
Editorial Board Member Profile

Like many of today’s security pro-
fessionals, I did not begin my career
working in security. I started with op-
erating systems and networking in the
oil industry and then at IBM Re-
search. In 1996, I had finished an early
version of Domain Name Systems
Security Extensions (DNSSEC) and
had been applying genetic algorithms
to network design when I was offered
the chance to found IBM’s ethical
hackers team. The goal was to help
customers understand their security
stance and security shortcomings by
trying to break into their systems.

I could have continued my re-
search, but this new team sounded like
a lot of fun. It turned out to be fasci-
nating work. We helped many clients
while IBM’s security consultants
learned from us. After a few years, the
consultants took over and the team
moved on to tool building and operat-
ing system security issues. Since then, I
have been leading other security- and
privacy-related departments at the T.J.
Watson Research Center, whose
focus has ranged from cryptography
research to secure hardware to Web
services security. But enough about
me—let’s look at where we are with
security and privacy.

Increasing
vulnerabilities
Currently, computer security and

personal information privacy are
popular topics. Unfortunately, that’s
not because everyone is applauding
today’s systems as being well secured
or, in some cases, even securable. En-
terprises and regular folks rely so
heavily on their computers that inci-
dents like the recent plague of Blaster
and Sobig worms have caused wide-
spread alarm. (According to Paul
Wood of Messagelabs [www.msnbc.
com/news/955498.asp], in the four
days starting 18 August 2003, one in
17 emails sent around the world had
been affected by Sobig.F, making it
the fastest infection ever.)

The constant threat of viruses and
worms, combined with the still-
strong concern about 9/11-like dis-
asters and business continuity, has
pushed security to the top of every-
one’s list. InfoWorld’s 2003 Security
Survey (www.infoworld.com/pdf/
special_report/SecurRep2003.pdf)
found broad agreement regarding the
top threats to enterprise network se-
curity: Trojans, viruses, worms, and
other malicious code; hackers; em-
ployee error; and employee, ex-
employee, and partner sabotage. If
you visit CERT’s Web site and look
at past years’ statistics (www.cert.org/
stats/cert_stats.html), you’ll find that
roughly 10 new vulnerabilities are re-
ported each day. And while we all
complain about how disrupting it is

to constantly install patches or update
virus signatures on our personal sys-
tems, what about the enterprise that
has thousands of machines with dif-
ferent problems, patch levels, and
problem-avoidance procedures? Fi-
nally, how should we feel if that en-
terprise is operating a critical national
infrastructure component, such as
energy management, telecommuni-
cations, or transportation?

How did we get into this mess?

If it hurts when
you do that,
then don’t do it!
Far too often, this old punch line ap-
plies to products’ security and pri-
vacy aspects. Whether because of a
complicated interface, endless con-
figuration options, or incompatible
point solutions written by indiffer-
ent programmers, many products are
too hard to use, introduce unaccept-
able performance costs, or just don’t
work. Even products that specifically
focus on helping with security and
privacy challenges are sometimes
hopelessly complex or obscure. As a
result, users and system administra-
tors often just turn off security con-
trols or ignore their alerts.

We’re in this mess primarily be-
cause of three bad habits:

• Fast development. In the computer
boom time of the 90s, the focus
was on getting the software out fast,
gain market position, and then
(maybe) working with the first sev-
eral customers to resolve any bugs
or problems. Missing a market op-
portunity was far more deadly for a
company than releasing software
before it was ready. There was also a
severe shortage of experienced

CHARLES C.
PALMER

IBM T.J.
Watson
Research
Center

I
am pleased and honored to have been asked to serve on

IEEE Security & Privacy’s editorial board. This publica-

tion offers a refreshing bridge over the gap in the litera-

ture between pure academic papers and the world of

the practitioner.

Can We Win
the Security Game?

10 PUBLISHED BY THE IEEE COMPUTER SOCIETY � 1540-7993/04/$20.00 © 2004 IEEE � IEEE SECURITY & PRIVACY

Editorial Board Member Profile

programmers, which meant that
many under-experienced people
were writing thousands of lines of
software as fast as they could.

• Add-on security. Too often, security
and privacy considerations are un-
derspecified, weak, or simply omit-
ted from a product’s design. Adding
strong, effective security and pri-
vacy capabilities to an existing de-
sign or implementation is just not
possible. For example, imagine
adding air bags to an automobile
after it rolled off the assembly line;
would you feel safe driving that car?

