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Applications to Antenna Problems
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Abstract—This is a tutorial presentation of the Mellin-transform
(MT) method for the exact calculation of one-dimensional definite
integrals, and an illustration of the application of this method to
antenna/electromagnetics problems. Once the basics have been
mastered, one quickly realizes that the MT-method is extremely
powerful, often yielding closed-form expressions very difficult to
come up with other methods or to deduce from the usual tables
of integrals. Yet, as opposed to other methods, the MT-method
is very straightforward to apply; it usually requires laborious
calculations, but little ingenuity. In fact, the MT-method is used
by Mathematica to symbolically calculate definite integrals. The
first part of this paper is a step-by-step tutorial, proceeding from
first principles. It includes basic information on Mellin-Barnes
integrals and generalized hypergeometric functions, and summa-
rizes the key ideas of the MT-method. In the remaining parts,
the MT-method is applied to three examples from the antenna
area. The results here are believed to be new, at least in the an-
tenna/electromagnetics literature. In our first example, we obtain a
closed-form expression, as a generalized hypergeometric function,
for the power radiated by a constant-current circular-loop an-
tenna; this quantity has been extensively discussed recently. Our
second example concerns the admittance of a 2-D slot antenna.
In both these examples, the exact closed-form expressions are
applied to improve upon existing formulas in standard antenna
textbooks. In our third example, finally, we obtain a very simple
expression for an integral arising in recent, unpublished studies of
unbounded, biaxially anisotropic media.

Index Terms—Antenna theory, integration (mathematics),
Mellin transforms.

I. INTRODUCTION

AQUICK look through any advanced antenna textbook, or
through any issue of these TRANSACTIONS, reveals that

definite integrals play an important role in theoretical antenna
and electromagnetics studies. In radiation problems, workers in
the field integrate along wire antennas, over planar apertures,
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and over enclosing surfaces; they obtain exact solutions to dif-
ferential equations using integral transforms, and solve integral
equations approximately using projection methods, such as
Galerkin’s method, which introduce additional integrations.
More often than not, the integrals encountered are compli-
cated and one resorts to numerical-integration techniques. But
investigating whether the integrals can be evaluated analyti-
cally is always worth some effort: Closed-form expressions
are usually preferable for numerical calculations, especially
when the expressions involve special functions computable
by packaged routines. Furthermore, such expressions can
be useful for further analytical work and can provide better
physical insight. This paper reviews a powerful technique for
evaluating one-dimensional definite integrals exactly, applies
this technique to certain antenna/electromagnetics problems,
and uses the resulting closed-form expressions to obtain further
interesting, physically revealing results.

The power of the technique is evidenced by the fact that it
is used by modern packages that perform symbolic integration.
In particular, it forms an important part of Mathematica’s1 rou-
tine which, according to S. Wolfram [1], “can
evaluate most definite integrals listed in standard books
of tables.” Furthermore, the technique “has been used in an
essential manner” [2] for the creation of the integral tables in
the monumental, three-volume reference work [3]–[5]. We call
the technique the “Mellin-transform method” (MT-method), be-
cause taking a Mellin transform (MT) is the method’s initial and
key step. But it is known in the literature [1] with other names,
such as the Marichev-Adamchik method [2], [6]–[8].

A key feature of the MT-method is that it often provides
results in terms of generalized hypergeometric functions

or, more generally, in terms of Meijer -functions or
Mellin-Barnes (MB) integrals. The , which are defined by
convergent series, can often be re-written in terms of simpler
special functions; thus, the are frequently—but not al-
ways—just a convenient intermediate step. The same is true
for the -function, whose definition is more involved and inti-
mately related to the MT. However, even expressions involving

can nowadays be very useful for numerical calculations:

1Mathematica is a registered product of Wolfram Research, Inc., Champaign,
IL 61820-7237 USA.
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For the numerical computation of , today’s packaged rou-
tines use sophisticated methods and do not rely exclusively on
the aforementioned series definition. Such routines—which
will, hopefully, further improve in the near future—can be used
as black boxes by the user. Today, packaged routines exist even
for the more general -function.

Why take the trouble to learn the MT-method? Why not just
use modern symbolic integration routines? Given an integral,
one can (and, in the author’s opinion, should!) first attempt eval-
uation with Mathematica or other packages. One should also try
lookup in integral tables. Nevertheless, as our paper will expli-
cate, learning the method is worthwhile for a number of rea-
sons: i) The method is (once the basics have been mastered)
easy to apply. ii) We can sometimes combine the MT-method
with additional manipulations to yield further useful results. iii)
Learning the MT-method serves as an excellent introduction to
the and even more so, to the -function. Thus, familiarity
with the method can help us appreciate and understand our an-
swers. iv) Intermediate expressions (especially the expression
as a MB-integral) can greatly help further analytical work in-
cluding, in particular, asymptotic analysis. Thus sometimes one
is interested in more than just the final result. v) Finally, many
workers (the author included!) simply like to check their results
independently. This is especially true when the integrals contain
several parameters upon which the form of the answer depends.

It is worth mentioning that, even in the primarily mathemat-
ical literature, the MT-method is often underutilized. For ex-
ample, it is barely mentioned in D. Zwillinger’s 1992 Hand-
book of Integration [9]. As another example, when discussing
the technique (in the very much related context of asymptotic
expansions), M. J. Ablowitz and A. S. Fokas ([10, p. 504]) state,
“This method, although often quick and easy to apply, is not
widely known.”

