
Building Security In
Editor: Gary McGraw, gem@cigital.com

properly, it goes deeper than simple
black-box probing on the presenta-
tion layer (the sort performed by
so-called application security
tools)—and even beyond the func-
tional testing of security apparatus.

Testers must use risk-based
approaches, grounded in both the
system’s architectural reality and
the attacker’s mindset, to gauge
software security adequately. By
identifying risks in the system and
creating tests driven by those risks,
a software security tester can prop-
erly focus on areas of code in
which an attack is likely to suc-
ceed. This approach provides a
higher level of software security as-
surance than is possible with classi-
cal black-box testing.

What’s so different
about security?
Software security is about making
software behave correctly in the
presence of a malicious attack, even
though software failures usually
happen spontaneously in the real
world—that is, without intentional
mischief. Not surprisingly, standard
software testing literature is con-
cerned only with what happens
when software fails, regardless of in-
tent. The difference between soft-
ware safety and software security is
therefore the presence of an intelli-

gent adversary bent on breaking the
system.

Security is always relative to the
information and services being pro-
tected, the skills and resources of ad-
versaries, and the costs of potential
assurance remedies; security is an ex-
ercise in risk management. Risk
analysis, especially at the design level,
can help us identify potential secu-
rity problems and their impact.1

Once identified and ranked, soft-
ware risks can then help guide soft-
ware security testing.

A vulnerability is an error that an
attacker can exploit. Many types of
vulnerabilities exist, and computer-
security researchers have created
taxonomies of them.2 Security vul-
nerabilities in software systems range
from local implementation errors
(such as use of the gets() function
call in C/C++), through interpro-
cedural interface errors (such as a
race condition between an access-
control check and a file operation),
to much higher design-level mis-
takes (such as error handling and re-
covery systems that fail in insecure
fashions or object-sharing systems
that mistakenly include transitive
trust issues). Vulnerabilities typically
fall into two categories—bugs at the
implementation level and flaws at
the design level.3

Attackers generally don’t care

whether a vulnerability is due to a
flaw or a bug, although bugs tend to
be easier to exploit. Because attacks
are now becoming more sophisti-
cated, the notion of which vulnera-
bilities actually matter is changing.
Although timing attacks, including
the well-known race condition,
were considered exotic just a few
years ago, they’re common now.
Similarly, two-stage buffer-overflow
attacks using trampolines were once
the domain of software scientists, but
now appear in zero-day exploits.4

Design-level vulnerabilities are
the hardest defect category to han-
dle, but they’re also the most preva-
lent and critical. Unfortunately,
ascertaining whether a program has
design-level vulnerabilities requires
great expertise, which makes finding
such flaws not only difficult, but also
particularly hard to automate.

Examples of design-level prob-
lems include error handling in
object-oriented systems, object
sharing and trust issues, unprotected
data channels (both internal and ex-
ternal), incorrect or missing access-
control mechanisms, lack of
auditing/logging or incorrect log-
ging, and ordering and timing errors
(especially in multithreaded sys-
tems). These sorts of flaws almost al-
ways lead to security risk.

Risk management
and security testing
Software security practitioners per-
form many different tasks to manage
software security risks, including

• creating security abuse/misuse
cases;

• listing normative security
requirements;

BRUCE POTTER

Booz Allen
Hamilton

GARY

MCGRAW

CigitalS
ecurity testing has recently moved beyond the

realm of network port scanning to include probing

software behavior as a critical aspect of system be-

havior (see the sidebar). Unfortunately, testing

software security is a commonly misunderstood task. Done

Software Security Testing

PUBLISHED BY THE IEEE COMPUTER SOCIETY � 1540-7993/04/$20.00 © 2004 IEEE � IEEE SECURITY & PRIVACY 81

Building Security In

• performing architectural risk
analysis;

• building risk-based security test
plans;

• wielding static analysis tools;
• performing security tests;
• performing penetration testing in

the final environment; and
• cleaning up after security breaches.