• Feature creep. Having escaped the
constraints of small memory sizes
and slow processor speeds, soft-
ware developers seem to have little
motivation to resist the rampant
feature creep in today’s systems. As
systems have become increasingly
complex, so have their program-
ming models. Today’s software de-
velopment tools haven’t stepped
up to the task of helping program-
mers efficiently design and imple-
ment these complicated systems,
and they certainly don’t help them
develop secure software.

So, with all these problems, what do
we do now?

Security engineering
Writing software is unlike any other
kind of engineering humans have
ever done. When a skilled potter
makes a water pitcher, the most im-
portant indicators of its quality are ev-
ident to the pitcher’s buyer: attributes
such as a good handle, a well-formed
spout point for pouring, and being
free of leaky cracks, to name a few. As
engineering matured, so did the tools
engineers used, which furthered the
complexity of the things they built.

Over time, consumers of these
goods became less able to assess their
quality and were forced to trust the
engineers. For example, when the
Romans built their aqueducts, the
typical citizen, who fully understood
the pitcher, did not understand the
details of collecting and making

water flow to the fountain, at which
they filled their pitchers. Clearly, if an
aqueduct leaked, citizens might no-
tice it. But other, more subtle, design
bugs would surely have gone unno-
ticed. Over time, those same engi-
neers developed standard practices
for building aqueducts and other sys-
tems, so that others might learn from
their experiences and avoid disasters.

Fast forward to today, when soft-
ware engineers build such complex
things that the vast majority of hu-
mans (including other engineers!)
have no idea how they work. These
creations defy even the very tools of
the traditional engineering trade: re-
liable tools for standard benchmarks,
rigorous mathematical analyses of an
implementation’s accuracy, com-
plete test coverage of all its potential
uses, and so on.

Software engineering techniques
attempt to address these concerns.
Such techniques typically require
engineers to spend time during the
design phase carefully specifying
how the target system should work
using highly expressive modeling
tools such as the Unified Modeling
Language (UML). We then bring
out tools that convert design dia-
grams into code, formal modeling
techniques that verify a design, and
test-coverage tools that dutifully run
for days, all to ensure that the code
does what it is supposed to do.

So how can we be sure that the

code will not do other things as well?
To meet this challenge, the devel-
oper must stop thinking only about
what the code should do, and instead
think about how the code might be
misused, abused, attacked, or
crashed. This is the realm of security

engineering. Teaching this discipline
requires the developer to assume a
new mental model during the entire
software life cycle, from require-
ments gathering to design and im-
plementation on through to testing
and support. Mark G. Graff and
Kenneth R. van Wyk’s Secure Coding
comprehensively covers this topic,
and I highly recommend it.1

How can software engineers de-
termine that their recently developed
software does not pose a security risk?
While purists would point out that
answering this question for any but
the most trivial software is intractable,
the security engineer can use these
tools and techniques to study and pre-
dict the target software’s security level.
This can lead to a formal security cer-
tification for the software when an in-
dependent evaluator standardizes and
carries out the process. This certified
“assurance level” is used somewhat
like the US Underwriter’s Labs’ mark
on various appliances: it represents
the approval of an objective organiza-
tion that both the developer and the
customer can trust. For the CIO buy-
ing secure software, these ratings pro-
vide a standard for comparing the as-
surance level of various products,
rather than having to trust marketing
messages and brochures.

However, these certifications have
their downsides. First, they can be
very expensive to obtain, requiring
longer, more detailed design and im-

plementation processes and far more
documentation than for noncertified
products. Furthermore, each certifi-
cation covers only a single software
release—each subsequent release re-
quires another, albeit smaller, evalua-
tion to maintain the certification.

www.computer.org/security/ � IEEE SECURITY & PRIVACY 11

Systems built without specifications
cannot fail; they merely present surprises
– usually unpleasant.

—Robert Morris Sr.

Editorial Board Member Profile

Both of these facts can result in less
frequent software releases.

Some might argue that the evalu-
ators, who are certified by govern-
ment agencies or by industry groups
with their own guidelines and best
practices, might be no more skilled
than the software developers. This
could indeed be the case, but confi-
dence that the software will behave
properly increases because the evalu-
ators are objective parties with repu-
tations (and businesses) to protect.
They review the software for security
and privacy concerns and, if granted
certification, must publicly state that
they performed the evaluation.
When combined with the strong
documentation required for such
evaluations, the certification process
clearly has value. So, while supporters
of the formal certification process
admit that it is not perfect, there really
is no other rational yardstick with
which to predict the level of security
some software will provide.