The first part of this paper, Section II, is a tutorial on the
MT-method, concluding with a first example of the method’s
application. Section II proceeds from first principles and in-
cludes a review of the gamma function, the Mellin transform,
the , and MB-integrals. Our treatment here is introductory:
We pay little attention to generality or to the many mathemat-
ical subtleties of our subject. In particular, we do not provide
validity conditions for formulas involving general functions.
Section II is, necessarily, not very different from other introduc-
tory treatments of the subject [8], [11]–[13]. Some elementary
complex analysis, including the idea of analytic continuation, is
a prerequisite for understanding Section II which, otherwise, is
self-contained. The next two sections present two original ex-
ample-integrals, arising in antenna problems (loop, microstrip,
and aperture antennas), to which the MT-method is applied. In
each example, we give background information (theory and/or
applications), use the MT-method to evaluate the relevant inte-
grals exactly and discuss, apply, or interpret the exact results.
Section V presents a similar discussion for a certain integral
arising in unpublished studies on biaxially anisotropic media;
our treatment here combines the MT-method with additional
manipulations and is more advanced. Many of the derivations
in this paper are somewhat sketchy; an interested reader will
certainly benefit by working out omitted details.

II. TUTORIAL ON THE MT-METHOD

Let denote a complex-valued function of the real, pos-
itive variable . The MT of will be denoted by and,
alternatively, by the more complete notation . The
definition of the MT involves an integral

(1)

The new variable , which is taken to be complex, must be re-
stricted to those values for which the integral converges. In gen-
eral, we have convergence at only if is larger than
a certain value, and at only if is smaller than a
certain value. Thus, if the MT of [as defined in (1)] exists
at all, it exists in a vertical strip in the complex -plane. Further-
more, under mild conditions on , it can be shown ([6], p. 39)
that is an analytic function of in that strip. The strip will
be referred to by the term “strip of initial definition” (SID). For
the application considered here, analytic continuation of to
other complex values of is always necessary.

A. Mellin Transform: Basic Properties

We now turn to some properties of the MT. First of all, the
MT is related to other, more usual, transforms. For example, if

is the Fourier transform of
, one has . And if

is the usual (one-sided) Laplace transform of then
. Thus, many properties of the

LT and the FT can be rephrased for the MT. For instance, the
aforementioned analyticity of the MT in a vertical strip can be
viewed as a consequence of the well-known analyticity of the
LT in a right-half plane.

It can be shown (via the Fourier or Laplace inversion formula)
that the inversion formula for the MT is ([6, p. 39]), [11]

(2)

where the integration path is a vertical line in the complex
-plane, lying within the SID, as shown in Fig. 1. Formula (2)

uniquely determines from . Let be
the SID of . The reader is invited to show, directly from the
definition (1), the following elementary properties of the MT:

(3)

(4)

(5)
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Fig. 1. The integration path in the inversion formula (2) is a vertical line in the
complex z-plane, lying within the strip of initial definition SID.

B. Mellin Transform: Parseval Formula and Related
Properties

The Fourier or Laplace transform of the product of two func-
tions is given by the convolution of the individual transforms
(where convolution is defined differently for the two trans-
forms.) The corresponding statement for the Mellin transform
is

(6)

in which belongs to the SID of . Once again, the right-
hand side (RHS) is a convolution of sorts. To show (6), begin
from its left-hand side (LHS), use (2) to introduce , and
interchange the order of integration. A slight generalization of
(6) is

(7)

which is a combination of (6) and (3). The special case
of (7) is

(8)

in which belongs both to the SID of and to the SID of
—for (8) to hold, it is necessary that these two SIDs

overlap. Note that the special case of (8) is what is usually
called the Parseval formula for the MT.

Formula (8) forms the core of the MT-method. It is worth
re-stating (8) somewhat differently, and outlining an alternative
derivation. The operation on the LHS is the so-called Mellin

convolution of the two functions and ; we (but not all
authors!) denote it by so that, by definition

(9)

The fundamental difference from the more usual types of con-
volution is that the product , not the difference , is the
argument of one of the two integrand functions. By virtue of the
inversion formula, we can re-write (8) and (9) as

(10)

which can also be shown directly from (9), (3), and (1), with no
recourse to an inversion formula. In the RHS, one has a product
of MTs (one of them is actually reflected and translated), so that
formula (10) is, in a certain sense, the reverse of (6), with the
Mellin convolution in the original ( -) domain and a product in
the transform ( -) domain.

C. Gamma Function; Psi Function; Pochhammer’s Symbol

The gamma function is defined as the MT of , viz.

(11)

The restriction , necessary for convergence of the
integral at , means that the SID is, in this case, the entire
right-half complex -plane. It can be shown that

(12)

(split (11) into ; expand into Taylor series in first
integral; integrate term-by-term.) In the derivation of (12), it
was assumed that . However, the RHS of (12) is
analytic for all except . Thus, (12) provides the
analytic continuation of to (complex) values of for which
the defining integral (11) did not make sense.

