
Building Security In
Editor: Gary McGraw, gem@cigital.com

source-code security analysis with
static analysis tools.

Since ITS4’s release in early 2000
(www.cigital.com/its4/), the idea
of detecting security problems
through source code has come of
age. ITS4 is extremely simple—the
tool basically scans through a file
looking for syntactic matches based
on several simple “rules” that might
indicate possible security vulnera-
bilities (for example, use of str-
cpy() should be avoided). Much
better approaches exist.

Catching
implementation
bugs early
Programmers make little mistakes
all the time—a missing semicolon
here, an extra parenthesis there.
Most of the time, these gaffes are
inconsequential; the compiler
notes the error, the programmer
fixes the code, and the develop-
ment process continues. This quick
cycle of feedback and response
stands in sharp contrast to what
happens with most security vulner-
abilities, which can lie dormant
(sometimes for years) before dis-
covery. The longer a vulnerability
lies dormant, the more expensive it
can be to fix, and adding insult to
injury, the programming commu-
nity has a long history of repeating

the same security-related mistakes.
The promise of static analysis is to
identify many common coding
problems automatically before a
program is released.

Static analysis tools examine the
text of a program statically, without
attempting to execute it. Theoreti-
cally, they can examine either a pro-
gram’s source code or a compiled
form of the program to equal bene-
fit, although the problem of decod-
ing the latter can be difficult. We’ll
focus on source code analysis here
because that’s where the most ma-
ture technology exists.

Manual auditing, a form of sta-
tic analysis, is very time-consum-
ing, and to do it effectively, human
code auditors must first know what
security vulnerabilities look like
before they can rigorously examine
the code. Static analysis tools com-
pare favorably to manual audits be-
cause they’re faster, which means
they can evaluate programs much
more frequently, and they encapsu-
late security knowledge in a way
that doesn’t require the tool opera-
tor to have the same level of secu-
rity expertise as a human auditor.
Just as a programmer can rely on a
compiler to consistently enforce
the finer points of language syntax,
the operator of a good static analy-
sis tool can successfully apply that

tool without being aware of the
finer points of security bugs.

Testing for security vulnerabili-
ties is complicated by the fact that
they often exist in hard-to-reach
states or crop up in unusual circum-
stances. Static analysis tools can peer
into more of a program’s dark cor-
ners with less fuss than dynamic
analysis, which requires actually run-
ning the code. Static analysis also has
the potential to be applied before a
program reaches a level of comple-
tion at which testing can be mean-
ingfully performed.

Aim for good,
not perfect
Static analysis can’t solve all your se-
curity problems. For starters, static
analysis tools look for a fixed set of
patterns, or rules, in the code. Al-
though more advanced tools allow
new rules to be added over time, if a
rule hasn’t been written yet to find a
particular problem, the tool will
never find that problem. When it
comes to security, what you don’t
know is likely to hurt you, so beware
of any tool that says something like,
“zero defects found, your program
is, rather, now secure.” The appro-
priate output is, “sorry, couldn’t find
any more bugs.”

A static analysis tool’s output still
requires human evaluation. There’s no
way for a tool to know exactly which
problems are more or less important to
you automatically, so there’s no way to
avoid trawling through the output and
making a judgment call about which
issues should be fixed and which ones
represent an acceptable level of risk.
Knowledgeable people still need to
get a program’s design right to avoid
any flaws—although static analysis

BRIAN CHESS

Fortify
Software

GARY

MCGRAW

Cigital

A
ll software projects are guaranteed to have one ar-

tifact in common—source code. Together with

architectural risk analysis,1 code review for secu-

rity ranks very high on the list of software security

best practices (see Figure 1).2 Here, we’ll look at how to automate

Static Analysis for Security

76 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/04/$20.00 © 2004 IEEE ■ IEEE SECURITY & PRIVACY

Building Security In

tools can find bugs in the nitty-gritty
details, they can’t critique design.
Don’t expect any tool to tell you, “I
see you’re implementing a funds trans-
fer application. You should tighten up
the user password requirements.”

