
Reducing CIC Filter Complexity

IEEE SIGNAL PROCESSING MAGAZINE [124] JULY 2006

[dsp TIPS&TRICKS]
Ricardo A. Losada and Richard Lyons

T
his article provides several
tricks to reduce the complex-
ity, and enhance the useful-
ness, of cascaded integrator-
comb (CIC) filters. The first

trick shows a way to reduce the number
of adders and delay elements in a multi-
stage CIC interpolation filter. The result
is a multiplierless scheme that performs
high-order linear interpolation using
CIC filters. The second trick shows a way
to eliminate the integrators from CIC
decimation filters. The benefit is the
elimination of unpleasant data word
growth problems.

REDUCING INTERPOLATION
FILTER COMPLEXITY
CIC filters are widely used for efficient
multiplierless interpolation. Typically,
such filters are not used stand-alone;
instead, they are usually used as part of a
multisection interpolation scheme, gen-
erally as the last section where the data

has already been interpolated to a rela-
tively high data rate. The fact that the
CIC filters need to operate at such high
rates makes their multiplierless-nature
attractive for hardware implementation.

Typical CIC interpolator filters usu-
ally consist of cascaded single stages
reordered in such a way that all the
comb filters are grouped together as are
all the integrator filters. By looking
closely at a single-stage CIC interpola-
tor, we will show a simple trick to
reduce the complexity of a multistage
implementation. Because multistage
CIC interpolators have a single-stage
CIC interpolator at its core, this trick
will simplify the complexity of any CIC
interpolator.

Consider the single-stage CIC inter-
polator in Figure 1(a). The “↑R ” symbol
means insert R − 1 zero-valued samples
in between each sample of the output of
the first adder comb. For illustration
purposes, assume R = 3. Now imagine

an arbitrary x(k) input sequence and
assume the initial conditions of the
delays are equal to zero. When the first
x(0) sample is presented at the CIC
input, u(n) = {x(0), 0, 0}. The first y(n)
output will be x(0), then this output is
fed back and added to zero. So the sec-
ond y(n) output will be x(0) as well; same
for the third y(n). Overall, the first x(0)
filter input sample produces the output
sequence y(n) = {x(0), x(0), x(0)}. The
next sample input to the comb is x(1)
making u(n) = {x(1) − x(0), 0, 0} . The
integrator delay has the value x(0)
stored. We add it to x(1) − x(0) to get
the next output y(n) = x(1). The value
x(1) is stored in the integrator delay and
is then added to zero to produce the next
output y(n) = x(1). Continuing in this
manner, the second input sample to the
CIC filter, x(1), produces the output
sequence y(n) = {x(1), x(1), x(1)}. This
behavior repeats so that for a given CIC
input sequence x(k), the output y(n) is a
sequence where each input sample is
repeated R times. This is shown in
Figure 1(b) and (c) for R = 3.

Naturally, when implementing a single-
stage CIC filter in real hardware, it is not
necessary to use the adders and delays
(or the “zero-stuffer”) shown in Figure
1(a). It is simply a matter of repeating
each input sample R−1 times imposing
no hardware cost.

Let us next consider a multistage
CIC filter as the one shown in Figure
2(a) having three stages. At its core,
there is a single-stage CIC interpolator.
Our first trick, then, is to replace the
innermost single-stage interpolator
with a black-box, which we call a hold
interpolator whose job is to repeat each
input sample R − 1 times as explained
above. Such a reduced complexity CIC
scheme is shown in Figure 2(b).

[FIG1] CIC interpolation filter: (a) structure, (b) input sequence, and (c) output sequence
for R = 3.

(b)(a)

Comb Integrator

x(k)

x(k)

u(n)
R

z−1 z−1

y(n)
++

−

k

4

2

0
0 1 2 3

y(n)

n

(c)

4

2

0
0 42 6 8 10

1053-5888/06/$20.00©2006IEEE

IEEE SIGNAL PROCESSING MAGAZINE [125] JULY 2006

Note that in the comb sections, the
number of bits required for each adder
tends to increase as we move from left to
right. Therefore, the adder and delay that
can be removed from the comb section
will typically be the ones that require the
most number of bits in the entire comb
section for a standard implementation of
a CIC interpolator. So this trick enables
us to remove the adder and delay in that
section that will save us the most number
of bits. However, this is not the case in the
integrator section where we remove the
adder and delay that would require
the least number of bits of the entire
section (but still as many or more than
any adder or delay from the comb section).

