
Building Security In
Editor: Gary McGraw, gem@cigital.com

knowledge about vulnerabilities,
threats, impacts, and probability.

Established risk-analysis method-
ologies possess distinct advantages
and disadvantages, but almost all of
them share some good principles as
well as limitations when applied to
modern software design. What sepa-
rates a great software risk assessment
from a merely mediocre one is its
ability to apply classic risk definitions
to software design and then generate
accurate mitigation requirements. A
high-level approach to iterative risk
analysis should be deeply integrated
throughout the software develop-
ment life cycle.1 In case you’re keep-
ing track, Figure 1 shows you where
we are in our series of articles about
software security’s place in the soft-
ware development life cycle.

Traditional
terminology
Example risk-analysis methodolo-
gies for software usually fall into two
basic categories: commercial (in-
cluding Microsoft’s STRIDE, Sun’s
ACSM/SAR, Insight’s CRAMM,
and Cigital’s SQM) and standards-
based (from the National Institute of
Standards and Technology’s ASSET
or the Software Engineering Insti-
tute’s OCTAVE). An in-depth
analysis of all existing methodologies
is beyond our scope, but we’ll look at

basic approaches, common features,
strengths, weaknesses, and relative
advantages and disadvantages.

As a corpus, traditional method-
ologies are varied and view risk from
different perspectives. Examples of
basic approaches include

• financial loss methodologies that
seek to provide a loss figure to bal-
ance against the cost of imple-
menting various controls;

• mathematically derived “risk rat-
ings” that equate risk with arbi-
trary ratings for threat, probability,
and impact; and

• qualitative assessment techniques
that base risk assessment on anec-
dotal or knowledge-driven factors.

Each basic approach has distinctly
different merits, but they almost all
share some valuable concepts that
should be considered in any risk
analysis. We can capture these com-
monalities in a set of basic definitions:

• The asset, or object of the protec-
tion efforts, can be a system com-
ponent, data, or even a complete
system.

• Risk, the probability that an asset
will suffer an event of a given nega-
tive impact, is determined from var-
ious factors: the ease of executing an
attack, the attacker’s motivation and

resources, a system’s existing vul-
nerabilities, and the cost or impact
in a particular business context.

• The threat, or danger source, is in-
variably the danger a malicious
agent poses and that agent’s moti-
vations (financial gain, prestige, and
so on). Threats manifest themselves
as direct attacks on system security.

• A vulnerability is a defect or weak-
ness in system security procedure,
design, implementation, or inter-
nal control that an attacker can
compromise. It can exist in one or
more of the components making
up a system, even if those compo-
nents aren’t necessarily involved
with security functionality. A given
system’s vulnerability data are usu-
ally compiled from a combination
of OS- and application-level vul-
nerability test results, code reviews,
and higher-level architectural re-
views. Software vulnerabilities
come in two basic flavors: flaws
(design-level problems) or bugs
(implementation-level problems).
Automated scanners tend to focus
on bugs, since human expertise is
required for uncovering flaws.

• Countermeasures or safeguards are
the management, operational, and
technical controls prescribed for an
information system that, taken to-
gether, adequately protect the sys-
tem’s confidentiality, integrity, and
availability as well as its informa-
tion. For every risk, a designer can
put controls in place that either
prevent or (at a minimum) detect
the risk when it triggers.

• The impact on the organization,
were the risk to be realized, can be
monetary or tied to reputation, or
it might result in the breach of a
law, regulation, or contract. With-

DENIS VERDON

Fidelity
National
Financial

GARY

MCGRAW

Cigital
R

isk analysis is often viewed as a “black art”—part

fortune telling, part mathematics. Successful risk

analysis, however, is nothing more than a busi-

ness-level decision-support tool: it’s a way of gath-

ering the requisite data to make a good judgment call based on

Risk Analysis
in Software Design

PUBLISHED BY THE IEEE COMPUTER SOCIETY � 1540-7993/04/$20.00 © 2004 IEEE � IEEE SECURITY & PRIVACY 79

Building Security In

out a quantification of impact,
technical vulnerability is hard to
handle—especially when it comes
to mitigation activities.

• Probability is the likelihood that a
given event will be triggered. It is
often expressed as a percentile, al-
though in most cases, probability
calculation is extremely rough.