Finally, there’s Rice’s theorem,
which says (in essence) that any
nontrivial question you care to ask
about a program can be reduced to
the halting problem. In other
words, static analysis problems are
undecidable in the worst case. The
practical ramifications of Rice’s
theorem are that all static analysis
tools are forced to make approxi-
mations and that these approxima-
tions lead to less-than-perfect out-
put. A tool can also produce false
negatives (the program contains
bugs that the tool doesn’t report) or
false positives (the tool reports bugs
that the program doesn’t contain).
False positives cause immediate
grief to any analyst who has to sift
through them, but false negatives
are much more dangerous because
they lead to a false sense of security.
A tool is sound if, for a given set of
assumptions, it produces no false
negatives, but the down side to al-
ways erring on the side of caution is
a potentially debilitating number of
false positives. The static analysis
crowd jokes that too high a per-
centage of false positives leads to
100 percent false negatives because
that’s what you get when people
stop using a tool. A tool is unsound if
it tries to reduce false positives at
the cost of sometimes letting a false
negative slip by.

Approaches to
static analysis
Probably the simplest and most
straightforward approach to static
analysis is the Unix utility grep.
Armed with a list of good search
strings, grep can reveal quite a lot
about a code base. The down side is
that grep is rather lo-fi because it
doesn’t understand anything about
the files it scans. Comments, string
literals, declarations, and function

calls are all just part of a stream of
characters to be matched against.

Better fidelity requires taking
into account the lexical rules that
govern the programming language
being analyzed. By doing this, a tool
can distinguish between a vulnerable
function call

gets(&buf);

a comment

/* never ever call gets */

and an innocent and unrelated
identifier

int begetsNextChild = 0;

Basic lexical analysis is the ap-
proach taken by early static analysis
tools, including ITS4, FlawFinder
(www.dwheeler.com/flawfinder/),
and RATS (www.securesoftware.
com), all of which preprocess and
tokenize source files (the same first
steps a compiler would take) and
then match the resulting token
stream against a library of vulnera-
ble constructs. Earlier, Matt Bishop
and Mike Dilger built a special-pur-
pose lexical analysis tool specifically
for the purpose of identifying time-
of-check to time-of-use (TOC-
TOU) flaws.3

While lexical analysis tools are
certainly a step up from grep, they
produce a hefty number of false pos-
itives because they make no effort to

account for the target code’s seman-
tics. A stream of tokens is better than
a stream of characters, but it’s still a
long way from understanding how a
program will behave when it exe-
cutes. Although some security de-
fect signatures are so strong that they
don’t require semantic interpretation
to be identified accurately, most are
not so straightforward.

To increase precision, a static
analysis tool must leverage more
compiler technology. By building an
abstract syntax tree (AST) from
source code, such a tool can take into
account the basic semantics of the
program being evaluated.

Armed with ASTs, the next de-
cision to make is the scope of the
analysis. Local analysis examines the
program one function at a time and
doesn’t consider relationships be-
tween functions. Module-level analysis
considers one class or compilation
unit at a time, so it takes into account
relationships between functions in
the same module and considers
properties that apply to classes, but it
doesn’t analyze calls between mod-
ules. Global analysis involves analyz-
ing the entire program, so it takes
into account all relationships be-
tween functions.

The scope of the analysis also de-
termines the amount of context the
tool considers. More context is bet-
ter when it comes to reducing false
positives, but it can lead to a huge
amount of computation to perform.

Researchers have explored many

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 77

Abuse
cases

Security
requirements

Risk
analysis

External
review

Risk-based
security tests

Static
analysis
(tools)

Risk
analysis

Penetration
testing

Security
breaks

Requirements
and use cases

Design Test
plans

Code Test
results

Field
feedback

Figure 1. The software development life cycle. Throughout this series, we’ll focus on
specific parts of the cycle; here, we’re examining static analysis.