Three of these are particularly
closely linked—architectural risk
analysis, risk-based security test
planning, and security testing—be-
cause a critical aspect of security test-
ing relies on probing security risks.
Last issue’s installment1 explained
how to approach a software security
risk analysis, the end product being a
set of security-related risks ranked by
business or mission impact. (Figure 1
shows where we are in our series of
articles about software security’s
place in the software development
life cycle.)

The pithy aphorism, “software
security is not security software”
provides an important motivator for
security testing. Although security
features such as cryptography, strong
authentication, and access control
play critical roles in software secu-
rity, security itself is an emergent
property of an entire system, not just
the security mechanisms and fea-
tures. A buffer overflow is a security
problem, regardless of whether it
exists in a security feature or in the
noncritical GUI. Thus, security
testing must necessarily involve two
diverse approaches:

• testing security mechanisms to en-
sure that their functionality is
properly implemented, and

• performing risk-based security
testing motivated by understand-
ing and simulating the attacker’s
approach.

Many developers erroneously
believe that security involves only
the addition and use of various secu-
rity features, which leads to the in-
correct belief that “adding SSL” is
tantamount to securing an applica-
tion. Software security practitioners
bemoan the over-reliance on “magic
crypto fairy dust” as a reaction to this
problem. Software testers charged
with security testing often fall prey to
the same thinking.

How to approach
security testing
Like any other form of testing, secu-
rity testing involves determining
who should do it and what activities
they should undertake.

Who
Because security testing involves two
approaches, the question of who
should do it has two answers. Stan-
dard testing organizations using a
traditional approach can perform
functional security testing. For ex-
ample, ensuring that access control
mechanisms work as advertised is a
classic functional testing exercise.

On the other hand, traditional
QA staff will have more difficulty
performing risk-based security test-

ing. The problem is one of expertise.
First, security tests (especially those
resulting in complete exploit) are
difficult to craft because the designer
must think like an attacker. Second,
security tests don’t often cause direct
security exploits and thus present an
observability problem. A security
test could result in an unanticipated
outcome that requires the tester to
perform further sophisticated analy-
sis. Bottom line: risk-based security
testing relies more on expertise and
experience than we would like.

How
Books like How to Break Software Se-
curity and Exploiting Software help
educate testing professionals on
how to think like attackers.4,5 Nev-
ertheless, software exploits are sur-
prisingly sophisticated these days,
and the level of discourse found in
books and articles is only now com-
ing into alignment.

White- and black-box testing
and analysis methods both attempt
to understand software, but they use
different approaches depending on
whether the analyst or tester has ac-
cess to source code. White-box
analysis involves analyzing and un-
derstanding source code and design.
It’s typically very effective in finding
programming errors (bugs when au-
tomatically scanning code and flaws
when doing risk analysis); in some
cases, this approach amounts to pat-
tern matching and can even be auto-
mated with a static analyzer (the sub-
ject of a future installment of this
department). One drawback to this
kind of testing is that it sometimes
reports a potential vulnerability
where none actually exists (a false
positive). Nevertheless, using static
analysis methods on source code is a
good technique for analyzing certain
kinds of software. Similarly, risk
analysis is a white-box approach
based on a deep understanding of
software architecture.

Black-box testing refers to ana-
lyzing a running program by prob-
ing it with various inputs. This kind

82 IEEE SECURITY & PRIVACY � SEPTEMBER/OCTOBER 2004

Abuse
cases

Security
requirements

Risk
analysis

External
review

Risk-based
security tests

Static
analysis
(tools)

Risk
analysis

Penetration
testing

Security
breaks

Requirements
and use cases

Design Test
plans

Code Test
results

Field
feedback

Figure 1. The software development life cycle. Throughout this series, we’ll focus on
specific parts of the cycle; here, we’re examining risk-based security testing.

Building Security In

of testing requires only a running
program and doesn’t use source-
code analysis of any kind. In the se-
curity paradigm, malicious input
can be supplied to the program in an
effort to break it: if the program
breaks during a particular test, we
might have discovered a security
problem. Black-box testing is possi-
ble even without access to binary
code—that is, a program can be
tested remotely over a network. If
the tester can supply the proper
input (and observe the test’s effect),
then black-box testing is possible.

