

77

Building Security In

vulnerabilities in the protocol the
project is planning to use? Is a com-
mercial off~the-shelf component or
platform a popular attacker target?

a code review. If you don’t know
what it means for a variable to be de-
clared in a header or an argument to
amethod to be static/final, staring at

experiences of the other.

Software developers and information security
staff can benefit greatly from the respective

IEEE SECURITY & PRIVACY u

Or does it have a stellar reputation
and only a handful of properly han-
dled published vulnerabilities and
known attacks? Feedback of this
sort is extremely useful for priori-
tizing risk and weaknesses as well as
for deciding on what, if any, mitiga-
tion strategies to pursue.

Test planning

Although test planning and execu-
tion are generally performed by qual-
ity assurance (QA) and development
groups, testing represents another op-
portunity for information security to
have a positive impact. Testing—
especially risk-based testing—must
not only cover functionality, it should
closely emulate the steps that an at-
tacker will take when breaking a tar-
get system. Highly realistic scenarios
(the security analog to real user sce-
narios) are much more useful than
arbitrary pretend “attacks.” Standard-
issue testing organizations, if they’re
effective at all, are most effective at de-
signing and performing tests based on
functional specifications. Designing
risk-based test scenarios is a rather
substantial departure from the status
quo and should benefit from the ex-
perience base of security incident
handlers. In this case, information se-
curity professionals who are good at
“thinkinglike abad guy” are the most
valuable resources.

Code review

By its very nature, code review re-
quires knowledge of code. An infor-
mation security practitioner with
little experience writing and com-
piling software is of little use during

lines of code all day isn’t going to
help. Because of this, the code re-
view step is best left in the hands of
the development organization, es-
pecially if it’s armed with a modern
source-code analysis tool. With the
exception of information security
people who are highly experienced
in programming languages and
code-level vulnerability resolution,
there is no natural fit for network se-
curity expertise during the code re-
view phase. This might come as a
great surprise to those organizations
currently attempting to impose soft-
ware security on their enterprise
through the information security di-
vision. Although the idea of security
enforcement is solid, making en-
forcement at the code level success-
ful when it comes to code review
requires real hands-on experience
with code. It’s definitely not suffi-
cient to arm the information secu-
rity team with a static code scanner
and expect them to deliver substan-
tive feedback to the coders.

Penetration testing

Although testing software to a func-
tional specification has traditionally
been QA’s domain, penetration test-
ingis usually the domain of informa-
tion security and incident-handling
organizations. As such, the fit here
for information security participa-
tion is very natural and intuitive. Of
course, several subtleties can’t be ig-
nored. Most penetration testing
today focuses its attention on net-
work topology, firewall placement,
communications protocols, and the
like, thus its an outside—in ap-

SEPTEMBER/OCTOBER 2005

proach that barely begins to scratch
an application’s surface. Penetration
testing must encompass a more
inside—out approach that takes into
account risk analyses and other
software security results as it’s per-
formed. This distinction is some-
times described as the difference
between “network penetration test-
ing” and “application penetration
testing.” Software security is much
more interested in the latter.

Also worth noting is the use of
various black-box penetration tools.
Network security scanners such as
nessus, nmap, SATAN, and the like
are extremely useful because of the
countless ways in which to config-
ure (and misconfigure) complex
networks and their various services.
Application security scanners are
nowhere near as useful, so if by an
“application penetration test” you
mean running an application secu-
rity testing tool and gathering the re-
sults, you have a long way to go to
make your approach hold water. It
goes almost without saying that soft-
ware testing isn’t something thata set
of canned tests can handle, no matter
how large the can. The idea of test-
ing any arbitrary program with, say, a
few thousand tests determined in
advance before the software was
even conceived is ridiculous. The
idea of testing any arbitrary program
with a few hundred application se-
curity tests is just as silly.

The good news about penetra-
tion testing and information security
involvement is that it’s most likely al-
ready underway. The bad news is
that information security must up its
level of software clue to most effec-
tively perform penetration testing.