Building Security In

78 IEEE SECURITY & PRIVACY ■ NOVEMBER/DECEMBER 2004

methods for making sense of pro-
gram semantics. Some are sound,
some aren’t; some are built to detect
specific classes of bugs, while others

are flexible enough to read defini-
tions for what they’re supposed to
detect. Let’s review some of the most
recent tools:

• BOON applies integer range
analysis to determine whether a C
program can index an array out-
side its bounds.4 While capable of
finding many errors that lexical
analysis tools would miss, the
checker is still imprecise: it ignores
statement order, it can’t model in-
terprocedural dependencies, and it
ignores pointer aliasing.

• Inspired by Perl’s taint mode,
CQual uses type qualifiers to per-
form a taint analysis, which de-
tects format string vulnerabilities
in C programs.5 CQual requires a
programmer to annotate a few
variables as either tainted or un-
tainted and then uses type infer-
ence rules (along with pre-anno-
tated system libraries) to propagate
the qualifiers. Once the qualifiers
are propagated, the system can de-
tect format string vulnerabilities
by type checking.

• The xg++ tool uses a template-
driven compiler extension to at-
tack the problem of finding kernel
vulnerabilities in the Linux and
OpenBSD.6 It looks for locations
where the kernel uses data from an
untrusted source without check-
ing it first, methods by which a
user can cause the kernel to allo-
cate memory and not free it, and
situations in which a user could
cause the kernel to deadlock.

• The Eau Claire tool uses a theo-
rem prover to create a general

specification-checking frame-
work for C programs.7 It can
help find common security
problems like buffer overflows,

file access race conditions, and
format string bugs. Developers
can use specifications to ensure
that function implementations
behave as expected.

• MOPS takes a model-checking
approach to look for violations of
temporal safety properties.8 Devel-
opers can model their own safety
properties, and some have used the
tool to check for privilege man-
agement errors, incorrect con-
struction of chroot jails, file access
race conditions, and ill-conceived
temporary file schemes.

• Splint extends the lint concept
into the security realm.9 By
adding annotations, developers
can enable the tool to find abstrac-
tion violations, unannounced
modifications to global variables,
and possible use-before-initializa-
tion errors. Splint can also reason
about minimum and maximum
array bounds accesses if it is pro-
vided with function pre- and
postconditions.

Many static analysis approaches
hold promise, but have yet to be di-
rectly applied to security. Some of
the more noteworthy ones include
ESP (a large-scale property verifi-
cation approach),10 model checkers
such as SLAM and Blast (which use
predicate abstraction to examine
program safety properties),11,12 and
FindBugs (a lightweight checker
with a good reputation for un-
earthing common errors in Java
programs).13

Several commercial tool vendors
are starting to address the need for

static analysis, moving some of the
approaches touched on here into
the mainstream.

G ood static analysis tools must be
easy to use, even for non-

security people. This means that
their results must be understandable
to normal developers who might not
know much about security and that
they educate their users about good
programming practice. Another
critical feature is the kind of knowl-
edge (the rule set) the tool enforces.
The importance of a good rule set
can’t be overestimated.

In the end, good static checkers
can help spot and eradicate com-
mon security bugs. This is espe-
cially important for languages such
as C, for which a very large corpus
of rules already exists. Static analysis
for security should be applied regu-
larly as part of any modern develop-
ment process.

References
1. D. Verndon and G. McGraw. “Risk

Analysis in Software Design,” IEEE
Security & Privacy, vol. 2, no. 5,
2004, pp. 79–84.

2. G. McGraw, “Software Security,”
IEEE Security & Privacy, vol. 2, no.
2, 2004, pp. 80–83.

3. M. Bishop and M. Dilger, “Check-
ing for Race Conditions in File
Accesses,” Computing Systems, vol.
9, no. 2, 1996, pp. 131–152.