Along with changing the way
software engineers think about the
security their work provides, and
how they can convince others that
they have succeeded via formal cer-
tification, software engineers need
some help: the software engineer-
ing tools currently used offer little
in the way of security and privacy
development support. Tomorrow’s
software engineers need far better
tools than we have today to support

the security engineering goal.
Some of these new tools are begin-
ning to appear now, doing static se-
curity analyses of code, deadlock
predictions, and even suggesting se-
curity and privacy best practices to
the developer throughout the soft-
ware life cycle.

Security
must disappear
Although my product development
colleagues cringe when they hear
me say it, our only hope for securing
the enterprise of the future is for se-
curity and privacy management to
disappear. I’m not advocating that
we just give up and go home.
Rather, I’m suggesting that the final
result of serious efforts to incorpo-
rate security and privacy require-
ments into the software life cycle will
result in products that are easy to use
and configure, with nonintrusive se-
curity and privacy.

While we struggle to manage our
current systems’ security and privacy,
it’s clear that the steady march of sys-
tem complexity will continue, posing
even tougher challenges tomorrow.
So, in addition to discarding obnox-
ious user interfaces and overcompli-
cated configuration screens, we need
operational, or runtime, help as well.
For this, some autonomic computing
concepts (see www.research.ibm.
com/autonomic/) can be brought to
bear. Concepts of self-optimization,
self-protection, and self-healing are
goals that security and privacy advo-
cates share. Although the security-
specific autonomic computing tech-
niques (see www.research.ibm.com/
journal/sj/421/chess.pdf) hold pro-
mise, we must tread lightly.

We have already seen the failure
of an early attempt at autonomic se-
curity when some routers were con-
figured to automatically block traffic
from network addresses suspected of
initiating attacks. Hackers caused the
routers to effectively disconnect
themselves from the network by
simulating attacks from thousands of
harmless addresses.

I t is refreshing to see increased in-
dustry awareness of products’ secu-

rity and privacy aspects along with in-
creased customer demand for
certified products. Despite the state-
ments I’ve made here, I don’t mean to
suggest that all products should be
certified or mathematically proven to
match their specifications. However,
as long as we continue to accept
shoddy software engineering prac-
tices, we will continue to be at an
ever-increasing risk of system failures.

The goal is that product develop-
ers actively consider their products’
security and privacy issues through-
out the life cycle, consciously decid-
ing just how far they want to go to-
ward addressing those issues. This
security awareness extends to cus-
tomers as well, who should think
about their security and privacy
needs. Security and privacy is, of
course, just a risk-management game.
Our only hope for a secure, privacy-
respecting future is for industry, cus-
tomers, and academia to no longer
treat this as a game of chance.

Reference
1. M.G. Graff and K.R. van Wyk,

Secure Coding: Principles & Practices,
O’Reilly, 2003.

Charles C. Palmer manages the IBM
Thomas J. Watson Research Center’s
Security, Privacy, and Cryptography
Departments. His teams work in the
areas of cryptography research, Internet
security technologies, Java security, Web
services security, privacy, biometrics,
secure embedded systems, high-assur-
ance systems, and the global security
analysis lab, also known as the ethical
hackers lab, which he founded in 1995.
He has also been an adjunct professor of
computer science at Polytechnic Univer-
sity in New York. Although his primary
focus is now security and privacy, Palmer
remains active in the genetic algorithms
community by participating in program
committees. He has a PhD in computer
science from Polytechnic University, an
MS in computer science from Tulane Uni-
versity, and a BS in computer science
from Oklahoma State University. He is a
member of the ACM, the IEEE, and the
IEEE Computer Society. Contact him at
ccpalmer@us.ibm.com; www.research.
ibm.com/people/c/cpalmer/.

12 IEEE SECURITY & PRIVACY � JANUARY/FEBRUARY 2004

DON’TGET CUT OFF
you@computer.orgyou@computer.org

Take your e-mail address with you

Get a free e-mail alias

from the IEEE

Computer Society and

Take your e-mail address with you

Get a free e-mail alias

from the IEEE

Computer Society and

Sign up today at

computer.org/WebAccounts/alias.htm

Sign up today at

computer.org/WebAccounts/alias.htm

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

