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O
ne of the main challenges
in computational biology
is the revelation and
interpretation of the rich
genomic information

underlying cancer biology. Revealing
such information can help facilitate clas-
sification and prediction of cancers and
responses to therapies. Genomic
sequencing and gene expression tech-
nologies have been widely recognized as
vital approaches to modern drug design
and disease classification. A collection of
microarray experiments can yield a data
matrix, whose rows simultaneously reveal
the expression level of tens of thousands
of genes, a promising advance towards a
genome-wide exploration.

Machine learning has been a promis-
ing computational approach to genomic
studies. A machine learning system com-
prises two subsystems: 1) feature extrac-
tion and 2) adaptive classification or
cluster discovery. For adaptive classifiers,
both unsupervised and supervised train-
ing strategies have been found useful.

In the past, the prevalent approach-
es to gene classification relied on only
a single modality. However, recently
there is increasing evidence of sub-
stantial performance improvement
exacted by combining information
from multiple sources. This calls for a
new classification approach based on
multimodality fusion.

MULTIMODALITY FUSION FOR
GENOMIC SIGNAL PROCESSING
There are many ways to generate multi-
ple modalities. One possibility is via sen-
sor diversity, and the other is feature
diversity. In terms of sensor diversity, we
shall consider both the motif and gene
expression modalities. Motifs are short
sequences of DNA responsible for regu-
lating gene networks and the expression
of genes, whereas gene expression is the
process of producing proteins from
information coded in genes. A genome-
wide study via the pure sequencing
approach is computationally prohibitive.
Thus, gene expression analysis can play

a vital and complementary role in this
respect. To further facilitate multi-
modality fusion, a diversity of features
may be extracted from each sensor by
computational means. This is called fea-
ture diversity.

There are two basic fusion 
architectures, cascaded and parallel, suit-
able for genomic signal processing. For
simplicity, we shall use only two modali-
ties to illustrate the possible fusion
strategies. (The extension to the fusion of
multiple modalities is straightforward.)
The fusion architectures can be mathe-
matically represented as 

Cascaded:

f(γ (X), Y) → Fusion output (1)

Parallel :

g(φ(X), ψ(Y)) → Fusion output, (2)

where X and Y are the features of the
two modalities. Typically, f and g are
binary functions (i.e., they either output
positive or negative class labels), whereas

[FIG1]  Various patterns of decision boundaries created by (a) AND logic, (b) OR logic, and (c) nonlinear fusion. The patterns shown here
reflect real data: blue crosses (×) represent positive (ribosomal) genes and red circles (◦) represent negative (nonribosomal) genes.
These examples illustrate that nonlinear fusion not only provides a unified solution but potential improvement in prediction
performance as well (see Figure 2).

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

FDA Projection of Metric (1,3)

F
D

A
 P

ro
je

ct
io

n 
of

 M
et

ric
 (

3,
1)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

FDA Projection of Metric (1,3)

F
D

A
 P

ro
je

ct
io

n 
of

 M
et

ric
 (

3,
1)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

FDA Projection of Metric (1,3)

F
D

A
 P

ro
je

ct
io

n 
of

 M
et

ric
 (

3,
1)

(a) (b) (c)



[life SCIENCES] continued

IEEE SIGNAL PROCESSING MAGAZINE [118] MAY 2006

γ , φ, and ψ can be either binary func-
tions or score functions.

Fusion can be viewed as a classifica-
tion problem in which optimal decision
boundaries (see Figure 1) are defined
to separate the positive and negative
patterns in the score space. The effect
of fusion can be illustrated by the
receiver operating characteristics
(ROCs) [4] as shown in Figure 2. The
performance of cluster discovery and
the improvement gained by fusion can
be evaluated via its goodness for gene
prediction. Specifically, a test gene t
will be predicted as positive if

log p
(

s(t)|�(p)
)
> log p

(
s(t)|�(n)