4. D. Wagner et al., “A First Step
Towards Automated Detection of
Buffer Overrun Vulnerabilities,”
Proc. 7th Network and Distributed
System Security Symp. (NDSS 00),
Internet Soc., 2000, pp. 3–17.

5. J. Foster, T. Terauchi, and A.
Aiken, “Flow-Sensitive Type
Qualifiers,” Proc. ACM Conf. Pro-
gramming Language Design and
Implementation (PLDI 02), ACM
Press, 2002, pp. 1–12.

6. K. Ashcraft and D. Engler, “Using
Programmer-Written Compiler
Extensions to Catch Security
Holes,” Proc. IEEE Symp. Security

Static analysis for security should be
applied regularly as part of any modern
development process.

Building Security In

and Privacy, IEEE CS Press, 2002,
pp. 131–147.

7. B. Chess, “Improving Computer
Security using Extended Static
Checking,” Proc. IEEE Symp. Secu-
rity and Privacy, IEEE CS Press,
2002, pp. 118–130.

8. H. Chen and D. Wagner, “MOPS:
An Infrastructure for Examining
Security Properties of Software,”
Proc. 9th ACM Conf. Computer and
Communications Security (CCS 02),
ACM Press, 2002, pp. 235–244.

9. D. Larochelle and D. Evans, “Stat-
ically Detecting Likely Buffer
Overflow Vulnerabilities,” Proc.
10th Usenix Security Symp. (Usenix
01), Usenix Assoc., 2001, pp.
177–189.

10. M. Das, S. Lerner, and M. Seigle,
“ESP: Path-Sensitive Program Ver-

ification in Polynomial Time,”
Proc. ACM Conf. Programming Lan-
guage Design and Implementation
(PLDI 02), ACM Press, 2002, pp.
57–68.

11. T. Ball and S.K. Rajamani, “Auto-
matically Validating Temporal
Safety Properties of Interfaces,”
Proc. 8th Int’l SPIN Workshop on
Model Checking of Software, LNCS
2057, Springer-Verlag, 2001, pp.
103–122.

12.T.A. Henzinger et al., “Software
Verification with Blast,” Proc. 10th
Int’l Workshop Model Checking of
Software, LNCS 2648, Springer-
Verlag, 2003, pp. 235–239.

13. D. Hovemeyer and W. Pugh,
“Finding Bugs is Easy,” to appear in
Companion of the 19th Ann. ACM
Conf. Object-Oriented Programming,

Systems, Languages, and Applications,
ACM Press, 2004.

Brian Chess is chief scientist at Fortify
Software. His technical interests include
static analysis, defect modeling, and
Boolean satisfiability. He received a PhD
in computer engineering from the Uni-
versity of California, Santa Cruz. Contact
him at brian@fortifysoftware.com.

Gary McGraw is chief technology officer
of Cigital. His real-world experience is
grounded in years of consulting with
major corporations and software pro-
ducers. McGraw is the coauthor of
Exploiting Software (Addison-Wesley,
2004), Building Secure Software (Addi-
son-Wesley, 2001), Java Security (John
Wiley & Sons, 1996), and four other
books. He has a BA in philosophy from
the University of Virginia and a dual PhD
in computer science and cognitive science
from Indiana University. Contact him at
gem@cigital.com.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 79

