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B
ioinformatics is the use of
computational techniques to
understand and organize
information associated with
biomolecules. These biomole-

cules include genetic materials such as
nucleic acids and proteins. Ongoing
research is generating huge amounts of
information about these biomolecules at
a phenomenal rate. This requires effi-
cient techniques and methodologies to
organize, analyze, and interpret the
results in a biologically meaningful man-
ner. The high variability in the data
acquisition process, the high dimension-
ality of the data space, and the high com-
plexity of genetic signals call for
sophisticated mathematical modeling,
data processing, and information extrac-
tion methods [1].

DNA is a molecule of two helical
strands where each strand is a long
string of nucleotide units attached to
one another. DNA contains four types of
nucleotides (A, T, G, C) and can be repre-
sented by a string of characters. Coded
in the DNA are instructions necessary
for a cell’s proper functioning. Those
instructions are stored in specific units
called genes. When a particular instruc-
tion becomes active, the corresponding
gene is said to turn on or be expressed.
Following the expression of a particular
gene, the corresponding section of the
DNA strand is copied into a less stable
molecule called messenger RNA
(mRNA). The process of producing
mRNA is called transcription. The
mRNA is then transferred to the ribo-
some, where the protein molecule is
produced by interpreting the instruction
in mRNA. This process of producing pro-
teins is referred to as translation.
Translation takes place according to the
genetic code, which maps successive

triplets of RNA bases to amino acids.
Thus, a protein is a chain of amino acid
units. There are 20 types of standard
amino acids that are regularly found in
nature as well nonstandard types that
rarely appear. Similar to DNA, a protein
molecule can be represented by a string
of characters from an alphabet of size
20. Proteins are the molecules responsi-
ble for all cellular functions. The specific
function of a protein is largely deter-
mined by the three-dimensional (3-D)
structure into which it folds.

DNA molecules are packed into struc-
tural units called chromosomes. The total
content of the DNA within the chromo-
somes is called the genome of an organ-
ism. All the cells within a living organism
(with the exception of the sperm and egg
cells) contain nearly identical copies of
the entire genome and are capable of pro-
ducing all proteins. Although the same
instructions are present in almost every
cell of an organism, their activation pat-
terns show significant variation among
different cell types. Cells differ radically in
the proteins they actually produce.
Moreover, any given cell produces differ-
ent proteins at different stages within its
cycle of operation. There is a control
mechanism that regulates the protein
production of the cell by its internal envi-
ronment and by the signals received from
other cells. Therefore, gene expression
can be viewed as a complex network of
interactions involving genes, proteins,
and RNA as well as other factors such as
temperature and the presence or absence
of nutrients and drugs within the cell.

The major goals of the genomic
research can be summarized as follows [2]:

1) Sequencing and comparison of
genomes of different species. To
sequence a genome means to deter-
mine its sequence of nucleotides. The

sequencing of a new organism is often
valuable for medical, agricultural, or
environmental studies. In addition, it
may be useful for comparative studies
with related organisms.
2) Identifying genes and determining
the functions of proteins they
encode. Genes can be predicted using
methods confined to a single genome
or by comparative methods that use
information about one organism to
understand another related one.
3) Predicting the structural features of
the protein from the amino acid
sequence. One of the biggest challenges
in today’s biological science is the pro-
tein folding problem in which one
attempts to predict the 3-D structure of
a protein from its linear sequence of
amino acids. Protein folding methods
greatly benefit from secondary struc-
ture prediction, in which regular struc-
tural units with specific chemical
bonding patterns are identified.
4) Understanding gene expression
and gene protein interaction to con-
trol cellular processes. Here, instead
of analyzing individual sequences,
interactions between biomolecules
are investigated at a systems level.
Regulatory networks model how
genes are jointly expressed in time,
space, and amplitude. The design of
such networks is greatly facilitated
by microarray technology, in which
array chips take a snapshot of the
cellular activity by providing expres-
sion levels of thousands of genes
simultaneously (Figure 1).
5) Tracing the evolutionary relation-
ships among existing species and
constructing phylogenetic trees.
Understanding the genomic behav-
ior in one organism will definitely
contribute to the study of other
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genetically similar organisms with
similar DNA sequences. Information
generated from simple model organ-
isms such as mycoplasma, E. coli,
and yeast helps to understand cellular
mechanisms in more complex organ-
isms such as humans.
6) Discovering associations between
gene mutations and disease. Certain

diseases, such as cystic fibrosis and
Huntington’s disease, are caused by a
single mutation. Others such as heart
disease, cancer, and diabetes are influ-
enced by both genetic and environ-
mental factors. In these cases, the
genetic component involves a combi-
nation of influences from many
genes. By studying the relationship

between genetic endowment and 
disease states it is possible to develop
efficient techniques to diagnose and
cure genetically influenced diseases.