)
+α,

(3)

where p(s(t)|�(p)) and p(s(t)|�(n))

denote the distribution of the feature val-
ues s(t)s being generated by the positive
and negative models �(p) and �(n) ,
respectively. It is common to adopt 
the following performance measures:
Precision = TP/(TP + FP), Sensitivity =
TP/(TP + FN) , and Specificity =
TN/(FP + TN), where TP, TN, FP, and
FN are the numbers of true-positives,
true-negatives, false-positives, and false-
negatives, respectively. ROCs display the
tradeoff of two of these measurements
over their entire range. To produce the

entire spectrum of sensitivity-precision-
specificity ROCs, we can gradually adjust
the running variable α in (3) to change
from small to large values. For example,
by setting α < 0 (respectively, α > 0), we
can obtain a higher sensitivity (respec-
tively, precision).

Let us illustrate an application exam-
ple of cascaded fusion. Suppose that a
gene is classified to be positive if and
only if it is admitted by both modalities.
Such a classification can be implement-
ed by a cascaded architecture with the
AND-logic in Figure 1(a). Suppose the
first modality, adopting an exploded
search space, yields a result with high
sensitivity (due to a large number of
true positives) at the expense of poor
precision (due to a large number of false
positives). Now, according to (1), the
second modality (represented by f) can
be used to further screen all the genes
that are admitted to be positive by the
first modality (represented by γ ).
Suppose a far greater number of false
positives than true positives can be
weeded out, then the precision will be
substantially improved while the sensi-
tivity remains very much intact. This
process is manifested by the boldfaced
arrow depicted in Figure 2(a).

A similar argument can be applied to
parallel fusion. Suppose that a gene is

predicted to be positive as long as it is
admitted by either of the two modali-
ties. This can be implemented by using
the parallel architecture with the OR-
logic in Figure 1(b). The potential
improvement of such a fusion scheme is
manifested by the boldface arrows in
Figure 2(b).

The general scheme is that with a
parallel architecture, nonlinear fusion
leads to nonlinear decision boundaries as
illustrated in Figure 1(c). All the previ-
ously mentioned scenarios are just spe-
cial cases of nonlinear fusion. Moreover,
nonlinear fusion is often implemented
via a machine learning or neural net-
work approach. Therefore, the machine
learning approach provides a unified
framework for multimodality fusion.

SENSOR DIVERSITY:
A BIOLOGICAL PERSPECTIVE
The genome is not just a collection of
genes working in isolation, but rather it
encompasses the global and highly coor-
dinated control of information to carry
out a range of cellular functions.
Therefore, it is imperative to conduct
genome-wide studies so as to facilitate 1)
effective identification of correlated
genes and 2) better understanding of the
mechanisms underlying gene transcrip-
tion and regulation.

[FIG2]  Figures illustrating the benefits of cascaded and parallel fusion architectures in terms of ROCs. (a) The ROC represents the
prediction performance of the first stage of cascaded fusion and the arrow indicates the possible improvement due to the AND logic in
Figure 1(a). For example, the AND logic in cascaded fusion (1) can be used to reduce the number of false positives, thus increasing the
precision with a small sacrifice in sensitivity. (b) The ROCs represent the prediction performance of two modalities in parallel fusion (2)
and the arrows indicate the possible improvement due to the AND or OR logic in Figure 1(a) and (b). (c) The ROC of nonlinear fusion
which represents the most general scenario.
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It is known that within the DNA
sequences, there are short segments of
DNA called motifs that are responsible
for regulating the gene networks and the
expression of genes. Therefore, the
knowledge of motifs provides important
information for biologists to verify and
explain experimental results. However,
the downside of relying only on gene
sequencing (or motif discovery) for
genomic scale studies lies in its extremely
high computational complexity.

The expression of several thousand
genes can be measured simultaneously
by DNA microarrays. The upside is that

gene expression analysis is computation-
ally less demanding than sequencing.
Furthermore, recent advances in
machine learning tools for expression
profiling have become more mature and
cost effective. However, microarray data
are very noisy and contain artifacts, mak-
ing gene prediction very difficult.