Although they start with these
basic definitions, risk methodolo-
gies usually diverge on how to arrive
at specific values. Many methods
calculate a nominal value for an in-
formation asset, for example, and at-
tempt to determine risk as a func-
tion of loss and event probability.
Others rely on checklists of threats
and vulnerabilities to determine a
basic risk measurement.

Example of
a risk calculation
One classic risk-analysis method ex-
presses risk as a financial loss, or an-
nualized loss expectancy, based on
the following equation:

ALE = SLE × ARO,

where SLE is the single loss ex-
pectancy and ARO is the annualized
rate of occurrence (or the predicted
frequency of a loss event happening).

Let’s consider an Internet-based
equities trading application with a
vulnerability that could result in
unauthorized access (the implication
being that unauthorized stock trades
can be made). Assume a risk analysis

determines that middle- and back-
office procedures will catch and
negate any malicious transaction
such that the loss associated with the
event is simply the cost of backing
out of the trade. We’ll assign a cost of
$150 for any such event, so SLE =
$150. With an ARO of just 100 such
events per year, the cost to the com-
pany (or ALE) will be $15,000.

The resulting dollar figure pro-
vides no more than a rough yard-
stick, albeit a useful one, for deter-
mining whether to invest in fixing
the vulnerability. Of course, for our
fictional equities trading company, a
$15,000 annual loss might not be
worth getting out of bed for (typi-
cally, a proprietary trading com-
pany’s intraday market risk dwarfs
such an annual loss figure).

Other methods take a more qual-
itative route. In the case of a Web
server providing a company’s face to
the world, the Web site’s defacement
might be difficult to quantify as a fi-
nancial loss (although some studies
indicate a link simply between secu-
rity events and negative stock-price
movements2). When “intangible as-
sets” are involved (such as reputa-
tion), qualitative risk assessment
might be a more appropriate way to
capture the loss.

Regardless of the technique used,
most practitioners advocate a return-
on-investment study to determine
whether a given countermeasure is
cost-effective for achieving the desired
security goal. Adding applied cryp-

tography to an application server via
native APIs without the aid of dedi-
cated hardware acceleration might be
cheap in the short term, for example,
but if it results in a significant loss in
transaction volume throughput, a bet-
ter ROI might come from investing
up front in crypto acceleration hard-
ware. Interested organizations should
adopt the risk-calculation methodol-
ogy that best reflects their needs.

Common themes
Most risk-analysis process descrip-
tions emphasize identification, rank-
ing, and mitigation as continuous
processes and not just a single step to
be completed at one stage of the de-
velopment life cycle. Risk-analysis
results and risk categories tie in with
both requirements (early in the life
cycle) and testing (where developers
can use results to define and plan par-
ticular tests).

Because it’s a specialized subject,
risk analysis is not always best per-
formed solely by the design team.
Rigorous risk analysis relies heavily
on an understanding of business im-
pacts, which requires an understand-
ing of laws and regulations as well as
the business model supported by the
software. Developers and designers
build up certain assumptions regard-
ing their system and the risks it faces;
at a minimum, risk and security spe-
cialists should assist in challenging
those assumptions against generally
accepted best practice. They’re in a
better position to assume nothing.

Putting the right people together
for an analysis is important: consider
the risk team very carefully. Knowl-
edge and experience cannot be
overemphasized because risk analysis
is not a science, and broad knowl-
edge of vulnerabilities, bugs, flaws,
and threats is a critical success factor.

A prototypical analysis involves
several major activities that often in-
clude several basic substeps:

• Learn as much as possible about the
analysis target. (Substeps include
reading and understanding specifi-

80 IEEE SECURITY & PRIVACY � JULY/AUGUST 2004

Abuse
cases

Security
requirements

Risk
analysis

External
review

Risk-based
security tests

Static
analysis
(tools)

Risk
analysis

Penetration
testing

Security
breaks

Requirements
and use cases

Design Test
plans

Code Test
results

Field
feedback

Figure 1. The software development life cycle. Throughout this series, we’ll focus on
specific parts of the cycle; here, we’re examining risk analysis.

Building Security In

cations, architecture documents,
and other design materials; dis-
cussing and brainstorming with the
group; determining system bound-
ary and data sensitivity/criticality;
playing with the software if it exists
in an executable form; studying the
code and other software artifacts;
and identifying threats and agreeing
on relevant sources of threat.)

