
Attack Trends
Editors: Elias Levy, aleph1@securityfocus.com
Iván Arce, ivan.arce@coresecurity.com

by analyzing them, we can assess
the incident’s impact and the at-
tackers’ skills and intent. We can
build an entire taxonomy of attacks
by understanding these programs’
technical capabilities and their con-
nection to those who develop and
use them.

For the past decade, exploit tools
have signaled the evolution of a
community of adversaries compris-
ing numerous inexperienced and
unskilled “ankle biters”—
commonly referred to as script
kiddies—and a few experienced,
technically savvy attackers. Exploit
programs are telltale signs of attack-
ers’ sophistication: if studied metic-
ulously, they can provide insight
into current and future trends.

Dissecting
exploit code
Webster’s dictionary defines the verb
exploit as “to use or manipulate to
one’s advantage.” In the context of
information security, we translate
this to mean taking advantage of a
vulnerable system in a way that sub-
sequently affects the system’s secu-
rity. Recognizing that attackers use
exploit code as a weapon, we must

understand how exploits work and
what they’re used for.

The simplest form of exploit
program is known as the proof-of-
concept (POC) exploit. Its only goal is
to demonstrate without a doubt that
a security flaw exists, often by caus-
ing the vulnerable program to mal-
function in a noticeable manner,
such as terminating prematurely or
abnormally. To prove not only that a
given software bug exists but also
that attackers could exploit it for
specific purposes, the writer of a
POC exploit generally turns to
what software vendors and security
researchers refer to as “execution of
arbitrary code on the vulnerable
system” to demonstrate that an out-
sider can execute commands on af-
fected systems.

Exploit tools are artifacts that let
attackers fulfill their intentions be-
yond simply demonstrating that a
software flaw exists. From the
exploit developer’s viewpoint, an
exploit must be able to use a given
vulnerability to achieve a specific
goal, while coping with the vulnera-
ble system’s operational characteris-
tics, including network topology,
running environment, and security

countermeasures.
Studying exploits furnished by

researchers or found “in the wild”
on compromised systems can pro-
vide valuable information about the
technical skills, degree of experi-
ence, and intent of the attackers who
developed or used them. Using this
information, we can implement
measures to detect and prevent at-
tacks. (Note that those who use an
exploit are not necessarily the de-
signers or developers. This becomes
evident when attackers’ actions dur-
ing a network security compromise
are not on par with the experience
and technical knowledge required to
build the exploits used.)

From a functional perspective,
exploits have three clearly distin-
guishable components: the attack
vector, exploitation technique, and
exploitation payload.

Attack vector
An attack vector is the mechanism
the exploit uses to make a vulnera-
bility manifest. With software flaws,
it’s the series of actions required to
reach and trigger the buggy portion
of the program.

A software bug that illustrates this
concept is the Secure Sockets Layer
Private Communications Technol-
ogy (SSL PCT) vulnerability discov-
ered by Mike Down and Neel
Mehta of Internet Security Systems’
X-Force team (http://xforce.iss.
net/xforce/alerts/id/168). The bug
is a fairly common buffer overflow
condition in the Microsoft library
that implements the SSL protocol;

IVÁN ARCE

Core Security
Technologies

A
ttackers carry out many network security com-

promises using exploitation programs, or ex-

ploits, which take advantage of bugs in software

running on vulnerable systems. These programs

are often the only remaining evidence of a security compromise;

The Shellcode Generation

72 PUBLISHED BY THE IEEE COMPUTER SOCIETY � 1540-7993/04/$20.00 © 2004 IEEE � IEEE SECURITY & PRIVACY

“Now, when your weapons are dulled, your ardor damped, your strength exhausted and your treasure spent, other
chieftains will spring up to take advantage of your extremity. Then no man, however wise, will be able to avert the con-
sequences that must ensue.”

— Sun Tzu, The Art of War

Attack Trends

it’s used in several Microsoft software
packages, including the Web server
implementation in the Internet In-
formation Services (IIS) package.

In a detailed analysis, Core Secu-
rity Technologies’ Juliano Rizzo
found that seven different network
services can reach and trigger the
vulnerable code in many Windows
programs using an equal number of
TCP ports (www.securityfocus.
com/archive/1/361836). This is
one software bug with seven known
attack vectors.