SIGNAL PROCESSING AND
GENOMIC RESEARCH
The digital nature of genomic informa-
tion makes it suitable for the application

[FIG1] (a)–(b): DNA microarray technology. (a) Array fabrication and steps of a microarray experiment. (Reprinted from Guide to
Analysis of DNA Microarray Data, Steen Knudsen, ©2004, John Wiley & Sons, Inc. Courtesy of Steen Knudsen with permission of Wiley-
Liss, Inc., a subsidiary of John Wiley & Sons, Inc.) (b) A typical microarray image. (Reprinted from Guide to Analysis of DNA Microarray
Data, Steen Knudsen, ©2004, John Wiley & Sons, Inc. Courtesy of Steen Knudsen with permission of Wiley-Liss, Inc., a subsidiary of
John Wiley & Sons, Inc.) (c) A gene expression network. Nodes represent genes and edges represent the relationship between genes.
(Courtesy of Thomas Schlitt and Alvis Brazma.)
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of signal processing techniques to better
analyze and understand the characteris-
tics of DNA, proteins, and their interac-
tion. Prediction of genes, protein
structure, and protein function greatly
utilize pattern recognition techniques,
in which hidden Markov models, neural
networks, and support vector machines
(SVMs) play a central role. For instance,
in hidden Markov models, predictions
can be obtained using the Viterbi and
BCJR (Bahl-Cocke-Jelinek-Raviv) decod-
ing algorithms, which are widely
used techniques in communications
and speech recognition. Moreover,
the subsequent analysis of microar-
ray data (e.g., classification, gene
selection, and clustering) seeks to
extract meaningful results from the
noisy measurements and reliably
infer gene regulatory networks [3].
In that respect, genomic research
greatly benefits from the signal pro-
cessing theory for the detection of
genes with strong or weak expression
patterns; classification of genes
according to their similarity in
expression levels; and prediction,
control, and statistical-dynamical
modeling of gene networks.
Therefore, signal processing offers a
variety of methods from pattern
recognition and network analysis for
the diagnosis and therapy of genetic
diseases [4].

In the next section, we will focus
on protein secondary structure pre-
diction and describe the problems in
single sequence setting.

PROTEIN SECONDARY
STRUCTURE PREDICTION
Proteins are large, complex mole-
cules made up of smaller subunits
called amino acids. Chemical prop-
erties that distinguish the 20 stan-
dard amino acids cause the protein
chains to fold up into specific 3-D
structures that define their particu-
lar functions in the cell. There are
four levels of protein structure. The
primary structure refers simply to
the “linear” sequence of amino
acids. The secondary structure is
the “locally” ordered structure cre-

ated by hydrogen bonding within the
protein backbone. Tertiary structure
refers to the “global” folding of a single
polypeptide chain, and quaternary
structure involves the association of two
or more polypeptide chains into a mul-
tisubunit structure. Correspondingly,
there are several levels at which protein
structure prediction can be performed.
Secondary structure prediction is con-
cerned with the assignment of each
amino acid to a secondary structure

state. In tertiary structure estimation
(i.e., protein folding), the goal is to pre-
dict the conformation assumed by a
protein molecule in 3-D space.

Prediction of the secondary structure is
important as it provides insights into the
function of the protein. By jointly compar-
ing amino acid and secondary structure
sequences, it is possible to improve the
prediction of protein function. In addition,
secondary structure prediction is a step
toward the prediction of the 3-D structure

of a protein. For instance, secondary
structure predictions can be included
in fold recognition methods, in which
a target amino acid sequence with
unknown structure is compared
against a library of structural tem-
plates (folds) and the best scoring fold
is assumed to be the one adopted by
the sequence.

The three major secondary struc-
ture states are the α-helix {H}, the β-
strand {E}, and the loop {L}. α-helices
are strengthened by hydrogen bonds
between every fourth amino acid so
that the protein backbone adopts a
helical configuration as shown in
Figure 2(a). Likewise in loops (e.g.,
turns or bends), the hydrogen bond-
ing is mostly local. For example, the
turn segment in Figure 2(b) has a
hydrogen bond between the first and
the fourth amino acids. The hydro-
gen bonding structure in β-strands is
slightly different, where both local
and nonlocal interactions are
observed. In β -strands, the most
common local hydrogen bonding is
between every two amino acids, and
nonlocal interactions are due to
hydrogen bonds between amino acid
pairs positioned in interacting β -
strand segments. A β-sheet is a set of
such segments, in which the inter-
acting segment pairs adopt either a
parallel or an antiparallel conforma-
tion as shown in Figure 2.