• Discuss security issues surrounding
the software. (Substeps include ar-
guing about how the product
works and determining areas of
disagreement; identifying possible
vulnerabilities, sometimes by using
tools or lists of common vulnera-
bilities; mapping out exploits and
discussing possible fixes; and gain-
ing an understanding of current
and planned security controls.)

• Determine the probability of
compromise. (Substeps include
mapping out attack scenarios for
vulnerability exploitation and bal-
ancing controls against threat ca-
pacity to determine likelihood.)

• Perform impact analysis. (Substeps
include determining the impact on
asset and business goals and consid-
ering the impact on security.)

• Rank risks.
• Develop a mitigation strategy. (A

substep is recommending counter-
measures to mitigate risks.)

• Report findings. (Substeps include
carefully describing major and
minor risks while paying close at-
tention to impact, and providing
basic information about where to
spend limited mitigation resources.)

The sidebar on Cigital’s solution
shows one commercial example that
follows this basic approach.

Knowledge
requirement
Design-level analysis is knowledge
intensive. Microsoft’s STRIDE
model, for example, involves the un-
derstanding and application of sev-
eral threat categories during analy-
sis.3 Similarly, Cigital’s SQM
approach uses attack patterns4 and

exploit graphs to understand attack
resistance, knowledge of design
principles for ambiguity analysis,5

and knowledge regarding com-
monly used frameworks (.NET and
J2EE being two examples) and soft-
ware components.

A central activity in design-level
risk analysis is building up a consis-
tent view of the target system at a rea-
sonably high level. The idea is to see
the forest, not get lost in the trees.
The most appropriate level for this
description is the typical whiteboard
view of boxes and arrows describing
the interaction of various critical de-
sign components. The nature of soft-
ware systems leads many developers
and analysts to assume (incorrectly)
that a code-level description of soft-
ware is sufficient for spotting design
problems. Although this might occa-
sionally be true, it does not generally
hold. Extreme programming’s claim
that “the code is the design” repre-
sents one radical end of this approach.
Without a whiteboard level of de-

scription, an architectural risk analy-
sis is likely to overlook important
risks related to flaws.

Risk analysis
and requirements
Previous articles in this series con-
sider security requirements defini-
tions and discuss abuse cases as a
method for generating require-
ments. In the purest sense, risk analy-
sis begins at this point: design re-
quirements should take into account
the risks you’re trying to counter.
Let’s look at three approaches to in-
terjecting a risk-based philosophy
into the requirements phase (note
that the requirements systems based
on UML tend to focus more atten-
tion on security functionality than
they do on misuse and abuse cases):

• SecureUML (www.informatik.
uni-freiburg.de/~tolo/pubs/
secuml_uml2002.pdf) is a method-
ology for modeling access-control
policies and their integration into

www.computer.org/security/ � IEEE SECURITY & PRIVACY 81

Figure A illustrates Cigital’s continuous risk-analysis process, which loops constantly and at

many levels of description through several phases. In Cigital’s approach, business goals

determine risks, risks drive methods, methods yield measurement, measurement drives decision

support, and decision support drives fix/rework and application quality.

Cigital’s approach

Artifact analysis

Validation loop

Technical
expertise

Measure
and report

Initiate
process

improvement

1
Understand
the business

context

2
Identify the

business risks

Artifact analysis

3
Identify the

technical risks

Artifact analysis

Business context

6
Fix

the artifacts

5
Define the

risk mitigation
strategy

4
Synthesize

and prioritize
the risks

7
Validate

the artifacts

Figure A. Cigital’s risk-management framework. Many aspects of frameworks
such as this can be automated—for example, risk storage, business risk to
technical risk mapping, and the display of status over time.

Building Security In

model-driven software develop-
ment. SecureUML is based on role-
based access control and models
security requirements for well-
behaved applications in predictable
environments.

• UMLsec (www4.in.tum.de/
~umlsec/) is an extension to
UML that enables the modeling
of security-related features such as
confidentiality and access control.

• Guttorm Sindre and Andreas Op-
dahl6 attempt to model abuse cases
as a way of understanding how ap-
plications might respond to threats
in a less controllable environment;
they describe functions that the
system should not allow.

A key variable in the risk equa-
tion is impact. Business impacts gen-
erally boil down into three broad
categories:

• federal or state laws and regulations
(including the Gramm-Leach-
Bliley Act, HIPAA, and the much-
cited California Senate Bill 1386);

• financial or commercial considera-
tions (such as revenue protection,
control over high-value intellec-
tual property, and preservation of
brand and reputation); and

• contractual considerations (in-
cluding service-level agreements
and liability avoidance).

