
Basic Training
Editors: James A. Whittaker, jw@se.fit.edu

Michael Howard, mikehow@microsoft.com

MICHAEL

HOWARD

Microsoft

PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/04/$20.00 © 2004 IEEE ■ IEEE SECURITY & PRIVACY 63

waterfall approach in which dis-
crete phases focus on requirements,
design, implementation, verifica-
tion, and release, but the first three
phases can change throughout the
process, potentially affecting a
product’s security.

In this installment, I draw on ex-
periences gained as a member of
Microsoft’s central security team to
outline some basic best practices for
the software development process.
These practices benefitted Mi-
crosoft products released since the
inception of its Trustworthy Com-
puting initiative in 2002. The
following points are a subset of the
Security Development Lifecycle
process implemented at Microsoft. I
also recommend Processes to Produce
Secure Software.1

Security-focused
development
process goals
This is the easy part—the goal of a
process to help build more secure
software is to produce more secure
software! Actually, there’s a little
more to it than that. The goal
should be to reduce the chance that
the designers and developers will

inject security vulnerabilities into
the design and code in the first
place. This goal has the positive side
effect of producing more secure
software.

You can take several key actions
to integrate security into your soft-
ware development process.

Create a central
security team
This group’s role is to be an internal
security “consulting” organization
for the rest of your development
team. The team defines process re-
quirements and best practices, de-
fines and build tools, helps perform
code and design reviews, does threat
analysis, and provides education for
the software development staff.

Get executive buy-in
Senior executives must buy into the
need to improve software security.
The real battle developers face is
that few financial data exist on the
return on investment of a better de-
velopment process that leads to
more secure software. In other
words, we don’t know the cost ben-
efit of writing more secure code.
Most IT people know the cost of

security in terms of lost uptime and
service-level agreements, but not
necessarily the actual monetary
cost. You might want to sell security
to management as a competitive ad-
vantage, a cost saving for customers,
or in terms of the cost to fix post-
shipment bugs versus catching them
during development.

Raise awareness
through education
If you assume that new employees
have no notion of what it takes to
build more secure software, you’d
likely be correct. The most effective
security-enhancing change you can
make is to provide up-to-date and
ongoing education for your soft-
ware development teams. People
won’t design, develop, test, and doc-
ument secure systems until they
know the issues.

A major factor in the security
unawareness problem is the lack of
“security as threats” education
available to students today. Most
school security classes teach “secu-
rity as crypto,” which doesn’t create
more secure software. Understand-
ing how a firewall works doesn’t
help identify and remove integer
arithmetic vulnerabilities from code
or, better yet, reduce the chance
that security defects are added to the
code in the first place. Industry has a
large part to play in fixing the wide-
spread lack of security expertise.

Education shouldn’t spotlight
engineers’ incompetence—instead,
it should raise their awareness and
show them what happens when

F
ew software developers follow security best practices

to produce more secure code. Worse, they think of

security after the fact. But it’s a mistake to separate se-

curity considerations from the general software de-

velopment process. Most development processes use a spiral or

Building More Secure
Software with Improved
Development Processes

Basic Training

code contains security vulnerabili-
ties. If there’s one thing I’ve learned
in the past few years, it’s that devel-
opers just need good guidance. Tell

them what they should do, provide
numerous examples of correct and
incorrect design and coding behav-
ior, and they will design and build
more secure software.

Even competent developers
make mistakes, and some of those
will be security related. So, be pre-
scriptive when demonstrating the
secure way to perform a develop-
ment task. For example, don’t just
show code that includes a buffer
overrun; state which library func-
tions to call to help mitigate the
overrun, and teach developers to
never trust the length of the incom-
ing buffer. Don’t tell them that em-
bedding a secret key in code is bad;
instead, show them which func-
tions or designs to use.

Ongoing security education is
important because the security land-
scape is constantly evolving. If his-
tory is any indicator, next year we’ll
see new vulnerability classes, which
means your engineers must be aware
of new threats.