Secondary structure prediction
assigns to each amino acid a struc-
tural state from a three-letter alpha-
bet {H, E, L}. Secondary structure
prediction methods often employ
neural networks (NNs) [5], SVMs [6],
and hidden Markov models (HMMs)

[FIG2] (a)-(b): Local interactions in α-helix and loop
segments. (c)-(d): Nonlocal interactions in β-strand
segments. (Reprinted from Biochemistry, 3rd Edition,
Donald Voet, Judith G. Voet, ©2004 John Wiley &
Sons, Inc. Courtesy of Irving Geis. Rights owned by
Howard Hughes Medical Institute. Not to be used
without permission.)
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[7], [8]. In HMM methods, hidden states
generate segments of amino acids that
correspond to the nonoverlapping sec-
ondary structure segments, and the goal
is to find the most likely hidden-state
sequence representation under the prob-
abilistic model defined by the HMM. On
the other hand, neural networks and
SVMs utilize an encoding scheme to rep-
resent the amino acid residues by
numerical vectors. To convert the amino
acids into vectors, the amino acid
sequence is partitioned into overlapping
segments by a sliding window of size n
(typically between 13 and 17). Then each
segment is represented (as a vector) in
the 21 × n-dimensional input space to
predict the secondary structure class of
the central residue. Here the first 20
dimensions are allocated for the amino
acid types, and the 21st dimension is
added to be able to extend the window
over the sequence ends. The secondary
structure prediction problem then
becomes the classification of points in a
multidimensional vector space. This is
achieved by partitioning the space into
disjoint regions of secondary structure
classes. NN methods perform the classifi-
cation in the space of the input vector by
defining decision boundaries. On the
other hand, SVM methods first map the
input vectors into a higher dimensional
Hilbert space by a transformation kernel
and then perform the classification in that
space by finding separating hyperplanes.

There are two types of protein second-
ary structure prediction algorithms. A sin-
gle sequence algorithm does not use
information about other similar proteins.
The algorithm should be suitable for a
nonhomologous sequence with no
sequence similarity to any other protein
sequence. Algorithms of another type
explicitly use sequences of homologous
proteins, which often have similar struc-
tures. Prediction accuracy of such an
algorithm should be higher than one of a
single sequence algorithm due to incor-
poration of additional evolutionary infor-
mation from multiple alignments. The
accuracy (sensitivity) of the best current
single sequence prediction methods is
below 70% [8]. The prediction accuracy of
the best prediction methods that employ

information from multiple alignments is
close to 82.0% [5]. The theoretical limit of
the accuracy of secondary structure
assignment from experimentally deter-
mined 3-D structure is around 88% [9].

Single-sequence algorithms for pro-
tein secondary structure prediction are
important because a significant percent-
age of proteins identified in genome
sequencing projects have no detectable
sequence similarity to any known pro-
tein. Also, many of these hypothetical
proteins do not have detectable similarity
to any protein at all. Such “orphan” pro-
teins may represent a sizable portion of a
proteome. For an orphan protein, any
method of secondary structure predic-
tion performs as a single sequence
method. Developing better methods of
protein secondary structure prediction
from single sequence has a definite merit
as it helps in improving the functional
annotation of orphan proteins. 

RESEARCH PROBLEMS
IN SECONDARY STRUCTURE
PREDICTION FOR A
SINGLE SEQUENCE
The main goal of a secondary structure
prediction algorithm should be to design
a classifier having a feature set (depend-
ency structure) that is comprehensive
enough to capture the essential correla-
tions yet simple enough to allow reliable
parameter estimation from available
training data. In single-sequence 
prediction, one issue limiting the predic-
tion accuracy is the small sample size.
The latest available single-sequence data
set for evaluating the prediction per-
formance of a single-sequence method
contains approximately 3,200 proteins,
which significantly limits the number of
features. As new sequences are added to
the database, it will be possible to aug-
ment the dependency structure and
obtain even higher accuracy.

The second and more crucial prob-
lem arises when predicting β-strands.
Typically, protein secondary structure
prediction methods suffer from low
accuracy in β -strand predictions
(40–50%) where nonlocal correlations
resulting from long-distance chemical
interactions play a significant role. To

the best of our knowledge, there have
not been any significant attempts to
model nonlocal dependencies for single
sequence predictions. There is a consid-
erable need to model such long-distance
interactions that significantly con-
tribute to the stabilization of the pro-
tein molecule.

The estimation of model parameters
(training) is as important as the model
derivation and feature selection. A well-
trained model is more likely to succeed
on new examples. Therefore, improved
training methods will significantly con-
tribute to the secondary structure pre-
diction accuracy. (Interested readers can
refer to the extended version of this col-
umn at http://www.ece.gatech.edu/
research/labs/MCCL/ pubs/journal.html.) 
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