Deployment

and operations

Many software developers would
argue that deployment and opera-
tions aren’t even part of the soft-
ware development process. Even if
this view is correct, we can’t prop-
erly address operations and deploy-
ment concerns if the software is so

poorly constructed that it falls apart
no matter what kind of solid
ground we place it on. Put bluntly,
operations organizations have put
up with some rather stinky soft-
ware for a long time, which has
made them wary. If we can set that
argument aside for a moment and
look at the broader picture—that
1s, safely setting up the application
in a secure operational environ-
ment and running it accordingly—
then the work that needs doing can
certainly be positively affected by
information security. The best op-
portunities exist in fine-tuning ac-
cess controls at the network and
operating system levels, as well as in
configuring an event-logging and
monitoring mechanism that’s most
effective during incident response
operations. Attacks will happen, so
be prepared to clean up the mess af-
terwards. This advice is pretty
much a “no duh” for information
security organizations, which is
why their involvement in this step
1s so important.

Come together

(right now)

Even if you accept our recommen-
dations wholesale as worthy, the act
of aligning information security and
software development is a serious
undertaking (and not one for the
faint of heart). Close cooperation
with the development organization
1s essential to success. If developers
perceive information security peo-
ple to be the security police or
“those people with sticks who show
up every once in a while and beat us
soundly for reasons we don’t under-
stand,” you have a problem that must
be addressed.

In many cases, developers are
more than willing to accept guid-
ance and advice from information
security people who know what
they're talking about. One problem
1s that they don’t know who to talk
to, who might help them, and who
might just be a blowhard security
weenie. To fix this problem, the first

step for any of you information se-
curity professionals who want to
help out with development efforts
should be to reach out to the devel-
opers, roll up your sleeves, and offer
to assist.

Once you've made the develop-
ers aware of your willingness to help,
consider taking small steps toward
the goals laid out in this article.
Rather than trying to become in-
volved in every phase all at once in a
giant world-changing endeavor, try
one at a time. Be careful not to over-
whelm the overall system by at-
tempting to make too many changes
at once.

Another positive step is for the
information security troops to take
the time to learn as much as they can
about software development in gen-
eral and their organization’s software
development environment in partic-
ular. Study and learn about the types
of applications your software people
develop, why theyre doing it (that s,
for what business purpose the soft-
ware 1s being built), what languages,
platforms, frameworks, and libraries
are being used, and so on. Showing
up with a clue is much better than
showing up willing but clueless.
Software people aren’t the most pa-
tient people on the planet, and you
often have only one shot at getting
involved. If you help, that’s great, but
if you hinder, it'll be the last time
they talk to you.

In the end, success or failure is as
likely to be driven by the personali-
ties of the people involved as any-
thing else. Success will certainly not
be guaranteed, even with the best of
intentions and the most careful plan-
ning. Beer helps.

he interesting thing about soft-

ware security is that it appears to
be in the earliest stages of develop-
ment, much as the field of informa-
tion security itself was 10 or so years
ago. The security activities de-
scribed here discuss only the tip of
the best practice iceberg, but the

www.computer.org/security/ B |[EEE SECURITY & PRIVACY

good news is that these best prac-
tices are emerging at all. Naturally,
the software security discipline will
evolve and change with time, and
best practices and advice will ebb
and flow like the tides at the beach,
but the advice here is likely to bear
fruit for some time.

The recommendations in this ar-
ticle are based on years of experience
with alarge dose of intuition thrown
in for good measure. We've pre-
sented them in the hopes that others
will take them, consider them, adjust
them, and attempt to apply them in
their organizations. We believe that
software developers and information
security staff can benefit greatly from
the respective experiences of the
other, but much work will need to
be done before the practical recom-
mendations made here prove them-
selves to be as useful in practice as we
believe they will be. O

References

1. G. Hogland and G. McGraw,
Exploiting Software: How to Break
Code, Addison-Wesley, 2004.

2.]. Koziol et al., The Shellcoder’s
Handbook: Discovering and Exploit-
ing Security Holes, John Wiley &
Sons, 2004.

3. D. Farmer and W. Venema, Foren-
sic - Discovery, Addison-Wesley,
2004.

Kenneth R. van Wyk is a principal con-
sultant at KRvW Associates and director
of research at Cigital. His interests include
software security and incident-handling.
Van Wyk has a BS in mechanical engi-
neering from Lehigh University. Contact
him at ken@krvw.com.

Gary McGraw is chief technology officer
of Cigital. His real-world experience is
grounded in years of consulting with
major corporations and software pro-
ducers. McGraw is the coauthor of
Exploiting Software (Addison-Wesley,
2004), Building Secure Software (Addi-
son- Wesley, 2001), Java Security (John
Wiley & Sons, 1996), and four other
books. He has a BA in philosophy from
the University of Virginia and a dual PhD
in computer science and cognitive science
from Indiana University. Contact him at
gem@cigital.com.

Building Security In

79