The first step to risk analysis at the re-
quirements stage is to break down re-
quirements into three simple cate-
gories: must haves, important to haves,
and nice but unnecessary. Unless
you’re running an illegal operation,
you should always class laws and regu-
lations into the first category—these
requirements should be instantly
mandatory and not subject to further
risk analysis (although an ROI study
can help you select the most cost-ef-
fective mitigations). If the law requires
you to protect private information, for
example, this requirement is compul-
sory and should not be subject to a
risk-based decision. Why? Because
the government has the power to put

you out of business, which is the
mother of all risks (if you want to test
government regulators on this one, go
right ahead).

You’re then left with risk im-
pacts—the ones that have as variables
potential impact and probability—
that must be managed in other ways.
Examples of mitigations range from
technical protections and controls to
business decisions for living with the
risk. At the initial requirements defi-
nition stage, you might be able to
make some assumptions regarding
which controls are necessary.

Evenly applying these simple
ideas will put you ahead of most ap-
plication developers. As you move
toward the design and build stages,
risk analysis should begin to test your
first assumptions from the require-
ments stage by testing the threats and
vulnerabilities inherent in the design.

Limitations
Traditional risk-analysis output is
difficult to apply directly to modern
software design. Even assuming a
high level of confidence in the ability
to predict the dollar loss for a given
event and performing Monte Carlo
distribution analysis of prior events
to derive a statistically sound proba-
bility distribution for future events,
there’s still a large gap between an
ALE’s raw dollar figure (as discussed
earlier) and a detailed software secu-
rity mitigation definition.

A more worrying concern is that
traditional risk-analysis techniques
do not necessarily provide an easy
guide (not to mention an exhaustive
list) of all potential vulnerabilities
and threats to consider at a compo-
nent/environment level. This is why
a large knowledge base and lots of
experience is invaluable.

The thorny knowledge problem
arises in part because modern appli-
cations, including Web services ap-
plications, are designed to span mul-
tiple boundaries of trust. The
vulnerability of—and threat to—any
given component varies with the
platform on which that component

exists (think C# on a Windows
.NET server versus J2EE on Tom-
cat/Apache/Linux) and the envi-
ronment in which it lives (think se-
cure DMZ versus directly exposed
LAN). However, few traditional
methodologies adequately address
the contextual variability of risk
given changes in the core environ-
ment. This is a fatal flaw when con-
sidering highly distributed applica-
tions or Web services.

In modern frameworks such as
.NET and J2EE, security methods
exist at almost every layer, yet too
many applications today rely on a “re-
active” protection infrastructure that
only provides protection at the net-
work transport layer. This is too often
summed up by saying, “We’re secure
because we use SSL and implement
firewalls,” which opens the door to all
sorts of problems such as those engen-
dered by port 80 attacks, SQL injec-
tion, class spoofing, and method
overwriting (to name just a few).

One approach to overcoming
these problems is to start looking at
software risk analysis on a compo-
nent-by-component, tier-by-tier,
and environment-by-environment
level and then apply the principles of
measuring threats, vulnerabilities,
and impacts at each level.

A practical
approach
At the design stage, any risk-analysis
process should be tailored to soft-
ware design. Recall that the object of
this exercise is to determine specific
vulnerabilities and threats that exist
for the software and assess their im-
pact. A functional decomposition of
the application into major compo-
nents, processes, data stores, and data
communication flows, mapped
against the environments across
which the software will be deployed,
allows for a desktop review of threats
and potential vulnerabilities. We
cannot overemphasize the impor-
tance of using a forest-level view of a
system during risk analysis. Some
sort of high-level system model

82 IEEE SECURITY & PRIVACY � JULY/AUGUST 2004

Building Security In

(from a whiteboard with boxes and
arrows to a formally specified math-
ematical model) makes risk analysis
at the architectural level possible.

Although we could contemplate
using modeling languages such as
UMLSec to attempt to model threats,
even the most rudimentary analysis
approaches can yield meaningful re-
sults. Consider Figure 2, which shows
a simple four-tier deployment design
pattern for a standard-issue Web-
based application. If we apply risk-
analysis principles to this level of de-
sign, we can immediately draw some
useful conclusions about the applica-
tion’s security design.