Similarly, other researchers at
Core Security Technologies found
numerous attack vectors for the slew
of vulnerabilities in the Windows
OS components targeted by the
Blaster and Sasser worms of 2003
and 2004 (www.corest.com/
common/showdoc.php?idx=393&
idxseccion=10). Like most exploits,
however, each worm used only one
attack vector.

In response to the hardening of
operating systems (decreasing the
number of services exposed to at-
tack) and security mechanisms such
as filtering firewalls and proxies (re-
stricting connectivity), we should
expect increasingly sophisticated ex-
ploit programs to use more than
one—or even all—available attack
vectors. Such exploits will more ef-
fectively target systems that operate
under different configurations and
operational environments.

Exploitation technique
An exploitation technique is the al-
gorithm that exploits use to alter a
vulnerable program’s execution
flow and thus yield control to the
attacker. To exploit a software bug,
an attacker must not only find and
use a valid attack vector but also de-
vise a suitable technique for modi-
fying the execution flow and run-
ning the attacker’s commands on
the system.

In “Beyond Stack Smashing:
Recent Advances in Exploiting
Buffer Overruns,” (IEEE Security &
Privacy, July/Aug., pp. 20−27),

Jonathan Pincus and Brandon Baker
provided a comprehensive account
of past and current techniques for
exploiting software flaws. As the
classic introduction to exploitation
techniques for buffer overflow vul-
nerabilities, they cited AlephOne’s
“Smashing the Stack for Fun and
Profit” (www.phrack.org/show.php
?p=49&a=14) and DilDog’s “The
Tao of Windows Buffer Overflows”
(www.cultdeadcow.com/cDc_files/
cDc-351/). The techniques pre-
sented in those two articles are al-
ready being applied to exploiting
other forms of software bugs.

Several information security re-
searchers have refined, improved,
and even superseded these tech-
niques since their publication nearly
a decade ago. The results are evident
in myriad research reports and in ex-
ploits found in the wild on compro-
mised systems. Advancements in
exploit techniques and counter-
measures are testimony to attackers’
and defenders’ continuing attempts
to dull their adversaries’ weapons.

Exploit payload
Once an exploit seizes control of a

vulnerable program by triggering
and exploiting a bug, it immedi-
ately performs actions to achieve
the exploit writer’s goal. This is
where the exploit payload comes in:
the payload is the functional com-
ponent that implements the ex-
ploit’s desired purpose.

Until recently, researchers ne-
glected exploit-payload analysis
when trying to understand attackers’
intent and the quality and effective-
ness of their tools. Yet, the appear-
ance of a new breed of exploit pay-
loads, coupled with repeated failure
to stop and contain automated at-
tacks and the increased popularity of
intrusion-prevention systems (IPS)
that aim to detect and prevent ex-
ploitation of software bugs, has re-
cently inspired R&D activities with
a marked interest in using payload
analysis to help identify future trends
in the ongoing struggle to conquer
the information security battlefield’s
high ground.

Exploit
payload evolution
To better understand the payloads
used in today’s exploits, let’s look at

www.computer.org/security/ � IEEE SECURITY & PRIVACY 73

Attack Trends

some background information and
historical data points to try to ex-
trapolate the attackers’ intents and
assumptions.

Add a user account
For many years, the easiest way for an
attacker to access a vulnerable system
was to make the exploit modify the
system’s configuration to let the at-
tacker pose as a legitimate user.

On Unix systems, this was possible
by simply adding a line to the system
password file (/etc/passwd)—
exploit code from the early ’90s used
this approach to provide attackers di-
rect access to compromised systems. A
variation was to change the password
on an existing account (typically, the
privileged root account).

Obviously, this simplistic pay-
load would overcome only the most
basic security mechanism in today’s
systems and networks. Foremost,
file-system integrity-checking tools
such as Tripwire (www.tripwire.
org), an open-source tool popular-
ized among Unix administrators
in the mid ’90s, would likely alert
system administrators to such
changes in the operating system’s
password file.

Moreover, a payload of this sort
couldn’t guarantee access to a recently
compromised system. The attacker
would need to access the system
through the paths available to legiti-
mate users, and the successful ex-
ploitation of a vulnerability through
one attack vector doesn’t necessarily
imply connectivity through legiti-
mate means. In particular, firewalls
and other filtering devices could pre-
vent an external attacker from logging
in to a vulnerable system, even after
creating a valid user account on it.