AN EFFICIENT LINEAR INTERPOLATOR
Linear interpolators, as their name
implies, interpolate samples between two
adjacent samples (of the original signal
to be interpolated) by placing them in an
equidistant manner on the straight line
that joins said two adjacent samples [1].
In general, for an interpolation factor of
R, the number of multiplications
required per input sample is 2R − 2.
Using an example, we now present a very
efficient scheme to compute those inter-
polated samples in a way that requires no
multiplies.

The transfer function of the R = 3
linear interpolator is given by

Hlinear(z) =1
3

+ 2z−1

3
+ z−2

+ 2z−3

3
+ z−4

3
. (1)

Notice that this transfer function is
nothing but a scaled version of a two-
stage CIC interpolator. Indeed, for a two-
stage CIC we have

HCIC(z) =
(

1 − z−3

1 − z−1

)2

= (1 + z−1 + z−2)2

= 3Hlinear(z). (2)

Equation (2) shows that by using
two-stage CIC interpolators, we can
implement linear interpolation by
R = 3 without the need for the 2R − 2
multipliers. Next, we can use the hold
interpolator trick, presented earlier,
to simplify the linear interpolator
even further.

Using a hold interpolator that inserts
R − 1 = 2 repeated values for each
input sample, we can perform efficient
linear interpolation as in Figure 3. This
implementation requires only two
adders and two delays, no matter what
the value of R. The order of this efficient
linear interpolator can be increased by
merely increasing the sample repetition
factor R.

As with CICs, the performance of lin-
ear interpolators is not that great when
used on their own. However, linear inter-
polators are usually not used that way.
The reason is that if the interpolation
factor R is high, the error introduced by
assuming a straight line between two
adjacent samples can be large. On the
other hand, if interpolation is done in

multiple sections, linear interpolation at
the end (when the signal samples are
already very close together) will intro-
duce only a small error.

NONRECURSIVE CIC
DECIMATION FILTERS
CIC filters are computationally efficient
and simple to implement. However,
there’s trouble in paradise. One of the
difficulties in using CIC filters is
accommodating large data word
growth, particularly when implement-
ing integrators in multistage CIC fil-
ters. Here’s a clever trick that eases the
word width growth problem using non-
recursive CIC decimation filter struc-
tures, obtained by means of polynomial
factoring. These nonrecursive struc-
tures achieve computational simplicity
through polyphase decomposition if
the sample rate reduction factor R is an
integer power of two.

Recall that the transfer function of an
Lth-order decimation CIC filter can be

[FIG3] Multiplierless linear interpolator.

−
+ +

z −1 z −1

x(k) y(n)Hold
Interpolator,

R

[FIG4] Multistage Lth-order nonrecursive CIC structure.

First Stage

(1 + z−1)L (1 + z−1)L (1 + z−1)L

Second Stage Jth Stage

222
x(k) y(n)

. . .

[FIG2] Three-stage CIC interpolation filter: (a) standard structure and (b) reduced complexity structure.

−−
++ ++

z−1 z−1 z−1 z−1

x(k) y(n)Hold
Interpolator, R− − −

+ + + + + +

z−1 z−1 z−1 z−1 z−1 z−1

R
x(k) y(n)

(b)(a)

[dsp TIPS&TRICKS] continued

IEEE SIGNAL PROCESSING MAGAZINE [126] JULY 2006

expressed in either a recursive form or a
nonrecursive form as given by

Hcic(z) =
[

1 − z−R

1 − z−1

]L

=
[

R−1∑
n=0

z−n

]L

=
(

1 + z−1 + z−2

+ · · · + z−R+1
)L

. (3)

Now if the sample rate change factor R is
an integer power of two, then R = 2 J

where J is a positive integer, and the
Lth-order nonrecursive polynomial form
of Hcic(z) in (3) can be factored as

Hcic(z) = (1 + z−1)L(1 + z−2)L

× (1 + z−4)L · · ·

×
(

1 + z2 J−1
)L

. (4)

The benefit of the factoring given in
(4) is that the CIC decimation filter can
then be implemented with J nonrecur-
sive stages as shown for the multistage
CIC filter in Figure 4. This implementa-
tion trick eliminates the integrators with
their unpleasant binary word width
growth. The data word widths increase
by only L bits per stage, while the sam-
pling rate is reduced by a factor of two
for each stage. By the way, the cascade of
nonrecursive subfilters in Figure 4 are
still called CIC filters even though they
have no integrators!

