
IEEE SIGNAL PROCESSING MAGAZINE [24] NOVEMBER 2009

[from the GUEST EDITORS]

 Digital Object Identifier 10.1109/MSP.2009.934556

Signal Processing on Platforms with Multiple Cores:
Part 1–Overview and Methodologies

Yen-Kuang Chen,
Chaitali Chakrabarti,

Shuvra Bhattacharyya, and
Bruno Bougard

M
ulticore processors are
now prevalent in all
major domains of sig-
nal processing. Many
laptop and desktop

computers today are shipped with dual-
core and even quad-core processors. The
number of cores is even higher for the
Sony PlayStation 3, which is equipped
with an eight-core IBM CELL Broadband
Engine processor, Nvidia GeForce
9800 GX2, which has 256 stream pro-
cessors, and SUN UltraSPARC T1/T2
processor, which has eight cores.
Technology predictions indicate that
this trend will continue and that the
number of cores per processor can
easily double around every two or
three years.

The reason why multicore archi-
tectures are the vendors’ choice today
can be traced back to trends in silicon-
processing technology. For several
decades, technology scaling provided
cheaper, faster, and more energy effi-
cient transistors. For instance, in
embedded systems, this provided an
easy mechanism for achieving more
computing performance and lower
power consumption simultaneously.
However, the “power wall” was hit at
the 90-nm node. Since then, it has not
been possible to increase performance
at comparable power consumption lev-
els only by technology scaling.

In high-performance computing, the
trend was to increase the performance
through higher clock speed at the cost
of power consumption. For example,
from the mid-1980s to the late 1990s,
the power consumption of Intel’s micro-
processors doubled every two to three
years and reached 20 W per square

 centimeter. Packaging solutions turned
out to be more expensive than the inte-
grated circuits themselves. It became
imperative to pursue a different direc-
tion to increase performance.

Interestingly, for a given processor
architecture in a given technology, the
power consumption decreases faster than
the performance when the clock rate is
reduced. Typically, 20% under-clocking

(with lower supply voltage) yields 50%
power reduction and “only” 13% perfor-
mance loss. For the same power con-
sumption, a dual-core solution clocked
at 20% less would bring, in theory,
73% more performance than a single
core. This trend has led to a new ap -
proach in exploiting technology scaling,
where the area cost reduction obtained
from scaling is used to increase the num-
ber of cores.

While the challenges of designing
multicore systems in hardware are many,
writing efficient parallel applications that
utilize the computing capability of many
processing cores may require even more
effort. To deliver the best performance,
existing serial algorithms need to be
redesigned to take advantage of the mul-
ticore computing power. This is because
the best sequential algorithm is not nec-
essarily the best parallel algorithm.

Signal processing algorithm design-
ers of the future will need to better
understand the nuances of multicore

computing engines. Only then can the
tremendous computing power that such
platforms provide be harnessed to their
full potential.

To give a thorough view of the area,
we offer two special issues on this
topic. This first special issue is aimed
at providing coverage of key trends
and emerging directions in architec-
tures, design methods, software tools,

and application development for
design and implementation of
multicore signal-processing sys-
tems. A follow-up of this issue will
describe novel applications that
can be enabled by platforms with
multiple cores, and more extensive
design examples of signal process-
ing on platforms with multiple
cores that demonstrate useful

techniques for developing efficient
implementations.

There are a total of 11 articles in this
issue. These span three thrust areas:
architectures (articles 1–3), software
tools and methodologies (articles 4–7),
and design examples (articles 8–11).
Together, these articles provide the
breadth needed for a casual reader and
the depth needed for a digital signal pro-
cessing practitioner.

The first architecture article by Blake
et al. is on general-purpose multicore
architectures that can be used from lap-
tops and desktops to servers. It describes
the key attributes, which include power/
performance, processing elements, mem-
ory systems, and application domains,
that are common to all multicore proces-
sor implementations, and then illustrates
these attributes with current and future
multicore designs.

Karam et al. present an overview of
existing multicore DSP architectures.
At the hardware level, the architectures

THE REASON WHY MULTICORE
ARCHITECTURES ARE THE

VENDORS’ CHOICE TODAY CAN
BE TRACED BACK TO TRENDS

IN SILICON-PROCESSING
TECHNOLOGY.