The gamma function has many properties. We give the ones
most useful for the MT-method. From (12), it is seen that, at

has simple poles with cor-
responding residues . The recur-
rence formula

(13)

is easily shown by integrating (11) by parts. With , it
follows that

(14)
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It is possible to show [14] that

(15)

which is called the reflection formula. As a consequence of (15),
. With the recurrence formula, one can further de-

termine the values . As an additional conse-
quence of (15), is analytic for all . That is, has no
zeros. The familiar Stirling’s formula [14] is an asymptotic ap-
proximation to for large, complex arguments. Finally, the
duplication formula [14] is

(16)

The derivative of is usually computed through the psi
function, defined by

(17)

It can be shown [14] that

(18)

where the quantity within parentheses is to be interpreted as 0
when and where is Euler’s
constant. We finally define Pochhammer’s symbol by

(19)

This symbol, which will be used in the definition of the ,
satisfies the recursion formula

(20)

D. Simple Applications of Mellin Transforms and the Gamma
Function

To familiarize readers with the foregoing material, and to
prepare for what follows, we now provide simple examples in-
volving the MT and .

Application 1: Let us calculate , and di-
rectly verify the inversion formula.

With , the integrand of (1) behaves like as
and like as . Thus, the integral converges

if . For such values of

(21)

(integrate by parts; identify resulting integral with ; use
(13).) Thus, the Mellin transforms of and are both

. The two SID, however, do not overlap. Therefore, the two
corresponding inversion formulas (2) differ because changes.

To directly verify that
(for ; compare with the inversion formula for

), collapse the contour until it wraps around the poles at
on the negative real axis—a procedure to be

described, somewhat loosely, as “closing the contour at left.”
As will be discussed (briefly) in Section VI, this procedure is
indeed legitimate so that, by the residue theorem

(22)

In (22), and throughout this paper, denotes
the residue of at .

Application 2: One can easily verify the identity

(23)

by induction: The cases and can be related by (13) and
(20).

Application 3: For has simple poles
at , where

(24)

These poles are equispaced and form a semi-infinite lattice. For
the important special case of real , the lattice is parallel to the
real axis. For any nonzero , the corresponding residues involve
powers of

(25)

In the special case , the lattice continues in-
definitely to the left (to the right), and the powers of ascend
(descend).

Application 4: Let us find the poles and residues of
.

At , there is a simple pole with residue . At
, there are double poles. The residue at is

found by first writing

(26)

The functions , and are analytic at
and can be expanded in Taylor series about that point. In partic-
ular, . When the
corresponding series are multiplied, the desired residue is the
coefficient of . It is

(27)
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TABLE I
SELECTED FUNCTIONS f(x), TOGETHER WITH THEIR MTS ~f(z), AND THE SID OF ~f(z)

The residue at any other double pole can be found in a similar
manner. For , the reader is invited to show that the
final answer is

(28)

Besides powers of , the residues at these double poles also in-
volve the logarithm of . Residue calculations like this are im-
portant for the MT-method, so further information is provided
in our discussion-Section VI.

E. Table Lookup of Mellin Transforms; Mellin-Barnes
Integrals

When calculating integrals with the MT-method, one needs
to find the MTs of functions involved in the integrand. This is
usually done using symbolic programs such as Mathematica or
Matlab,2 or published tables of MTs. We present our own short
Table I, which shows several functions , their MTs ,
and the corresponding SIDs. The specific functions have been
selected for the simple reason that they will be useful when eval-
uating our example-integrals.

A primary goal of the MT-method is to find a Mellin-Barnes
(MB) integral representation of the integral to be evaluated, so
we proceed to discuss MB-integrals. What one immediately ob-
serves is that each of Table I has been written as a product,
in which the factors have the form , or

, where all ’s are real. Let us call this a “standard product.”

2Matlab is a registered trademark of The MathWorks, Natick, MA.

The integrands of the corresponding inversion integrals will also
be “standard products” multiplied by . For instance, as a
consequence of Entry 4 of Table I and (2) and (3), one has

(29)

Convergent integrals like the one in the RHS of (29)—with
integrands of the aforementioned type, integrated along proper
contours in the -plane—are called Mellin-Barnes integrals
(MB-integrals) ([6, p. 11], [15, §1.19]). They are very important
for us, because “most” functions can be written as MB-in-
tegrals, or as linear combinations of MB-integrals. In other
words, their MTs can be written as linear combinations
of standard products. (This statement is formulated precisely
in [6].)

A standard product can often be written in other “non-stan-
dard” forms [simple illustrations of this fact are provided by the
reflection and recurrence formulas (15) and (13)]. Since MB-in-
tegrals are important for us, it is preferable to use “standard
products” when possible. This brings us back to discussing pub-
lished tables of MTs. Many well-known tables—such as the
standard table of integrals [16]—do not always express their
MTs as standard products, so it is preferable to use tables that
so do. By far the most extensive such table is ([5, 8.4]) in the
three-volume work by Prudnikov, Brychkov, and Marichev. (We
also mention the table in [6], as well as the much shorter tables
in [12].)
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Table I will be used shortly, when we deal with our example-
integrals. For now, the reader may wish to familiarize him/her-
self with the aforementioned published tables by using them to
verify Table I. Note that: i) The table ([5, 8.4]) should be used
in conjunction with the MT-properties of Section II-A. For ex-
ample, Entry 4 of Table I comes from [5, 8.4.5.11] and (5) and
(4). ii) Formula [5, 8.4.19.15], which can be used to derive Entry
6, can be simplified with aid of (16), resulting in one less gamma
function.