Any testing method can reveal
possible software risks and potential
exploits. One problem with almost
all kinds of security testing
(whether it’s black or white box) is
the lack of it—most QA organiza-
tions focus on features and spend
very little time understanding or
probing nonfunctional security
risks. Exacerbating the problem,
the QA process is often broken in
commercial software houses due to
time and budget constraints and the
belief that QA is not an essential
part of software development.

An example: Java
Card security testing
Doing effective security testing re-
quires experience and knowledge.
Examples and case studies like the
one we present here are thus useful
tools for understanding the approach.

In an effort to enhance payment
cards with new functionality—such
as the ability to provide secure card-
holder identification or remember
personal preferences—many credit-
card companies are turning to multi-
application smart cards. These cards
use resident software applications to
process and store thousands of times
more information than traditional
magnetic-stripe cards.

Security and fraud issues are
critical concerns for the financial
institutions and merchants spear-
heading smart-card adoption. By
developing and deploying smart-
card technology, credit-card com-

panies provide important new tools
in the effort to lower fraud and
abuse. For instance, smart cards typ-
ically use sophisticated crypto sys-
tems to authenticate transactions
and verify the identities of card-
holders and issuing banks. How-
ever, protecting against fraud and
maintaining security and privacy
are both very complex problems
because of the rapidly evolving na-
ture of smart-card technology.

The security community has
been involved in security risk analy-
sis and mitigation for Open Plat-
form (now known as Global Plat-
form, or GP) and Java Card since

early 1997. Because product secu-
rity is an essential aspect of credit-
card companies’ brand protection
regimen, these companies spend
plenty of time and effort on security
testing. One central finding empha-
sizes the importance of testing
particular vendor implementations
according to our two testing cate-
gories: adherence to functional se-
curity design and proper behavior
under particular attacks motivated
by security risks.

The latter category, risk-based
security testing (linked directly to
risk analysis findings) ensures that
cards can perform securely in the

www.computer.org/security/ � IEEE SECURITY & PRIVACY 83

From outside→in to inside→out

Traditional approaches to computer and network security testing focus on network infra-

structure, firewalls, and port scanning. The notion is to protect vulnerable systems (and

software) from attack by identifying and defending a perimeter. In this paradigm, testing

focuses on an outside→in approach. One classic example is the use of port scanning with tools

such as nmap (www.insecure.org/nmap/) to probe network ports and see what service is lis-

tening. Figure A shows a classic outside→in paradigm focusing on firewall placement.

By contrast, we advocate an inside→out approach to security, whereby software inside the

LAN (and exposed on LAN boundaries) is itself subjected to rigorous risk management and

security testing.

Internet

Portable local area network

Public
network

Hardware, firewall,
usually part of a TCP/IP router

Secure private network
Public network

Figure A. The outside→in approach. A firewall protects a LAN by blocking various
network traffic on its way in; outside→in security testing involves probing the LAN
with a port scanner to see which ports are “open” and what services are listening
on those ports. A major security risk associated with this approach is that the
services traditionally still available through the firewall are implemented with
insecure software.

Building Security In

field even when under attack. Risk
analysis results can be used to guide
manual security testing. As an exam-
ple, consider the risk that, as de-

signed, the object-sharing mecha-
nism in Java Card is complex and,
thus likely to suffer from security-
critical implementation errors on
any given card. Testing for this sort of
risk involves creating and manipulat-
ing stored objects where sharing is
involved. Given a technical descrip-
tion of this risk, building specific
probing tests is possible.

Automating
security testing
Over the years, we (the authors)
have been involved in several
projects that have identified archi-
tectural risks in the GP/Java Card
platform, suggested several design
improvements, and designed and
built automated security tests for
final products (each of which had
multiple vendors).

Several years ago, Cigital began
developing an automated security
test framework for GP cards built on
Java Card 2.1.1 and based on exten-
sive risk analysis results. The end re-
sult is a test framework that runs with
minimal human intervention and re-
sults in a qualitative security testing
analysis of a sample smart card.