Finally, use recently created user
account at late or otherwise uncom-
mon hours, and from unknown sys-
tems, is almost guaranteed to alert

system administrators and security
officials. Knowledgeable attackers
would have to quickly cover their
tracks and become as invisible as pos-

sible after running an add-a-user-
account exploit.

Nonetheless, this naïve and sim-
ple payload can still be found in
today’s exploits—notably, some that
target Microsoft operating system
vulnerabilities such as the MS
RPC/DCOM vulnerability used by
the 2003 Blaster worm (see www.
k-otik.com/exploits/09.20.rpcd
com2ver1.1.c.php, for example).

Change the
system configuration
Many publicly available exploits use
a simple evolution in exploit pay-
load, altering vulnerable systems’
configurations in slightly more sub-
tle ways. In one simple variation,
the payload appends a line to the In-
ternet services daemon (inetd)
configuration file on Unix systems
(/etc/inetd.conf) to set up ac-
cess to the compromised system by
having the attacker connect to a
given network port. Several ex-
ploits that target Unix vulnerabili-
ties use a slight modification in
which the exploit payload creates
an alternate configuration file for
inetd and runs it using the alter-
nate configuration. The following
excerpt from an exploit for vulner-
abilities in Sun’s Solaris RPC
statd and automount services,
originally disclosed in June 1999
(www.kb.cert.org/vuls/id/18287),
illustrates this approach:

echo “ingreslock stream

tcp nowait root

/bin/sh sh -i”

>>/tmp/bob;

/usr/sbin/inetd -s

/tmp/bob &”

A detailed account of a security inci-
dent that used this payload indicates
that, although successful compro-
mise of vulnerable systems can be
achieved with a simple payload, the
attacker must address several draw-
backs of the exploit to remain unno-
ticed on the compromised system
(see www.giac.org/practical/GSEC/
Sara_Dearing_GSEC.pdf).

Shellcode
The next evolution in exploit pay-
loads, known as the shellcode, be-
came so prevalent by the mid ’90s
that today the term is almost synony-
mous for exploit payload.

The fundamental concept is that,
upon seizing control of the vulnera-
ble program by modifying its execu-
tion flow, the exploit immediately
spawns a command interpreter—a
shell, in Unix parlance—that lets the
attacker interactively enter com-
mands to be executed on the vulner-
able system and read back the out-
put. To accomplish this, the payload
must have the appropriate program-
ming instructions, or code, to run
the command interpreter; hence,
the name shellcode.

AlephOne’s classic paper provided
a clear, and very didactic, explanation
of how to develop such exploits.
Once the payload spawns a shell, the
attacker can issue any other com-
mands for it to interpret and execute.
According to the author, several pub-
licly available exploits were already
using shellcode payloads at the time of
publication (November 1996).

Shellcode’s widespread adop-
tion as the payload of choice signals
an advancement in exploit quality
and sophistication. Using shellcode
payloads, the attacker avoids the
need to alter the compromised sys-
tem’s file system in any way to
achieve his or her goals, thus reduc-
ing the chances of being detected
by the system’s administrator.

However, writing the proper
shellcode for any given operating
system and making it work within a
particular exploit requires the ex-

74 IEEE SECURITY & PRIVACY � SEPTEMBER/OCTOBER 2004

Today the term ‘shellcode’ is
almost synonymous for exploit payload.

Attack Trends

ploit writer to acquire and develop
basic assembly and C programming
skills as well as an understanding of
the target operating system’s founda-
tions and APIs for spawning new
processes and threads. The few fully
functional examples that became
publicly available for several Unix
operating systems have since been
used in hundreds of exploits over the
past decade.

Once developers solved the tech-
nicalities of how to spawn a com-
mand interpreter in an efficient, op-
erating-system version-independent
manner, exploit writers quickly
adopted the shellcode paradigm for
Windows operating system vulnera-
bilities as well.

Network-aware shellcode
Shellcode is most suitable for ex-
ploits in which the attacker already
has interactive access to the vulnera-
ble system and just needs elevated
privileges. By taking advantage of
software flaws in programs running
on the system on which the attacker
has access to the shellcode, exploit
writers avoid the complexity of
managing communications between
the spawn shell and any remote sys-
tem the attacker might launch.