One last thing: remind your staff
that security is everyone’s problem; it
isn’t applicable only to security fea-
tures. Adversaries can attack any code,
no matter how small or seemingly in-
significant. Take a look at most secu-
rity vulnerabilities in products from
any vendor—very few are found in
the products’ security features.

Understand
your adversary
Understanding threats to your prod-
uct, once it’s deployed in the real
world, is paramount when building
secure software. You can’t build
more secure software unless you un-
derstand the threats to your system

and how attackers will attempt to
compromise the software. At Mi-
crosoft, we use threat modeling to
understand these issues. Section 4.1

of the Common Criteria version 2.1
(http://csrc.nist.gov/cc/CC-v2.
1.html) defines threats as, “the po-
tential for abuse of protected assets.”

The goal of threat modeling is
to understand assets and the threats
to which they are exposed, and to
create appropriate countermea-
sures or mitigations to reduce risk
to an acceptable level. Several good
resources on threat modeling are
available.2–4 McGraw also proposes
alternative techniques to deter-
mine the means by which an adver-
sary could compromise a system
through the use of “abuse cases.”4

Results from threat modeling
should feed directly into product de-
sign: no design is complete until it ac-
commodates the potential threats
against it. Revisit this stage regularly
through the development life cycle—
remember, attacks only get better!

Use secure
design practices
Designers and architects should ad-
here to good security design prin-
ciples, such as least privilege, re-
duced attack profile, simplicity,
fail-closed defaults, appropriate
protection of key material, and so
on. Several books and articles offer
many good design concepts toward
this goal.3, 5–7

Build more secure code
Software construction errors can
lead to implementation flaws,
some percentage of which will be-
come security vulnerabilities.
Thus, a major goal is to reduce the
chance that developers introduce
security vulnerabilities. To this
end, you should employ secure

coding best practices: many good
references can help.3,5,8 You must
also have security code reviews,
and review all the code—not just
new code. I outline a simple
process to advance security code
reviews in a recent article.9

Security tools are a powerful ad-
junct to code review, but don’t use
tools to replace competent engineers
and good discipline. The advantage
of tools is that they can help scale the
code-review task; reviewing thou-
sands of files can be slow and tedious,
and some tools can find low-hang-
ing fruit. However, most tools don’t
find deep and complex bugs; you
need human review for that.

Tools aren’t limited to just help-
ing the code-review process. Some,
such as Security Innovation’s Holo-
deck (www.sisecurity.com) and fuzz
testing (www.cs.wisc.edu/~bart/
fuzz/fuzz.html.), can help uncover
security flaws by perturbing the en-
vironment in which an application
runs or by creating purposefully
malformed packets.

Tools are an adjunct to the devel-
opment process, not a replacement
for lacking skills. When defining
your security-process budget, focus
on your team members first, then
buy appropriate tools.

Use external reviewers
Having skilled security practitioners
outside your group review your de-
sign and code is often worthwhile.
When you choose a security con-
sulting company, determine what its
strengths are: Some specialize in net-
work penetration testing, some in C
and C++, others in Java or .NET,
while others have mainly Web ex-
pertise. Choose wisely.

At Microsoft, we perform two
types of reviews. Some occur at
specific milestones during product
development, for example, prior to
design completion or the beta ver-
sion; others happen during the final
security review I describe later in
this article. Large projects, such as
Windows, employ both. You must

64 IEEE SECURITY & PRIVACY ■ NOVEMBER/DECEMBER 2004

You can’t build more secure software unless
you understand the threats to your system.

Basic Training

balance the amount of code and
design data available and the time-
line at which the review is to take
place. Waiting too long might
make it hard to change certain
product aspects; too early could
mean that not enough material will
be ready for analysis.

Have security-
focused events
Holding security-focused events can
help find elusive security vulnerabil-
ities. Events begin with mandatory
refresher training for all product
group engineers and proceed with
the following tasks through the
event’s duration:

• Developers look for security vul-
nerabilities in shipping and sample
(software development kit) code.

• Testers perform fuzz, abuse, and
least-privilege testing.

• Program managers, designers, and
architects re-review threat models
and design documents to ensure
that they reflect current threats.