The first test set, the functional
security test suite, directly probes
low-level card security functionality.
It includes automated testing of class
codes, available commands, and
crypto functionality. This test suite
also actively probes for inappropriate
card behavior that can lead to secu-
rity compromise.

The second test set, the hostile
applet test suite, is a sophisticated
set of intentionally hostile Java
Card applets designed to probe

high-risk aspects of the GP on a
Java Card implementation.

Nonfunctional security
testing is essential
Most cards tested with the automated
test framework pass all functional se-
curity tests, which we expect because
smart-card vendors are diligent with
functional testing (including security
functionality). Vendors realize that
exactly meeting functional require-
ments is an absolute necessity for get-
ting customers to accept the cards.
After all, they must perform properly
worldwide.

However, every card submitted
to the risk-based testing paradigm
exhibited some manner of failure
when tested with the hostile applet
suite. Some failures pointed di-
rectly to critical security vulnera-
bilities on the card; others were less
specific and required further explo-
ration to determine the card’s true
security posture.

As an example, consider that risk
analysis of Java Card’s design docu-
ments indicates that proper imple-
mentation of atomic transaction
processing is critical for maintaining
a secure card. Java Card has the ca-
pability of defining transaction
boundaries to ensure that if a trans-
action fails, data roll back to a pre-
transaction state. In the event that
transaction processing fails, transac-
tions can go into any number of
possible states, depending on what
the applet was attempting. In the

case of a stored-value card, bad
transaction processing could allow
an attacker to “print money” by
forcing the card to roll back value
counters while actually purchasing
goods or services.

When creating risk-based tests to
probe transaction processing, we
directly exercised transaction-
processing error handling by simu-
lating an attacker attempting to
violate a transaction—specifically,
transactions were aborted or never
committed, transaction buffers were
completely filled, and transactions
were nested (a no-no according to
the Java Card specification). These
tests were not based strictly on the
card’s functionality—instead, secu-
rity test engineers intentionally cre-
ated them, thinking like an attacker
given the results of a risk analysis.

Several real-world cards failed
subsets of the transaction tests. The
vulnerabilities discovered as a result
of these tests would let an attacker
terminate a transaction in a poten-
tially advantageous manner, a critical
test failure that wouldn’t have been
uncovered under normal functional
security testing. Fielding cards with
these vulnerabilities would let an at-
tacker execute successful attacks on
live cards issued to the public. Be-
cause of proper risk-based security
testing, the vendors were notified of
the problems and corrected the code
responsible before release.

T here is no silver bullet for soft-
ware security; even a reasonable

security testing regimen is just a
start. Unfortunately, security con-
tinues to be sold as a product, and
most defensive mechanisms on the
market do little to address the heart
of the problem, which is bad soft-
ware. Instead, they operate in a re-
active mode: don’t allow packets to
this or that port, watch out for files
that include this pattern in them,
throw partial packets and oversized
packets away without looking at
them. Network traffic is not the

84 IEEE SECURITY & PRIVACY � SEPTEMBER/OCTOBER 2004

By using a risk-based approach to software
security testing, testing professionals
can help solve security problems while
software is still in production.

Building Security In

best way to approach this predica-
ment, because the software that
processes the packets is the prob-
lem. By using a risk-based ap-
proach to software security testing,
testing professionals can help solve
security problems while software is
still in production.

References
1. D. Verndon and G. McGraw, “Risk

Analysis in Software Design,” IEEE
Security & Privacy, vol. 2, no. 4,
2004, pp. 79–84.

2. C.E. Landwehr et al., A Taxonomy
of Computer Program Security Flaws,
with Examples, tech. report NRL/
FR/5542—93/9591, US Naval

Research Laboratory, Nov. 1993.
3. G. McGraw, “Software Security,”

IEEE Security & Privacy, vol. 2, no.
2, 2004, pp. 80–83.

