
CryptoCorner
Editors: Peter Gutmann, pgut001@cs.auckland.ac.nz
David Naccache, david.naccache@gemplus.com
Charles C. Palmer, ccpalmer@us.ibm.com

But the market has ruled against
us. Time and time again, our fielded
secure systems are ignored, by-
passed, turned off, or constrained to
such a small part of the process that
the security result is practically
nonexistent. Even worse for our
mental self-satisfaction, those sys-
tems that claim to deliver security to
users simply don’t pass muster—
they’re not what we’d like to think
of as secure systems.

How did this happen?
The security expert’s frequent
lament is the way in which security
is bolted onto an application as an af-
terthought. It seems like an attempt
to sprinkle magic fairy pixie dust
over the product before it ships, and
its lack of scientific quality makes it
easy for experts to ignore and—even
worse—denigrate.

In elevating the importance of
secure practices and downgrading
any considerations of usability, the
security community has committed
the exact same sin in reverse. If we
consider security usability at all, we
place it firmly in second place, and
anyone wishing to dispute this claim
is invited to try setting up an IPsec
tunnel via a firewall or securing their
email with S/MIME.

As a result, we spent the 1990s
building and deploying security that

wasn’t really needed (at least, its pres-
ence didn’t affect Joe Sixpack), and
now that it’s actually desirable (for
viruses, worms, phishing, and so
on), we’re finding that nobody can
use it. Thus, to properly deliver se-
curity, we must scrap the assumption
of a usability compromise. The pri-
mary goal for current security efforts
shouldn’t be to further refine how
many key bits can fit on the head of a
pin, but to figure out how to make
the existing stuff usable.

What relationship
should we strive for?
Must usability and security work
together, or should usability domi-
nate security? We have a handful of
choices:

• The two should work together as
equal partners.

• Security comes first, and usability
should be the compromising ju-
nior partner.

• Usability comes first, and security
should be the compromising ju-
nior partner.

• Security is best left as a separate
product, naturally layered into the
application without disturbing it
and without compromising strong
design principles.

These choices change our architec-

ture, the way in which we deploy
secure systems, and the way in
which security is delivered to (and
experienced by) users so dramati-
cally that we can’t answer the
trade-off question yet. However,
experience with current mass-
appeal software seems to indicate
that security must follow usability,
not the other way around.

Consider two contemporary
examples, peer-to-peer (P2P) and
the Internet phone application
voice over IP (VoIP). Attempts to
build intrinsically secure applica-
tions such as these have existed for
some years, examples being
Freenet (www.freenetproject.org),
Nautilus (ftp://ftp.funet.fi/pub/
crypt/utilities/phone/), and PGP-
fone (www.pgpi.org/products/
pgpfone/).1 (Nautilus goes back
more than a decade, and there were
other attempts at it before that).
However, the really successful ap-
plications such as Gnutella (www.
gnutella.com), Bit Torrent (www.
bittorrent.com), and Skype (www.
skype.com) started out—and
gained widespread acceptance—as
extremely easy-to-use (but gener-
ally insecure) applications that
slowly bolted on security over time.

Post hoc security
The security mechanisms employed
in emerging systems are often
homebrewed as an afterthought, and
the result is the widespread adoption
of a somewhat-secure system as op-
posed to a very secure system that’s
not used at all. So if this is the best
way to get a secure system de-
ployed—should we design security

PETER

GUTMANN

University of
Auckland

IAN GRIGG

Systemics

I
n the security community, we’ve always recognized that

our security proposals come with certain costs in terms of

usability. Traditionally, that’s the compromise we make to

be secure.

Security Usability

56 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/05/$20.00 © 2005 IEEE ■ IEEE SECURITY & PRIVACY

CryptoCorner

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 57

so that it can be conveniently bolted
on after the fact?

Post hoc security operates as if
the cycles of design, redesign, trial,
and retrial are so uncertain and ex-
perimental that any attention to se-
curity during the process is likely to
drain precious resources from the
key issue: finding out what it is that
gets a successful killer application ac-
cepted in the first place. Indeed, the
marketplace reflects this with all
kinds of flagship security products.
SSL is a layered product for HTTP,
for example, and PGP could be
treated as a layered protocol for
email. Relatively rarely is a tool con-
ceived from the ground up to be
both secure and groundbreaking;
even SSH was a drop-in replacement
for Telnet and the Berkeley r* utili-
ties rlogin, rsh, and rcp.

To layer or not to layer
If we constrain ourselves to doing
security after the fact, how should
we do it?

Let’s look at the track records of
layered security products as an op-
tion. The volume of mail secured
through SMTP tunneled over
SSL/TLS, for example, exceeded
that of all other email security
mechanisms combined—by an
order of magnitude—within a year
of its introduction because setting
up and using other mechanisms
(typically, S/MIME and PGP) is so
painful.

Similarly, SSH, which was orig-
inally created as a secure Telnet/
r* application, is now widely used
as a universal secure-tunnel wrap-
per for insecure protocols because
it’s easier to bolt on the SSH tunnel
than it is to use the secure form of
the protocol being tunneled—if
one even exists. SSH support is
now almost mandatory for (Win-
dows) FTP applications because
wrapping the data transfer in SSH
is the easiest way to secure it, even
though the implementations of the
SSH protocol in the application are
usually minimal and often awful.

As a result, users see a familiar
Windows Explorer-style interface
when they move files around, but
under the surface, it’s all secured
with SSH.