There already exists strong evidence
supporting the correlation of motifs
and expression profiles [1], [8], [9]. This
suggests that these two modalities are
complementary to each other, making
them legitimate candidates for fusion.
Park et al. [8] found genes that have

similar promoter regions and deter-
mined the extent to which these genes
have similar expression profiles. It was
concluded that, on the average, genes
with similar promoter regions have sig-
nificantly higher correlation, although
the correlation can vary widely depend-
ing on genes.

A more promising result supporting
the prediction of gene expression from
DNA sequences was reported by Beer and
Tavazoie [1]. In their work, gene expres-
sion patterns were predicted by looking
only at their regulatory sequences. For
thousands of genes, they found the set of

[FIG3]  Example of feature diversity. Effect of applying preprocessing on raw expression data, including normalization (additive
coherence model) and standardization preprocessing (multiplicative coherence model). In the graphs, each line represents the
expression level of one gene across nine conditions in the yeast data set. (a)–(c) Three time-course gene groups. By the naked eye, it
would not be very persuasive to claim that (b) forms a tighter family than (a), because the former exhibits a wider spread data
structure. However, if we probe into the underlying data structure, it can then be revealed that (b) has a wider spread only because
there is a large variation of the additive shifts. If such an additive variation can be properly compensated by additive preprocessing [(b),
lower], the remaining spread becomes relative smaller than (a). Similarly, (c) will be tightened up if the underlying multiplicative
variation is also compensated in addition to additive normalization [(c), lower].
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DNA sequence elements most likely to be
responsible for their expression. It was
concluded that 1) to a very high degree
the gene expression is determined by
local sequences and 2) the inferred regu-
latory rules can correctly predict expres-
sion patterns for 73% of genes in yeast.

Conlon et al. [3] proposed a cascaded
fusion architecture in which microarray
expression values are used to help screen
out false positive motifs found by a motif
discovery searching algorithm called Motif
Discovery Scan (MDscan). The strength of
correlation between gene expressions and
motifs (represented by motif matching
scores) is captured by linear regression
coefficients, which are determined by a
selective regression procedure. A larger
nonzero regression coefficient suggests
that the corresponding gene expression is
more correlated with the upstream
sequences containing the motif. This
approach is able to increase both the sensi-
tivity and specificity of the discovered
motifs. Naturally, the selected motifs and
the regression equations can be used to
predict other genes in the same group.

In contrast, Kasturi and Acharya [5]
adopted a parallel fusion architecture to
combine promoter sequences of
genes/DNA binding motifs and gene
expression profiles. In their work, simi-
larity scores based on the frequency of
motif occurrences and expression inten-
sities were probabilistically combined
during gene cluster identification. To
fuse the information embedded in
sequence data and expression data, the
Kohonen feature map was adopted to
simultaneously update the expression
profile clusters and sequence clusters.

FEATURE DIVERSITY: AN
ALGORITHMIC PERSPECTIVE
Note that a crucial aspect is not only how
to cluster data but also how to find an

appropriate way of looking at data. Thus,
extracting correct features is essential for
gene prediction. We now introduce a
comprehensive set of coherence models
to better capture the biologically relevant
features of genes to improve prediction
performance. Two popular coherence
models are the additive coherence model
and multiplicative coherence model.

1) Additive coherence model: A scal-
ing relation between mRNAa and
mRNAb is expressed as mRNAb =
λ(mRNAa), where λ is a scaling fac-
tor. Denoting a = log(mRNAa) and
b = log(mRNAb), we have b = λ′ + a
where λ′ ≡ log(λ).
2) Multiplicative coherence model: An
exponential relation between mRNAa

and mRNAb is expressed as mRNAb =
(mRNAa)

γ . Now the logarithm con-
verts the exponential changes of the
relative abundance into multiplicative
factors, leading to a “multiplicative
model” governing dependence
between a and b: b = γ × a.
It is common to assume that the mul-

tiplicative variation is imposed on top of
the additive variation. This leads to the
“additive-multiplicative” coherence
model: b = λ′ + γ × a. Figure 3 shows
the effect of applying normalization 
preprocessing (additive coherence
model) and standardization preprocess-
ing (additive-multiplicative coherence
model) on gene expression data.