4. G. Hoglund and G. McGraw,
Exploiting Software, Addison-
Wesley, 2004.

5. J. Whittaker and H. Thompson,
How to Break Software Security,
Addison-Wesley, 2003.

Bruce Potter is a senior associate with
Booz Allen Hamilton. He is also the
founder of the Shmoo Group of security
professionals. His areas of expertise
include wireless security, large-scale net-
work architectures, smart cards, and pro-
motion of secure software engineering
practices. Potter coauthored the books
802.11 Security (O’Reilly and Associates,

2003) and Mac OS X Security (New Rid-
ers, 2003); he’s currently coauthoring
Master FreeBSD and OpenBSD Security
(O’Reilly and Associates, summer 2004).
He was trained in computer science at the
University of Alaska, Fairbanks.

Gary McGraw is chief technology officer
of Cigital. His real-world experience is
grounded in years of consulting with
major corporations and software pro-
ducers. He serves on the technical advi-
sory boards of Authentica, Counterpane,
Fortify, and Indigo. He is coauthor of
Exploiting Software (Addison-Wesley,
2004), Building Secure Software (Addi-
son-Wesley, 2001), Java Security (John
Wiley & Sons, 1996), and four other
books. McGraw has a BA in philosophy
from the University of Virginia and a dual
PhD in computer science and cognitive
science from Indiana University. Contact
him at gem@cigital.com.

www.computer.org/security/ � IEEE SECURITY & PRIVACY 85

Mid Atlantic (product/recruitment)
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0161
Email: db.ieeemedia@ieee.org

New England (product)
Jody Estabrook
Phone: +1 978 244 0192
Fax: +1 978 244 0103
Email: je.ieeemedia@ieee.org

New England (recruitment)
Robert Zwick
Phone: +1 212 419 7765
Fax: +1 212 419 7570
Email: r.zwick@ieee.org

Connecticut (product)
Stan Greenfield
Phone: +1 203 938 2418
Fax: +1 203 938 3211
Email: greenco@optonline.net

Midwest (product)
Dave Jones
Phone: +1 708 442 5633
Fax: +1 708 442 7620
Email: dj.ieeemedia@ieee.org

Will Hamilton
Phone: +1 269 381 2156
Fax: +1 269 381 2556
Email: wh.ieeemedia@ieee.org

Joe DiNardo
Phone: +1 440 248 2456
Fax: +1 440 248 2594
Email: jd.ieeemedia@ieee.org

Southeast (recruitment)
Sandy Brown
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sbrown@computer.org

Southeast (product)
Bob Doran
Phone: +1 770 587 9421
Fax: +1 770 587 9501
Email: bd.ieeemedia@ieee.org

Midwest/Southwest (recruitment)
Darcy Giovingo
Phone: +1 847 498-4520
Fax: +1 847 498-5911
Email: dg.ieeemedia@ieee.org

Southwest (product)
Josh Mayer
Phone: +1 972 423 5507
Fax: +1 972 423 6858
Email: josh.mayer@wageneckassociates.com

Northwest (product)
Peter D. Scott
Phone: +1 415 421-7950
Fax: +1 415 398-4156
Email: peterd@pscottassoc.com

Southern CA (product)
Marshall Rubin
Phone: +1 818 888 2407
Fax: +1 818 888 4907
Email: mr.ieeemedia@ieee.org

Northwest/Southern CA (recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Japan
Sandy Brown
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sbrown@computer.org

Europe (product)
Hilary Turnbull
Phone: +44 1875 825700
Fax: +44 1875 825701
Email: impress@impressmedia.com

Europe (recruitment)
Penny Lee
Phone: +20 7405 7577
Fax: +20 7405 7506
Email: reception@essentialmedia.co.uk

A D V E R T I S E R / P R O D U C T I N D E X S E P T / O C T 2 0 0 4

Addison-Wesley Cover 4

Applied Physics Laboratory 11

Enterprise Security Expo 2005 Cover 2

Morgan Kaufmann Publishers 1

Advertising PersonnelAdvertiser Page Number

Marion Delaney
IEEE Media, Advertising Director
Phone: +1 212 419 7766
Fax: +1 212 419 7589
Email: md.ieeemedia@ieee.org
Marian Anderson
Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
IEEE Computer Society,
Business Development Manager
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

Advertising Sales Representatives