F. Generalized Hypergeometric Functions

The MT-method often gives results in terms of the gener-
alized hypergeometric function . The most striking differ-
ence of this “function” with the more usual “special functions
of mathematical physics” (the Bessel function , say) is that

is much more general; it involves many parameters and, de-
pending on their values, often reduces to more usual functions.
“Very many” functions (including ) have representations.

The extensive table ([5, Ch. 7]) can be searched in a system-
atic manner to see whether a given can be reduced to a more
usual special function. It is obviously very useful for our pur-
poses and will be referred to as the “reduction table” for the

. A similar table can be found online [17]. We now proceed
to discuss in more detail.

The generalized hypergeometric series of order
is defined as a power series in and is denoted by

. The expressions for
the power-series coefficients involve the numbers and
the numbers , called upper and lower
parameters, respectively. The precise definition is

(30)

where all .3 In (30), and throughout this
paper, empty products or sums are to be interpreted, in the usual
manner, as unity or zero, respectively. Note that the order is
reduced when an upper and a lower parameter are equal.

For the defining series to make sense, it must converge, at
least for some . The convergence/divergence can be examined
by application of the ratio test for power series and Stirling’s for-
mula. Let us first mention that the series diverges for all nonzero

(zero radius of convergence) when ([5, 7.2.3]). On
the other hand ([5, 7.2.3]):

Case 1: When , the series converges for all complex
and defines the so-called generalized hypergeometric function.

Case 2: When , the series converges inside the
unit -circle and diverges outside, so that the radius of conver-
gence here equals 1. In this case, the generalized hypergeometric
function—still denoted by —is
defined i) by the series (30) when ; ii) by the analytic
continuation of (30) when .

There now exist packaged routines for the numerical calcu-
lation of , which should greatly enhance the use of in
engineering applications. For numerical computation, today’s

3This restriction is required because (�m) vanishes for sufficiently large
n; see (23).

packaged routines do not rely exclusively on the series defini-
tion (30)4 but, rather, on the vast number of properties of the

. Extensive lists of properties are in [5, Ch. 7] and online
in [17]. When numerical results are of primary concern, it is
today often sufficient to express the quantity of interest in terms
of , and to use the aforementioned routines as black boxes.
More generally, when one encounters series in theoretical work,
it is always beneficial to attempt to identify the series with a
because of the many tabulated properties of and because of
the ease in numerical evaluation of the .

By definition, the are ascending series in , so the first
few terms are often simple approximations for small . In
physical problems, such approximations can be especially re-
vealing. But a can help provide simple approximations even
for large , as large- asymptotic expansions for have
been derived and tabulated [17], [18].

A yet more general function than is the Meijer-
function. Roughly speaking, the -function is a special type
of MB-integral in which all coefficients of the factors

are 1 or . Today, numerical
computation of can be done by packaged routines (in Math-
ematica 5.0, for example). A definition of that is usually
adequate is provided in [19, §2.1]. The -function representa-
tion of is [5, 8.4.51.1].

G. The MT-Method for Integral Evaluation: Basic Ideas

We finally come to the MT-method itself. It applies to inte-
grals which are Mellin convolutions. That is, the integral

to be evaluated can be written as

(31)

where is a positive parameter. Many integrals have this form
(all Laplace transforms, for example), or can be written in terms
of integrals having this form (all Fourier transforms, for ex-
ample). We first give a general (but sketchy) description of the
MT-method.

First Step: Apply formula (8) to obtain a complex-integral
representation of , viz.

(32)

which will, hopefully, be a MB-integral. By the discussion in
Section II.B, this step is the same as taking the MT of (31) (with
respect to ), using formula (10) and, finally, the inversion for-
mula (2), in which . In (32), belongs
both to the SID of and to the SID of , which must
overlap.

Second Step: Very often, straightforward manipulation of
(32) yields a -function representation of . In this paper,
we prefer to emphasize the following procedure: In (32),
determine the singularities to the left of the contour, which
will hopefully be poles (not necessarily simple), located at

. Then, close the contour at left (we will briefly

4To quickly persuade oneself of this, note that both Mathematica and Matlab
can handle F when jzj > 1 in Case 2.
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discuss when this is legitimate in Section VI), and apply the
residue theorem to obtain a series representation for

(33)

Typically, (33) is an ascending series expansion. When this is
the case, the first few terms of the series are sometimes simple,
physically revealing approximations for small . Also, it often
happens (but not always, as we will see) that one can identify
the series in (33) with a . We now present a simple example
illustrating the MT-method.