• Documentation staff reviews on-
line and printed documentation
for deployment and usage best-
practice violations.

Note that these intense security
events alone don’t make code more
secure. They are merely checkpoints
to look for security vulnerabilities in
case some might have been missed.
Also, perform these security-focused
events when you’ve met your secu-
rity objectives, not when a date on a
schedule arrives.

Perform a final
security review
The last stage before a product ships
is to verify that it’s ready from a secu-
rity perspective. The central secu-
rity team I described previously
should perform the review, which
might include penetration work on
network-facing and security-critical
components, code review, incom-
ing and postponed bug analysis,
threat model review, and fuzz test-

ing. The review team should also
verify that the development team
adhered to best practices.

Establish a
response process
Even if developers could eliminate
every software security vulnerabil-
ity before a product shipped, over
time, attackers might discover
weaknesses, and software that once
was thought to be secure won’t be.
A good example is integer overflow.
Five years ago, few people knew the
security ramifications of such a de-
fect, yet today these attacks are
common. Thus, developers must
prepare a response process for in-
evitable problems.

One response process compo-
nent involves evaluating vulnerabil-
ity reports and releasing security ad-
visories and updates. The other is
conducting root-cause analysis on
each reported vulnerability and tak-
ing appropriate action, which could
range from issuing an update in re-
sponse to an isolated error to updat-
ing code-scanning tools to initiat-
ing major subsystem code reviews.

The objective of the response
phase is to learn from errors and use
the vulnerability reports to detect
and eliminate other problems before
adversaries discover them. The re-
sponse process also helps the prod-
uct and security teams adapt devel-
opment processes to prevent similar
errors from appearing in the future.
For more information on the Mi-
crosoft Security Response Center,
see http://channel9.msdn.com/
ShowPost.aspx?PostID=19449.

T here is no silver bullet for creat-
ing secure code, but we can raise

the bar by making some improve-
ments to the development life cycle.
I urge all software developers and
software development companies
to evaluate their processes today to
see how they can improve them to
help deliver more secure software to
their customers.

Acknowledgments
This article is derived in part from the Security
Development Lifecycle presently in deploy-
ment at Microsoft. SDL’s initial development
was a joint effort by the author and Steve Lip-
ner of Microsoft.

References
1. Processes to Produce Secure Software,

S.T. Redwine and N. Davis, eds.,
National Cyber Security Summit,
2004; www.webappsecure.com/
bbs/upload/1/20040423005438/
secure_software_process.pdf.

2. F. Swiderski and W. Snyder, Threat
Modeling, Microsoft Press, 2003.

3. M. Howard and D. LeBlanc, Writ-
ing Secure Code, Microsoft Press,
2002.

4. G. McGraw, “Software Security,”
IEEE Security & Privacy, vol. 2. no.
2, 2004, pp. 80–83.

5. J. Saltzer and M. Schroeder, “The
Protection of Information in Com-
puter Systems,” 1975; http://
web.mit.edu/Sa l t ze r/www/
publications/protection.

6. J. Saltzer and M. Schroeder, “Saltzer’s
and Schroeder’s Design Principles,”
2000; http://nob.cs.ucdavis.edu/
classes/ecs153-2000-04/design.html.

7. J. Viega and G. McGraw, Building
Secure Software, Addison-Wesley,
2001.

8. J. Viega and M. Messier, Secure Pro-
gramming Cookbook for C and C++,
O’Reilly, 2003.

9. M. Howard, “Expert Tips for
Finding Security Defects in Your
Code,” MSDN Magazine, Nov.
2003; http://msdn.microsoft.com/
msdnmag/issues/03/11/Security-
CodeReview/default.aspx.

Michael Howard is a senior security
program manager in the Security Engi-
neering group at Microsoft. He is coau-
thor of Writing Secure Code (Microsoft
Press, 2002) and “Processes to Produce
Secure Software,” issued by the Soft-
ware Process Subgroup of the Task
Force on Security across the Software
Development Lifecycle. He focuses on
security design and development and
testing best practice and security
process improvement. Contact him at
mikehow@microsoft.com.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 65

