I. Introduction
Modern telecommunication devices are required to be small and able to integrate several functionalities. The antennas used for these wireless systems must hence possess multiband capabilities but yet remain compact. One of the most common types of antenna used for conventional devices are patch antennas, due to their low cost of manufacture and lightweight nature. In addition, they have a high radiation efficiency [1], [2]. Patch antennas are resonant antennas that typically operate at the frequency whereby the length of a dimension is half a wavelength. This requirement may render the antenna too large for low-frequency applications. Consequently, some recent studies have focused on achieving compact patch antennas that can still function at lower frequencies [3]–[5]. A classical and simple method for reducing the operational electrical-size of patch antennas is to implement a modified structure known as PIFA (Planar Inverted F Antenna), which has a metallic wall on one of the sides. In this way, the antenna fulfils the boundary conditions with a quarter wavelength distance between the open and the short-circuit, instead of the half wavelength between two open boundaries in conventional patch antennas [2], [6].