H. The MT-Method for Integral Evaluation: A First Example

Consider the integral

(34)

(In Section IV, we will discuss how such an integral arises in
antenna problems and specify the meaning of .) Let us, in this
first example, apply the MT-method without omitting details.
The integral can be written as in (31), where

(35)

The MT can be found directly as Entry 4 of Table I. From
Entry 2, we deduce that

(36)

The SID of and do overlap; the strip of overlap
is so that (32) gives the following MB-integral
representation of :

(37)

Each gamma function in (37) contributes to the integrand a
semi-infinite lattice of poles (if the function is in the numerator),
or zeros (if in the denominator). The locations of these poles and
zeros can be determined using Application 3 of Section II-D.
Evidently, a pole contribution at a specified location cancels a
zero contribution at the same location—for example, there is no
pole or zero at . It follows that, to the left of the inversion
path, there are simple poles at . For reasons to be
outlined in Section VI, it is legitimate to close the contour at
left. Therefore, (33) is, in our case

(38)

To evaluate the residues, set except in ,
to which the poles at are due. Then, use
Application 3 of Section II-D once again

(39)

Now set and express the three remaining gamma
functions in terms of Pochhammer’s symbol using (19). By
Section II-C, and . Finally,
compare with the definition (30) of (Case 1 in Section II-F)
to obtain

(40)

Equation (40) (or the equivalent series form (39), which is less
preferable for numerical calculation by modern routines) is our
final result. (Entry 7.14.2.46 of the “reduction table” in [5, Ch.
7] actually provides a “simplified” answer. But that answer in-
volves rather unusual special functions—a Laguerre function
and a modified Struve function—so it will not be repeated here.)
For completeness, let us also mention that (39) can be obtained
by more elementary methods. In (34), expand
into its Taylor series (this can be done by writing

and using the well-known series for the cosine).
Then, integrate term-by-term, using Entry 2 of Table I, which is
a standard tabulated integral.

We now proceed to further antenna problems to which the
MT-method can be applied. Most of the final exact results that
follow (as well as those that precede) have been verified numeri-
cally. That is, the final result agrees with numerical evaluation of
the original integral. Such checks are always a good idea when
possible.

III. POWER RADIATED BY CERTAIN CIRCULAR ANTENNAS

A. Constant-Current Circular-Loop Antennas

Circular, thin-wire loop antennas are one of the most basic
types of radiators and are discussed in standard textbooks, e.g.,
[20, Ch. 5]. Simple in construction, they are used for frequencies
from about 3 MHz up to microwave. Electrically small loops
are rather poor radiators (the radiation resistance is usually
smaller than the loss resistance) and are therefore used when ef-
ficiency is not of primary importance. Large loops have a larger

(our result (48) will illuminate this) and are therefore used
primarily as elements of directional arrays—such as helical an-
tennas and Yagi-Uda arrays—with the loop circumference and
inter-element spacing chosen to achieve the desired directional
properties.

Many studies have focused on the case of constant loop cur-
rent . Such studies are practically useful for at least two rea-
sons: For sufficiently small loops (and, also, for large inter-ele-
ment spacings in the case where the loop is an array element) the
current is truly constant. Second, constant current distributions
can be achieved even for large loops ([20, p. 249]): one divides
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the loop into sections and feeds each section with a different
feed line. Often, all lines are driven from a common source.

An accurate method for determining the field radiated by
a constant-current, circular-loop, thin-wire antenna proceeds
from the standard integral ([20, (5-14)]) for the vector potential
A, which is -directed. The distance from loop to observa-
tion point is approximated ([20, (5-43)]) subject to the usual
condition , where is the loop radius and are
spherical coordinates with origin at the loop’s center and -axis
perpendicular to the loop. This leads to an integral which can
be evaluated in terms of the Bessel function . The resulting
expression is then used in the familiar formulas ([20, §3.6])
relating A to the radiated fields. With ohms, the
nonzero components are ([20, (5-54)])

(41)

The radiated power ([20, (5-58)]), found by integrating over a
large sphere, therefore equals ,
with the more general integral defined by

(42)

The reason for the more general notation will be explained in the
next section. Once the radiated power is found, the directivity
and radiation resistance easily follow ([20, §5.3.2]).

B. Circular-Patch Microstrip Antennas; Cavity Model

The cavity model is one of the most popular methods for
the analysis of circular microstrip antennas ([20, Ch. 14]). One
treats the region between patch and ground plane as a cavity
bounded above and below by electric conductors and by a mag-
netic conductor along the patch’s perimeter. Within this model,
the radiated power can be shown to be proportional to the quan-
tity ([20, (14-75) and (14-72)])

(43)

where was defined in (42), and where is the “ef-
fective radius” ([20, (14-67)]) of the patch. Details of the deriva-
tion of (43) are provided in [20, §14.3], [21], and [22]. With the
radiated power determined, one can immediately find the direc-
tivity ([20, (14-80)]).

The integral in (42) thus comes up in at least two antenna
problems. has deserved a great deal of attention. Recently,

has been the subject of much discussion in the IEEE An-
tennas and Propagation Magazine [23]–[30]. Some of these pa-
pers are referred to in the 3rd (2005) edition of the standard
textbook [20]. For the loop antenna , [20]
proposes numerical evaluation of (42) and provides a computer
program for doing so. [26] mentions an additional application
in which arises, namely, the circular loop with a co-sinusoidal
current. Finally, the exact evaluation and/or the asymptotics of

(more precisely, of special or of more general cases of )
have been much discussed in other (more mathematical) con-
texts [31]–[37]. In the next section, we provide a closed-form
expression for , in terms of a , by straightforward applica-
tion of the MT-method.