To gain access to the system,
however, the attacker needs some
sort of tool; exploit writers therefore
adapted and further developed the
shellcode payload to provide the
same capabilities to an attack on a re-
mote system. The shellcode thus be-
comes aware of the network topolo-
gies in which the vulnerable system
and attacker are present.

The simplest network-aware
shellcode spawns a command inter-
preter that functions as a typical net-
work server program (or daemon, in
Unix parlance). The shellcode listens
for incoming connections on an at-
tacker-specified network port and
protocol (usually TCP, though other
transport protocols are also usable);
after receiving a connection from a
remote system, the shellcode spawns
a shell that redirects its input and out-

put to the remote system from which
the network connection was re-
ceived. Presumably, the attacker will
be the one connecting from the re-
mote system and served by a fully
functional command interpreter.
This is typically known as a bind
shellcode, or bindshell, because it uses
the Unix sockets library’s bind
function (www.ecst.csuchico.edu/
~beej/guide/net/html/syscalls.html
#bind) to achieve its goal.

The presence of a firewall or any
filtering device in the topological
path between the attacker and the
compromised system can thwart an
attack. Even if the exploit works and
the bindshell payload successfully
creates a shell service on the target
system, a firewall that blocks incom-
ing connections to the port the at-
tacker chooses will deny shell access
to the system. To address this prob-
lem, attackers often use a variation of
the bindshell, called the reverse shell.

The reverse shell successfully
copes with firewalls and filtering de-
vices that deny incoming connec-
tions to ports where no legitimate
services are supposed to run on the
protected systems. It does so by ini-
tiating the connection to the at-
tacker from the compromised sys-
tem. That is, the reverse shell spawns
a shell and establishes an outgoing
connection from the compromised
system to the attacker’s system, and
the shellcode transfers control of the
command interpreter to the remote
system once the connection is estab-
lished. However, imposing strict

rules on outgoing connections or
the use of proxy servers can disrupt
reverse-shellcode attacks.

A subsequent advance in shell-

code is the findsocket or reuse-
connection shellcode, which identifies
the network connection that was
used to trigger and exploit the secu-
rity bug and spawns a shell that uses
the same connection for interactive
communication with the attacker.
This clever improvement of shell-
code seeks to cope with network
topology and firewall policy restric-
tions by allowing the attacker to use a
communications channel known to
work for exploiting the vulnerability
to run the shellcode.

Multiple versions and variations
of these basic network-aware shell-
codes are publicly available for com-
mon operating systems, and the vast
majority of exploits for recent vul-
nerabilities use one or more of these
network-aware shellcodes. Notably,
the devastating worms of 2004 and
previous years used network-aware
shellcode that downloads and runs
multipurpose agent programs from
remote Internet systems while main-
taining the basic spawn-shell func-
tionality available on some network
port of the exploit writer’s choosing.

Note that all variations of the net-
work-aware shellcode rely on and as-
sume that the payload has enough
access privileges to the file system of
the compromised system to load and
execute a command interpreter or
any other program of the exploit de-
veloper’s choice.

The new shellcode
Deploying security countermea-
sures to mitigate the effects of ex-

ploiting software flaws in vulnerable
programs can disrupt shellcode
functionality and force exploit de-
velopers to revisit their code. The

www.computer.org/security/ � IEEE SECURITY & PRIVACY 75

Researchers and attackers are devising
new types of shellcode that can avoid or
bypass the restrictions these defensive
technologies impose.

Attack Trends

simplest practice to illustrate this is
to run programs that provide net-
work services, or are otherwise ex-
posed to network attacks, with low-
ered privileges or with limited
access to the file system.

The use of application sandbox-
ing, IPSs, and operating-system vir-
tualization technologies can severely
hinder network-aware shellcode. As a
result, researchers and attackers are
devising new types of shellcode that
can avoid or bypass the restrictions
these defensive technologies impose.
In August 2002, researchers at Core
Security’s labs published an alternative
to the known exploit payload based
on technology we coined syscall prox-
ying. The proposed payload maintains
the known shellcodes’ network-
awareness characteristics but doesn’t
rely on any type of access to the com-
promised system’s file system or at-
tempt to spawn a command inter-
preter; instead, it gives the attacker
direct access to the vulnerable operat-
ing system’s system-calls API and pro-
vides other advantages over tradi-
tional shellcodes (see www.corest.
com/common/showdoc.php?idx
=259&idxseccion=11).