IEEE SIGNAL PROCESSING MAGAZINE [25] NOVEMBER 2009

are classified based on memory hier-
archy and interconnect. The article
also describes existing software tools
and emerging applications based on
these architectures.

Wolf surveys multiprocessor sys-
tem-on-chip (MPSoC) systems that
were developed to meet the needs
of embedded signal processing and
multimedia. These architectures
are mostly heterogeneous and pose
special software challenges due to
their combination of parallelism
and heterogeneity. A historical per-
spective is provided. To utilize the
computing power of multicore systems,
DSP software tools and methodologies
have to be reexamined to provide effec-
tive exploration of parallel-processing
solutions, and address novel con-
straints associated with multicore soft-
ware implementation.

Mehrara et al. make the case that
software compilation tools that find and
exploit different types of parallelism are
necessary for the success of multicore
systems. The article describes existing
compilation tools and strategies for
both static and dynamic compilation.

The next article, by Haid et al. ana-
lyzes the major challenges in MPSoC
software development and show that
typical software design flows fail to sup-
port design-space exploration or soft-
ware synthesis in a way that is suitable
for multicore signal-processing sys-
tems. The article then advocates the
use of design flows based on formal
models of computation and focuses on
application of the Kahn process net-
work model to demonstrate the benefits
of such an approach.

Park et al. survey a broad range of
design methods and tools for software
development on MPSoC architectures.
Four different approaches are analyzed:
the compiler-based approach, language-
extension approach, model-based
approach, and platform-based approach.

Kim and Bond describe key software
technologies including parallel-pro-
gramming languages for developing
applications on multicores. It also
 proposes a software development pro-
cess for high-productivity development

of signal-processing applications on
multicore platforms.

The next set of articles describes suc-
cessful mapping of key signal-processing
algorithms onto multicore platforms.

Franchetti et al. describe a framework
that enables automation of discrete
Fourier transform implementation for
multicore platforms. They describe opti-
mizations, all derived using Kroenecker-
product formalisms, to address the
challenges of parallelization, vectoriza-
tion, and memory hierarchy.

Lin et al. describe techniques for
parallelizing video-processing kernels
for multicore platforms. The article pro-
vides an overview of basic parallel-
pro gramming concepts and technologies
and describes optimization techniques
through multiple examples.

The next article, by Amer et al., also
on video processing, provides an over-
view of reconfigurable video coding
(RVC), and how it can be mapped to
multicore architectures. The authors
demonstrate that while RVC automati-
cally provides flexibility and reconfigu-
rability, the formulation of RVC
functionality in terms of dataflow graphs
facilitates efficient mapping onto multi-
core platforms.

The article by You et al. closes the
issue by presenting a scalable inference
engine for large vocabulary continuous
speech recognition. The authors
 explore four application-level imple-
mentation alternatives on two parallel
platforms. They demonstrate that dif-
ferent algorithms may need to be
 explored to deliver the best perfor-
mance on different platforms.

We would like to thank Shih-Fu
Chang, Li Deng, Dan Schonfeld, and
Doug Williams for their encourage-
ment of this special issue project. We
sincerely thank the authors for their

valuable contributions, and to the
anonymous reviewers for their help in
ensuring the quality of this special
issue. We would also like to thank
everyone who submitted white papers

to this special issue and express
our regret that, due to limited
space and the need for balanced
coverage, not all high-quality pro-
posals could be encouraged for fur-
ther development.

We hope that you enjoy the arti-
cles in this special issue of IEEE
Signal Processing Magazine and

find its contents informative and use-
ful for the overview of the trends and
challenges of signal processing on sys-
tems with multiple/many cores. Please
stay tuned for the follow-up March
2010 issue for novel applications on
multiple cores and more extensive
design examples. [SP]

SIGNAL PROCESSING
ALGORITHM DESIGNERS OF
THE FUTURE WILL NEED TO
BETTER UNDERSTAND THE
NUANCES OF MULTICORE

COMPUTING ENGINES.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