C. Integral Evaluation

Change the variable in (42) to obtain the more
suitable expression

(44)

which is (31) with
for , and for . To avoid unnec-
essary complications, let us assume that the complex quantities

and have nonnegative real parts. Because of the Bessel
functions, (44) might appear more difficult than our previous ex-
ample (34). With the MTs and obtainable from Table I
and (4), however, the MT-method can be applied just as before.
We omit lengthy intermediate formulas, and directly give the re-
sult as a MB-integral

(45)

Once again, we have simple poles to the left of the contour, con-
tributed here by . Closing the contour at
left (see Section VI) and calculating residues leads to a conver-
gent series. With (16) and (30), the series can be identified with
a . The result is

(46)

where . For general , and in (46),
the “reduction table” in [5, Ch. 7] gives no simpler form, so that
(46) is our final result.

The series form corresponding to (46) can be determined by
more direct methods [26]. (In (44), expand into
its Taylor series ([16, 8.442.1]); integrate term-by-term using
Entry 2 of Table I.) Nonetheless, none of [20]–[30] mention the

whose use—as discussed in Section II-F and, further, in
Section III-D below—presents several advantages.



FIKIORIS: INTEGRAL EVALUATION USING THE MELLIN TRANSFORM 3903

For many of the cases in [20]–[30], it is possible to lower the
order in (46). For instance, the reduces to a when
and further reduces to a when, also,

(47)

The reduction table in [5, Ch. 7] gives certain simpler forms for
special cases of (47)—especially when or —but,
once again, those forms involve rather unusual special functions
and will not be repeated here.

D. Application to Electrically Large Loop Antennas

We return to the loop antenna with , where is
the circumference, so that the relevant integral equals the ex-
pression in (47) with . The first few terms in the definition
(30) for the easily provide a small- approximation for
the power, or for . We do not dwell on this. Instead, we focus
on the nontrivial case where is large. We use two terms
of the large- asymptotic expansion of the , which can be
found in [17]. The following result for the radiation resistance

is thus easily obtained

(48)

The first (linear) term is the approximation provided
as [20, (5-60)] (derived in [20] directly from the integral). The
second term grows and oscillates. Fig. 2 shows the exact (as
calculated from (47)—numerical integration of (44) of course
gives a coincident curve), together with the first (linear) term,
and the full approximation (48). It is seen that the previously
published approximation is greatly improved (compare also to
[20, Fig. 5.10]). In fact, (48) sheds light on the interesting way in
which grows, and provides very good quantitative accuracy:
The error is less than 5% even for as small as 4; the error
decreases (non-monotonically) as increases.

IV. APERTURE ADMITTANCE OF A 2-D SLOT ANTENNA

Aperture antennas, especially rectangular ones, are very
common at microwave frequencies. Many analysis methods
([20, Ch. 12]) assume an infinite, planar, perfectly conducting
ground plane with a known tangential aperture field ,
and proceed to determine the complete fields from Maxwell’s
equations. One often assumes that is constant and parallel
to the rectangle’s small side ([20, §12.5, §12.9]). For simplicity,
it is sometimes further assumed that the rectangle is infinitely
long ([20, p. 718]), [38], as in a parallel-plate waveguide with
90-degree bends; the radiated fields in this simpler 2-D problem
approximate those of long, narrow rectangular slots. Let our
2-D slot lie on the -plane, with width parallel to the -axis,
and with . This assumed field corresponds to
the dominant (TEM) field in an infinitely long, parallel-plate
waveguide.

Fig. 2. Radiation resistance R of circular loop as function of circumference
C=�: Exact R (solid line), together with linear approximation (i.e., first term
of (48); dashed curve), and full approximation (48) (dot-dashed curve).

The complete fields are most easily found by the spectral-
domain method, which in this case amounts to taking a Fourier
transform in . If and are the transforms of the
tangential, on-aperture, spatial-domain fields and

, the former turn out to be ([20, p. 718])

(49)

The aperture admittance is defined by adapting
the equation from ordinary circuit theory:
Here, is the aperture voltage, and is the radi-
ated power per unit length, determined by integrating

along . By Parseval’s theorem, can also be found from
the spectral-domain fields as . Substituting
(49) and taking the imaginary part shows that the susceptance

is , where is the integral [20, p.
720], [38]

(50)

We note that the real part—which, when multiplied by
equals the conductance ([20, p. 720]), [38]—is our very first
example-integral (Section II-H, (34), with ). Neither
[20] nor [38] contain an evaluated form for (50) or (34).

The integral in (50) is more interesting than those of (34)
and (42) in two respects: i) Because of the infinite integration
interval and the slowly-decaying, oscillatory integrand, direct
numerical evaluation of (50) is less straightforward (i.e., it is less
accurate and requires more computer time, as further discussed
in Section VI), and ii) it is much more difficult to come up with
our final result [(52) below] using other methods. With the aid
of (31), (32), and Table I, the expression as a MB-integral turns
out to be

(51)

in which a change of variable was made so that the coefficients
of in the gamma functions are 1 or . A -function repre-
sentation of follows directly from (51), see Section VI.
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We prefer to find a more classical—and in a sense more re-
vealing—expression as follows.