EXECUTIVE COMMITTEE
President:
CARL K. CHANG*
Computer Science Dept.
Iowa State University
Ames, IA 50011-1040
Phone: +1 515 294 4377
Fax: +1 515 294 0258
c.chang@computer.org
President-Elect: GERALD L. ENGEL*
Past President: STEPHEN L. DIAMOND*
VP, Educational Activities: MURALI VARANASI*
VP, Electronic Products and Services:
LOWELL G. JOHNSON (1ST VP)*
VP, Conferences and Tutorials:
CHRISTINA SCHOBER†
VP, Chapters Activities:
RICHARD A. KEMMERER (2ND VP)*
VP, Publications: MICHAEL R. WILLIAMS*
VP, Standards Activities: JAMES W. MOORE*
VP, Technical Activities: YERVANT ZORIAN*
Secretary: OSCAR N. GARCIA*
Treasurer:RANGACHAR KASTURI†
2004–2005 IEEE Division V Director:
GENE F. HOFFNAGLE†
2003–2004 IEEE Division VIII Director:
JAMES D. ISAAK†
2004 IEEE Division VIII Director-Elect:
STEPHEN L. DIAMOND*
Computer Editor in Chief:DORIS L. CARVER†
Executive Director: DAVID W. HENNAGE†
* voting member of the Board of Governors
† nonvoting member of the Board of Governors

E X E C U T I V E S T A F F
Executive Director: DAVID W. HENNAGE
Assoc. Executive Director: ANNE MARIE KELLY
Publisher: ANGELA BURGESS
Assistant Publisher: DICK PRICE
Director, Administration:
VIOLET S. DOAN
Director, Information Technology & Services:
ROBERT CARE

PURPOSE The IEEE Computer Society is the
world’s largest association of computing pro-
fessionals, and is the leading provider of tech-
nical information in the field.

MEMBERSHIP Members receive the month-
ly magazine Computer, discounts, and opportu-
nities to serve (all activities are led by volunteer
members). Membership is open to all IEEE
members, affiliate society members, and others
interested in the computer field.

COMPUTER SOCIETY WEB SITE
The IEEE Computer Society’s Web site, at
www.computer.org, offers information and
samples from the society’s publications and con-
ferences, as well as a broad range of information
about technical committees, standards, student
activities, and more.

BOARD OF GOVERNORS
Term Expiring 2004: Jean M. Bacon, Ricardo
Baeza-Yates, Deborah M. Cooper, George V. Cybenko,
Haruhisha Ichikawa, Thomas W. Williams, Yervant
Zorian
Term Expiring 2005: Oscar N. Garcia, Mark A.
Grant, Michel Israel, Stephen B. Seidman, Kathleen M.
Swigger, Makoto Takizawa, Michael R. Williams
Term Expiring 2006: Mark Christensen, Alan
Clements, Annie Combelles, Ann Gates, Susan Men-
gel, James W. Moore, Bill Schilit
Next Board Meeting: 11 Mar. 2005, Portland, OR

IEEE OFFICERS
President: ARTHUR W. WINSTON
President-Elect: W. CLEON ANDERSON
Past President: MICHAEL S. ADLER
Executive Director: DANIEL J. SENESE
Secretary: MOHAMED EL-HAWARY
Treasurer: PEDRO A. RAY
VP, Educational Activities: JAMES M. TIEN
VP, Pub. Services & Products: MICHAEL R. LIGHTNER
VP, Regional Activities: MARC T. APTER
VP, Standards Association: JAMES T. CARLO
VP, Technical Activities: RALPH W. WYNDRUM JR.
IEEE Division V Director: GENE F. HOFFNAGLE
IEEE Division VIII Director: JAMES D. ISAAK
President, IEEE-USA: JOHN W. STEADMAN

COMPUTER SOCIETY OFFICES
Headquarters Office

1730 Massachusetts Ave. NW
Washington, DC 20036-1992
Phone: +1 202 371 0101
Fax: +1 202 728 9614
E-mail: hq.ofc@computer.org

Publications Office
10662 Los Vaqueros Cir., PO Box 3014
Los Alamitos, CA 90720-1314
Phone:+1 714 8218380
E-mail: help@computer.org
Membership and Publication Orders:
Phone: +1 800 272 6657
Fax: +1 714 821 4641
E-mail: help@computer.org

Asia/Pacific Office
Watanabe Building
1-4-2 Minami-Aoyama,Minato-ku
Tokyo107-0062, Japan
Phone: +81 3 3408 3118
Fax: +81 3 3408 3553
E-mail: tokyo.ofc@computer.org