During the risk-analysis pro-
cess, we use the high-level design
to consider

• the threat present in each tier’s en-
vironment;

• the kinds of vulnerabilities that
might exist in each component as
well as the dataflows;

• the business impact of such techni-
cal risks, were they to be realized;

• the probability of such a risk being
realized; and

• any feasible countermeasures that
could be implemented at each tier,
taking into account the full range
of protection mechanisms available
(from base OS-level security
through virtual machine security
mechanisms such as the use of Java
cryptography extensions in J2EE).

In the simple example shown in
Figure 2, each tier exists in a different
security realm or trust zone. This fact
immediately gives us the context of
the threat each tier faces. If we go on
to superimpose data types (such as
user-logon credentials, records, and
orders), their flows (logon requests,
record queries, and order entries),
and, more importantly, their security
classifications, we can draw conclu-
sions about the protection for these
data elements and their transmission
given the current design.

Suppose that SSL protects user-
logon flows between the client and

the Web server. Our deployment pat-
tern indicates that although the en-
crypted tunnel terminates at this tier
(because of the inherent threat in the
zones occupied by the Web and ap-
plication tiers), we really must prevent
eavesdropping inside and between
these two tiers as well. This might in-
dicate the need to establish yet an-
other encrypted tunnel or to consider
a different approach to securing this
data (maybe message-level encryp-
tion instead of tunneling).

Considering the communications
risks, it becomes clear why a deploy-
ment pattern is valuable, because it lets
us consider infrastructure (OS and
network) security mechanisms and
application-level mechanisms as risk-
mitigation measures.

Decomposing software on a
component-by-component basis to
establish trust zones is a comfortable

way for most software developers
and auditors to begin adopting a
risk-management approach to soft-
ware security. Because most systems,
especially those exhibiting the n-tier
architecture, rely on several third-
party components and a variety of
programming languages, defining
zones of trust and taking an out-
side/in perspective similar to the one
normally found in traditional secu-
rity has clear benefits. In any case, in-
teraction of different products and
languages is an architectural element
likely to be a vulnerability hotbed.

At its heart, decomposition is a
natural way to partition a system.
Given a simple decomposition, secu-
rity professionals will be able to ad-
vise developers and architects about
aspects of security they’re familiar
with, such as network-based compo-
nent boundaries and authentication.

www.computer.org/security/ � IEEE SECURITY & PRIVACY 83

Client tier

Web tier

Application tier

Data tier

Client computer

Order processing
Web interface

Client computer

Order processing
rich interface

Web server

Order processing
application virtual directory

Database server

Order
database

Application server

Application server remoting server

Order processing application

Figure 2. Forest-level view of a standard-issue four-tier Web application. In this design,
the client tier exists out on the Internet, while the remaining tiers are on internal
networks connected to the Internet. Customers using the client indirectly affect data
in the database, so control and access must be managed through all tiers.

Building Security In

However, the composition problem
is unsolved and very tricky—even
the most secure components can be
assembled into an insecure mess.

As organizations become adept at
identifying vulnerability and its busi-
ness impact, the risk-analysis team
should evolve the basic approach to
include additional assessment of the
risks found within—or encompass-
ing all—tiers. This evolution can un-
cover technology-specific vulnera-
bilities based on failings other than
trust issues across tier boundaries.
Examples of more subtle risks that
can only be flushed out with a more
sophisticated approach include
transaction management risks and
luring attacks.

R isk analysis is, at best, a good
general-purpose yardstick by

which we can judge our security de-
sign’s effectiveness. Because roughly
50 percent of security problems are
the result of design flaws, performing
a risk analysis at the design level is an
important part of a solid software se-
curity program. Taking the trouble

to apply risk-analysis methods at the
design level for any application often
yields valuable, business-relevant
results. The risk analysis process is
continuous and applies to many dif-
ferent levels, at once identifying sys-
tem-level vulnerabilities, assigning
probability and impact, and deter-
mining reasonable mitigation strate-
gies. By considering the resulting
ranked risks, business stakeholders
can determine how to manage par-
ticular risks and what the most cost-
effective controls might be.

Acknowledgments
We thank John Steven and Stan Wisseman
(both of Cigital) for their insightful comments
on early drafts of this work. We also thank
Bruce Phillips of Fidelity National Financial.