As discussed in Section VI, one can close the contour of (51)
at left. Within the closed contour, there are double poles, located
at . The residues at these poles can be found
as in Application 4 of Section II-D or, more systematically, with
the aid of a lemma provided in our discussion-Section VI. One
thus obtains

(52)

The ascending series of (52) involves two convergent power se-
ries, one of which is multiplied by . We stress that the loga-
rithm appears because of the double poles in the integrand of the
MB-integral. Note that the series multiplying can be iden-
tified with a [coincidentally, it is the same that occurs
in (40)], but not the other series.

For narrow slots (that is, small values of ), the se-
ries in (52) converges very rapidly and is particularly useful for
numerical computation (at least in this example; there is no be-
forehand guarantee that a series arising from the MT-method
will converge rapidly.) To illustrate, when , one gets
an accuracy of 3% with 12 terms, 0.005% with 15 terms, and
0.0005% with 16 terms. When is smaller, fewer terms are
required: With two terms, the approximation for the aperture
susceptance is

(53)

Formula (53), which is simple enough for “back-of-the-enve-
lope” calculations, is an improvement to the “quasi-static re-
sult” of [38], ([20, p. 720]). The quasi-static result essentially
corresponds to keeping one term in (52). The improvement is
significant: With , there is a 2.6% error with two terms,
compared to a 19% error with one term.

V. AN INTEGRAL ARISING IN THE THEORY OF BIAXIALLY

ANISOTROPIC MEDIA

The unpublished studies [39], [40] (which are somewhat sim-
ilar to the recent papers [41], [42]) deal with the Green’s func-
tion in unbounded, biaxially anisotropic media, with the aim of
understanding the behavior of the two types of waves possible
in such media. The problem is interesting in that, in its usual
form [43], the Sommerfeld radiation condition is not applicable;
that form requires isotropic media. To replace the radiation con-
dition, [39]–[42] (see also [44]) initially assume a small loss,
choose the solution that is bounded at infinity and, finally, take
the limit of that solution for zero loss.

In [39], the Green’s function is known in cylindrical coordi-
nates through its inverse Fourier transform. The integral over the

radial Fourier variable is then performed. A key constituent of
the resulting expression is the integral [39], [40]

(54)

which we will evaluate using the MT-method combined with
additional manipulations. Our treatment here is more advanced,
but the final answer (61) will be particularly simple.

For reasons to become apparent, we will first deal with the
more general integral obtained by replacing the odd, positive
integer by a complex parameter , viz.

(55)

and take the limit as a final step. With the aid of
Table I, one finds

(56)

in which . A -function expres-
sion for is given in Section VI. For general , and to the
left of the path in (56), there are two lattices of simple poles.
Closing the contour (see Section VI) and calculating residues,
one obtains

(57)

The gamma functions can be expressed in terms of
Pochhammer’s symbols using (19) and (23). The resulting
series can be immediately identified with ’s, so that

(58)

This time, further simplification is possible using the afore-
mentioned “reduction tables” of . Specifically, from [5,
7.14.3.6] and [5, 7.13.1.1] one obtains

(59)

in which is the usual modified Bessel function and is
the Lommel function discussed in [16, 8.57] (see also [45]),
or [5, II.12]. Like all manipulations in our previous examples,
those used up to now [to obtain (59) from (55)] have been
straightforward.
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The answer (59) is simple enough, but both terms become in-
finite in the case , which is precisely the case we
are interested in. Since the original integral (54) is finite, the
two terms in (59) must combine to give a quantity that remains
finite in the limit . To calculate this quantity, use
[16, 8.570.2] to express in terms of , and the Lommel
function . Then, combine the and with the of (59)
employing usual Bessel-function identities. One can readily ar-
rive at

(60)

which is an alternative to (59) expression for general . Clearly,
the RHS of (60) is finite when . Furthermore, by [16,
8.573.2], or [5, II.12], in the limit, reduces to
a polynomial, a formula for which is provided in [16, 8.590.1],
or [5, II.24]. Using that formula yields our final expression for

(61)

This simple answer consists of an odd polynomial of degree
in , plus a modified Bessel function. (61) is excellent

both for numerical evaluation and for further analytical work.
This is especially true for large values of , where
is very small and the polynomial strongly dominates. (Large
is of interest in [39]–[42]).

VI. DISCUSSION

• In [12, Ch. 5] and [13] one finds a very simple set of suffi-
cient conditions enabling one to “close the contour at left.”
Those conditions are satisfied in all cases of this paper.

• Calculations of residues at double poles can be laborious.
For this reason, we give a useful lemma, which can be
readily shown from the properties of Section II-C:
If and is analytic and non-zero at

, then has a double pole at ,
and the residue there is

(62)

Many other expressions, arising when applying the
MT-method and involving gamma functions, can be
written in a form appropriate for the application of the
above lemma. To use the lemma to verify (28), for ex-
ample, substitute by . An identical
substitution allows one to show (52) from (51).

• For completeness, we give a -function expression for the
integral (50) of Section IV. It is

(63)

For the integral (55) of Section V, one has

(64)

We note that the -function reduction table ([5, 8.4.52])
provides no simplification for (64).