Lucky for us, further improvements
are possible with each stage of this non-

recursive structure [2]–[4]. For example,
assume L = 4 for the first stage in
Figure 4. In that case the first stage
transfer function is

H(z) = (1 + z−1)4

= 1 + 4z−1 + 6z−2

+ 4z−3 + z−4

= 1 + 6z−2 + z−4

+ (4 + 4z−2)z−1

= H1(z) + H2(z)z−1. (5)

The last step in (5), known as polyphase
decomposition, enables a polyphase
implementation having two parallel
paths as shown in Figure 5(a). Because
we implement decimation by two before
the filtering, the new polyphase compo-
nents are H1′(z) = 1 + 6z−1 + z−2, and
H2′(z) = 4 + 4z−1 implemented at
half the data rate into the stage.
(Reducing data rates as early as possible
is a key design goal in the implementa-
tion of CIC decimation filters.) The ini-
tial delay element and the dual
decimation by two operations can imple-
mented by routing the odd-index input
samples to H1′(z) and the even-index
samples to H2′(z), as shown in Figure
5(b). Of course the H1′(z) and H2′(z)
polyphase components are implemented
in a tapped-delay line fashion. Methods
exist to eliminate the multipliers in the
Figure 5 tapped-delay line implementa-
tion [2]–[4].

The nonrecursive CIC decimation fil-
ters described above have the restriction
that the R decimation factor must be an
integer power of two. That constraint is
loosened due to a clever scheme assum-
ing R can be factored into the product of

prime numbers. Details of that process,
called prime factorization, are available
in [2] and [5].

AUTHORS
Ricardo A. Losada (Ric.Losada@math-
works.com) is the product lead for the
Filter Design Toolbox at The MathWorks
Inc. where he has worked for over eight
years. He received an electronics engi-
neering degree from the Universidad
Distrital Francisco José de Caldas in
Bogotá, Colombia, and an M.Sc. degree
from Rutgers University, New Jersey. He
is a Member of the IEEE.

Richard Lyons (r.lyons@ieee.org) is a
consulting systems engineer and lecturer
with Besser Associates in Mountain View,
California. He is the author of
Understanding Digital Signal Processing
2/E (Prentice-Hall, 2004) and an associ-
ate editor for IEEE Signal Processing
Magazine.

REFERENCES
[1] S.J. Orfanidis, Introduction to Signal Processing.
Upper Saddle River, NJ: Prentice Hall, 1996.

[2] R. Lyons, Understanding Digital Signal
Processing, 2nd ed. Upper Saddle River, NJ: Prentice
Hall, 2004.

[3] L. Ascari et al., “Low power implementation of a
sigma delta decimation filter for cardiac applica-
tions,” in Proc. IEEE Instrumentation and
Measurement Technology Conf., Budapest Hungary,
May, 21–23, 2001, pp. 750–755.

[4] Y. Gao et al, “Low-power implementation of a
fifth-order comb decimation filter for multi-standard
transceiver applications,” in Proc. Int. Conf. Signal
Proc. Applications and Technology (ICSPAT),
Orlando, FL, Oct. 1999. [Online]. Available:
http://www.pcc.lth.se/events/workshops/1999/posters
/Gao.pdf

[5] Y. Jang and S. Yang, “Non-recursive cascaded
integrator-comb decimation filters with integer mul-
tiple factors,” in Proc. 44th IEEE Midwest Symp.
Circuits and Systems (MWSCAS), Dayton, OH,
Aug. 2001, pp. 130–133.

[FIG5] Polyphase structure of a single nonrecursive fifth-order CIC stage.

H1,(z) = 1 + 6z−1 + z−2

z−1

H2,(z) = 4 + 4z−12

2
x(k)

+

(a)

H2,(z) = 4 + 4z−1

H1,(z) = 1 + 6z−1 + z−2

x(k)
+

(b)

[SP]