References
1. G. McGraw, “Software Security,”

IEEE Security & Privacy, vol. 2, no.
2, 2004, pp. 80–83.

2. H. Cavusoglu, B. Mishra, and S.
Raghunathan, The Effect of Internet
Security Breach Announcements on Mar-
ket Value of Breached Firms and Internet
Security Developers, tech. report, Univ.

of Texas at Dallas, School of Man-
agement, Feb. 2002; www.ut
dallas.edu/~huseyin/breach.pdf.

3. M. Howard and D. LaBlanc, Writ-
ing Secure Code, 2nd ed., Microsoft
Press, 2003.

4. G. Hoglund and G. McGraw,
Exploiting Software, Addison-
Wesley, 2004.

5. J. Viega and G. McGraw, Building
Secure Software: How to Avoid Secu-
rity Problems the Right Way,
Addison-Wesley, 2001.

6. G. Sindre and A.L. Opdahl, “Elicit-
ing Security Requirements by Mis-
use Cases,” Proc. 37th Technology of
Object-Oriented Languages and Systems
(TOOLS-37), IEEE CS Press, 2000.

Denis Verdon is senior vice president of
corporate information security at Fidelity
National Financial. He has 21 years expe-
rience in information security and IT,
much of it gained while working both as
a senior information security executive
and as a consultant to senior security
executives at Global 200 companies in
19 countries. Contact him at denis.
verdon@fnf.com.

Gary McGraw’s biography appears in
the Guest Editors’ Introduction on p. 19.

Mid Atlantic (product/recruitment)
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0161
Email: db.ieeemedia@ieee.org

New England (product)
Jody Estabrook
Phone: +1 978 244 0192
Fax: +1 978 244 0103
Email: je.ieeemedia@ieee.org

New England (recruitment)
Robert Zwick
Phone: +1 212 419 7765
Fax: +1 212 419 7570
Email: r..zwick@ieee.org

Connecticut (product)
Stan Greenfield
Phone: +1 203 938 2418
Fax: +1 203 938 3211
Email: greenco@optonline.net

Midwest (product)
Dave Jones
Phone: +1 708 442 5633
Fax: +1 708 442 7620
Email: dj.ieeemedia@ieee.org

Will Hamilton
Phone: +1 269 381 2156
Fax: +1 269 381 2556
Email: wh.ieeemedia@ieee.org

Joe DiNardo
Phone: +1 440 248 2456
Fax: +1 440 248 2594
Email: jd.ieeemedia@ieee.org

Southeast (recruitment)
Jana Smith
Phone: +1 404 256 3800
Fax: +1 404 255 7942
Email: jsmith@bmmatlanta.com

Southeast (product)
Bob Doran
Phone: +1 770 587 9421
Fax: +1 770 587 9501
Email: bd.ieeemedia@ieee.org

Midwest/Southwest (recruitment)
Darcy Giovingo
Phone: +1 847 498-4520
Fax: +1 847 498-5911
Email: dg.ieeemedia@ieee.org

Southwest (product)
Josh Mayer
Phone: +1 972 423 5507
Fax: +1 972 423 6858
Email: josh.mayer@wageneckassociates.com

Northwest (product)
Peter D. Scott
Phone: +1 415 421-7950
Fax: +1 415 398-4156
Email: peterd@pscottassoc.com

Southern CA (product)
Marshall Rubin
Phone: +1 818 888 2407
Fax: +1 818 888 4907
Email: mr.ieeemedia@ieee.org

Northwest/Southern CA (recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Japan
Sandy Brown
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sbrown@computer.org

Europe (product/recruitmen)
Hilary Turnbull
Phone: +44 1875 825700
Fax: +44 1875 825701
Email: impress@impressmedia.com

A D V E R T I S E R / P R O D U C T I N D E X J U L Y / A U G U S T 2 0 0 4

Addison Wesley Cover 4

ALPHATECH, Inc. Cover 2

Embedded Systems Conference 16

Mobile & Wireless Security Conference Cover 3

National Security Agency 8

Usenix Security Symposium 10

Advertising PersonnelAdvertiser Page Number

Marion Delaney
IEEE Media, Advertising Director
Phone: +1 212 419 7766
Fax: +1 212 419 7589
Email: md.ieeemedia@ieee.org
Marian Anderson
Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
IEEE Computer Society,
Business Development Manager
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

Advertising Sales Representatives