• It has already been mentioned that the MT-method is
important for Mathematica’s symbolic routine (SR)

. SRs can also help when one applies the
MT-method on his/her own, as SRs can be used in many
intermediate steps. Such steps include the “lookup” of
MTs, “messy” manipulations such as the calculation of
residues, and the simplification of complicated expres-
sions. SRs are powerful tools, and it pays to be flexible
when using them. When applied to the RHS of (64), for
example, Mathematica 5.0’s routine
does not yield (58), even when is assumed.
When applied to the RHS of (64) minus the RHS of
(58), however, does yield zero. Here,

verifies the answer but cannot produce
it from scratch.

• One may have the view that, like the routines for the ,
modern numerical-integration routines can themselves
often be used as black boxes. We discuss this by focusing
on integrals like those in Sections IV and V, which have
an infinite upper integration limit, and oscillations due to
a factor or in the integrand. Let us consider
three relevant routines (or types of routines), whose use
seems to be widespread.

i) As far as accuracy is concerned, the best routine the
author is aware of is Mathematica’s ,
provided the option is used.
The user sets the upper integration limit to .
To give an example, one gets highly accurate results
by evaluating (54) in this manner; but the computer
time is significantly less if one uses (61).

ii) Even for the types of integrals discussed here, it is not
always possible to use the
option, e.g., when the in is nega-
tive or complex. In such cases, a Mathematica
user can resort to without the

option; the integration
limit can still be set to . The accuracy
in such cases is significantly less than before. For
example, when and in (55), one gets
a result correct to within only 0.3%, accompanied
by a warning message. By contrast, (58) quickly
yields answers which, as far as the author can tell,
are highly accurate.

iii) The numerical integration routines in Matlab 7.0
do not allow the user to specify an

infinite integration limit. With such types of routines,
one often specifies an integration limit large enough
to yield a desired accuracy. For slowly decaying
integrands, such “truncation methods” may not work
well at all. As an example, consider the integral

which, as the
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reader may wish to verify, can be evaluated in terms
of a . A truncation method amounts to numer-
ically integrating . For ,
both the integral and its truncated version can be
evaluated in terms of Fresnel integrals ([20, ch. 13,
App. IV]) so, for this case, we can compute the best
one can do by any truncation method. As it turns out,
the required values of are very, very large. For

is necessary for 1% accuracy,
and is necessary for 0.5% accuracy. For
either value of , an actual numerical-integration
routine will certainly provide much less accuracy.
The situation deteriorates even more if decreases.

• We finally give some further references to the topics of
this paper. References [11], [46], and [47] are introductory
treatments of the MT. They include brief descriptions
of the MT-method, as well as short discussions of (and
references to) other applications of the MT. Gamma and
related functions are treated in most textbooks on complex
variables and special functions; besides [14], we mention
[10], [15], and [48]. Reference [15] discusses the gamma
function, the , and the -function, and includes deriva-
tions; more extensive references for these topics are [18]
and [19], while many relevant formulas can be found in
[5], [16], and [17]. On MB-integrals, see [6], [15], [18],
[48], and the comprehensive book [49]. [8] and [11]–[13]
contain simple, informative discussions relevant to the
MT-method, not too different from the general material
in Sections II-A to II-G; more detailed expositions can be
found in the pioneering (but readable) works [6], [2]. The
origins of what we call the “MT-method” go far back: The
idea of the Mellin inversion formula appeared in an 1876
memoir by Riemman, and the first accurate discussion
was given by Mellin in 1896 and 1902. What we now call
“MB-integrals” were first introduced by Pincherle in 1888
[50], developed theoretically by Mellin by 1910, and used
by Barnes in 1908 to discuss the asymptotic expansion
of certain special functions. Biographies of Mellin and
Barnes can be found in [49].

VII. SUMMARY AND CONCLUSION

What we call the “MT-method” is an extremely powerful
technique for the exact evaluation of definite integrals. While,
in many cases, completely straightforward, the method is not
as widely known as it should. It can often be combined with
other methods and it is applicable to a wide class of integrals. It
is a significant constituent of certain modern symbolic integra-
tion packages, and has been employed in an essential manner to
compile what may be the most comprehensive published table
of integrals.

When applicable, the MT-method typically yields as-
cending series (which often involve logarithms, or powers of
logarithms), or expressions involving the generalized hyperge-
ometric function , or Meijer’s -function. Because such
expressions can be automatically handled by modern numerical
routines, they are much more useful than in the past. Because
the and possess a vast number of documented proper-
ties, such expressions can also be a good first step for further

analytical work. Often, though, expressions involving and
are merely an intermediate step as they can be simplified by

lookup in extensive tables, or by symbolic routines.
To apply the method, one should have some familiarity with

the and MB-integrals, and possess some experience with
certain lookup tables. More importantly, one should have a
good working knowledge of the basics of the Mellin transform,
as well as of gamma and related functions. All these topics,
which can be understood by one familiar with complex anal-
ysis, are discussed in the tutorial Section II. This section places
little emphasis on mathematical details or fine points. The
remaining sections illustrate the MT-method by treating ex-
ample-integrals, all arising from antenna problems. All answers
are suitable for numerical evaluation and most are believed
to be new, at least in the antenna/electromagnetics literature.
Two of these answers lead, additionally, to simple approximate
formulas for the integral which significantly improve upon
formulas of standard antenna textbooks. These sections thus
explicitly illustrate highly desirable features of the MT-method,
in the specific context of antenna theory.
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