Another payload type, the loader
payload, mimics an operating system’s
initialization or boot-strapping steps.
Initially, the exploit uses a very small
and simple portion of code, which it
loads and executes immediately after
seizing control of the vulnerable pro-
gram. In turn, this initial payload
loads and executes code received
from the attacker, whether over the
same network connection or an-
other, to implement the attack’s spe-
cific goals. Two research examples of
this concept are Gerardo Richarte’s
InlineEgg project (http://oss.core
security.com/projects/inlineegg.
html) and Dave Aitel’s MOSDEF
(w w w. i m m u n i t y s e c . c o m /
downloads/MOSDEF0.6.tgz).

Shellcode factorization and com-
ponent reuse is an R&D area that
emerged after the Last Stage of
Delirium research group from
Poland published a compendium of
shellcode for various platforms
(www.lsd-pl.net/documents/
asmcodes-1.0.2.pdf).

We can trace another facet of the
struggle between attackers and de-
fenders back to the CanSecWest se-
curity conference in Vancouver in

2001, at which Canadian informa-
tion security researcher Shane
Macaulay introduced the concepts
of polymorphism and code obfusca-
tion in avoiding exploit-payload de-
tection by network intrusion-
detection systems (www.ktwo.ca/c/
ADMmutate-0.8.4.tar.gz).

Some open-source projects re-
lated to exploit code and payloads
have gained traction in recent years.
These include exploit-development
frameworks such as Metasploit
(www.metasploit.org), led by secu-
rity researcher H.D. Moore, and the
ShellForge automatic shellcode gen-
erator developed by Phillipe Biodi
and presented publicly in April 2004
(www.cansecwest.com/csw04/csw
04-Biondi.pdf).

A lthough none of the new types of
payloads I’ve mentioned here has

yet been found in exploit code cap-
tured in the wild during or after a se-
curity compromise on live Internet
systems, a marked interest in exploit-
payload improvement is clearly grow-
ing. Several new research projects
have emerged in the past three years,
and the sophisticated payloads that
have grown from these efforts will
soon be typical exploits.

The authors of automated attack
tools and malware that currently use
network-aware shellcodes could
rapidly adopt the new shellcodes and
gain a definite advantage over those
trying to secure their networks. To
better understand and prepare our
networks for future threats, we must
keep alert now to advances in ex-
ploit-code development and the
tools employed to create it.

Iván Arce is chief technology officer and
cofounder of Core Security Technologies,
based in Boston. Previously, he worked as
vice president of research and develop-
ment for a computer telephony integra-
tion company and as an information
security consultant and software devel-
oper for various government agencies
and financial and telecommunications
companies. Contact him at ivan.arce@
coresecurity.com.

76 IEEE SECURITY & PRIVACY � SEPTEMBER/OCTOBER 2004

In the September/October 2003 edition of Attack Trends (“The Rise of the Gadgets,” vol. 1,

no. 5, pp. 78–81), I examined threats posed by the emergence of networkable devices, the

most ubiquitous of which today is the cell phone.

The recent discovery of what many believe to be the first cell phone worm has proven the

warning to be correct. This proof-of-concept worm infects Nokia Series 60 smart phones (which

run the Symbian operating system) by copying itself to nearby devices via Bluetooth.

Receiving devices display a message asking users whether they want to accept the message

from the other device. If so, the device displays a notice of a new message; when the user views

it, the device warns that the attached application is “untrusted” and queries the user whether

to install the worm.

If installed, the worm will execute, attempting to send itself to any Bluetooth devices it can

find, every time the phone turns on. (Constant scanning for Bluetooth devices will also drain

the battery at a faster rate than normal.)

While this worm requires significant user assistance to spread, many self-propagating worms

successfully fool users into executing them as well. In any event, this worm represents minimal

risk—it doesn’t appear to have a malicious payload—but it serves to remind us that cell phones

and other gadgets are vulnerable to a range of threats as they become more complex.

Please hold—
Mr. Worm is on the other line