Bolting on usability
Although it’s common knowledge
that you shouldn’t bolt security on
after the fact, it’s even harder to bolt
usability on after the fact. The bolt-
on front ends intended to make
hard-core crypto applications easier
to use are probably some of the most
complex applications the typical
user will ever encounter. Moreover,
they usually mask the arcane and
convoluted mechanisms of public
key cryptography key management,
offering all this complexity and se-
curity jargon for the debatable bene-
fit of securing that which is already
in use daily, albeit with some minor
statistical risk.

Let’s look at the cost–benefit

trade-offs of various commonly
performed computer tasks. Average
users can handle the red-eye elimi-
nation wizard in a photo editor,
both because it’s easy to use and be-
cause they don’t want photos in
which their kids look like vampires.
They can balance their checkbooks
with Quicken (again, through a
combination of ease of use and in-
centive) and type up a basic letter in
Wordpad or Word (the latter being
a good example of infinite, but
well-hidden, complexity). In all
these cases, there’s a perceived value
in dealing with a slightly more
complex interface: a little more
complexity is acceptable for a fair
offering in value. In contrast, a typ-
ical security-first application pre-
sents a small perceived advantage in
exchange for dealing with an extra-
ordinarily complex interface that
would challenge the average com-
puter science graduate.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 57

CryptoCorner

Consider how the average user
sends secure email. An example of
a typical front end for doing this is
the KGPG graphical front end to

the Gnu Privacy Guard (GPG;
www.gnupg.org), a widely-used
implementation of the OpenPGP
standard. Even though it’s justly
lauded for advances in usability,
KGPG still requires users to per-
form laborious manual key man-
agement, often involving complex
multitab dialogs filled with incom-
prehensible options.2

Matters are far worse in the stan-
dardized public-key infrastructure
(PKI) world. To initialize KGPG, the
user follows five steps in sequence,
but a popular PKI certification au-
thority would make that same user
fill out 11 pages of incomprehensible
information to generate a X.509
public/private key pair.3 Send a se-
cure email? No thanks, I can already
send an email, and a secure one isn’t
worth that much to me.

Security usability
circa 1883
Auguste Kerckhoffs, a Dutch cryp-
tographer who taught in France in
the late 19th century, wrote an influ-
ential article that expounded on six
basic principles of a communica-
tions security system:4

1. The system must be practically,
if not mathematically, indeci-
pherable.

2. It must not be required to be se-
cret, and it must be able to fall
into the hands of the enemy
without inconvenience (often
referred to as Kerckhoffs’ law).

3. Its key must be communicable

and retainable without the help
of written notes and changeable
or modifiable at the will of the
correspondents.

4. It must be compatible with the
means of communication (most
security mechanisms result in
message expansion and trans-
form text into nontextual data).

5. It must be portable, and its
usage and function must not re-
quire the concourse of several
people (consider what happens
if you log onto a banking site
from computer B when your
keys are stored on computer A).

6. Given the circumstances that
command its application, the
system must be easy to use, re-
quiring neither mental strain
nor the knowledge of a long se-
ries of rules to observe.

These observations aren’t new, al-
though they’re apparently more eas-
ily forgotten than understood. It’s
interesting that of these six princi-
ples, four of them speak to usability
whereas only two speak to what we
would call secure practices.

P rinciples 1 and 2 are the ones
that cryptographers are most

enamored of, but based on our mar-
ket experience, Principle 6 could
well be the most important one.
The system must be simple enough
to be used (no doubt, one or more
security systems or protocols that
fail this principle immediately
spring to mind). Indeed, if we were
to take any pair of principles and
rank them according to which ones
we’d rather compromise, Kerck-

hoffs has them ordered in impor-
tance from Principle 6 down to
Principle 1.

In a future article, we’ll discuss in
greater depth what has worked and
what hasn’t.

References
1. M. Caloyannides, “Speech Privacy

Technophobes Need Not Apply,”
IEEE Security & Privacy, vol. 2, no.
5, 2004, pp. 86–87.

2. T. Chance, “KDE Developers,
Usability Experts Complement
Each Other,” NewsForge, 9 June
2005; http://programming.news
forge.com/programming/05/05/
05/1823209.shtml?tid=25&tid=1
30.

3. P. Gutmann, “Plug-and-Play PKI:
A PKI Your Mother Can Use,”
Proc. 12th Usenix Security Symp.,
Usenix Assoc., 2003, pp. 45–58.

4. A. Kerckhoffs, “La Cryptographie
Militaire,” (in French), J. des Sciences
Militaires, vol. IX, Jan. 1883, pp.
5–38.

Peter Gutmann is a researcher at the
Department of Computer Science, Uni-
versity of Auckland, New Zealand. His
research interests include security engi-
neering and the practical application of
cryptography. Gutmann has a PhD in
computer science from the University of
Auckland. He is a member of the IEEE,
ACM, and IACR. Contact him at pgut
001@cs.auckland.ac.nz.

Ian Grigg is a financial cryptographer
with Systemics, a supplier of payments
and trading systems. His interests include
economics and governance of Internet
financial systems, and applying cryptog-
raphy to end-user problems. Grigg stud-
ied computer science at the University of
New South Wales and has an MBA from
London Business School. Contact him at
iang@systemics.com.

58 IEEE SECURITY & PRIVACY ■ JULY/AUGUST 2005

We spent the 1990s building and deploying

security that wasn’t really needed, and now

that it’s actually desirable, we’re finding that

nobody can use it.

Interested in writing for this

department? Please contact editors

Peter Gutmann (pgut001@cs.

auckland.ac.nz), David Naccache

(david.naccache@gemplus.com),

or Charles C. Palmer (ccpalmer@

us.ibm.com).