A collection of microarray experi-
ments produces a matrix with each row
representing the expression profile of a
gene across different time course or
independent conditions. To maximize the
flexibility of discovering clusters in the
matrix, it is suggested that all possible
combinations of coherence models on
genes and/or conditions be allowed [7].
This leads to a total of nine coherence
models, as shown in Table 1.

A gene may be coexpressed via more
than one coherence model. This calls for
a fusion strategy that combines features
corresponding to different coherence
models in order to improve the predic-
tion performance. ROCs can provide a
very clear indication of which coherence
models are most advantageous to fuse.
For example, Figure 4(a) shows that
model (3, 1) has a relatively higher sensi-
tivity in the low-precision region but a
relatively lower sensitivity in the high-
precision region. In contrast, model (1, 3)
has just the opposite performance. In
this case, these two coherence models
are truly complementary to each other
and can serve as ideal fusion candidates.

A modest fusion objective is to deliver
a consistent fusion result [7], which is at
least as good as any of the single model
results in the entire sensitivity/specificity
region. As long as the sources are com-
plementary to each other (with respect
to the ROC), consistent fusion is always
possible and it will yield improvement as
long as certain statistical conditions are
met. Such a goal can be achieved by a
hard-switching fusion scheme as illus-
trated in Figure 4(b).

Mathematically denote the fusion
score as Z = αφ(X) + βψ(Y) such
that the fusion output is g(Z) [as in (2)].
In the hard-switching scheme, we have
either α = 1, β = 0 or α = 0, β = 1.
In contrast, one may adopt a linear soft
fusion scheme based on a new fusion
score Z′ = α′φ(X)+β ′ψ(Y) , where
α′ + β ′ = 1. In many cases, such a soft
fusion scheme can lead to better-than-
lower-bound performance. The optimal
values of α′ and β ′ can better be derived
via prominent machine learning tech-
niques, such as Fisher classifiers and
support vector machines (SVMs) with a
linear kernel [10]. Unfortunately, it is
known that linear classifiers often have
limited discriminating power.

The most flexible decision bound-
aries to represent a general version of
(2) can be implemented by neural net-
works such as SVMs or decision-based
neural networks (DBNNs) [6]. For the
DBNN fusion classifier, there are two
processing phases: 1) a local expert
uses a Gaussian mixture model to

CONDITION COHERENCE
NO ADJUSTMENT NORMALIZATION STANDARDIZATION 

GENE NO ADJUSTMENT CONSTANT-VALUE MEAN- Z-NORM
COHERENCE NORMALIZATION

NORMALIZATION MEAN- CHENG AND GENERALIZED 
NORMALIZATION CHURCH TYPE [2] Z-NORM 

STANDARDIZATION Z-NORM GENERALIZED GENERALIZED 
Z-NORM Z-NORM

[TABLE 1]  NINE TYPES OF COHERENCE MODELS THAT CAN BE OBTAINED
BY APPLYING DIFFERENT PREPROCESSING METHODS TO GENES
AND CONDITIONS.
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represent the patterns of the positive
(or negative) class and 2) a “gating
agent” fuses the local scores to reach a
Bayesian optimal decision. Figure 2(c)
shows the ROCs based on such a fusion
scheme. Similar improvement can be
found in the sensitivity-specificity ROC
and the (more difficult) cluster discov-
ery of molecular activity genes [7]. The
MATLAB programs that produce the
results in this paper can be found at
http://www.eie. polyu.edu.hk/∼mwmak/
microarray.htm.

FUTURE WORK
It is our hope that this article will inspire
more research into machine learning for
genomic signal processing, particularly
via fusion of multiple biological or algo-
rithmic modalities. In the near term, it
should be promising to look into various
machine learning techniques combining
these modalities to improve prediction
performance. As an example, one could
first apply a parallel fusion scheme to
combine coherence models (1, 3) and (3,
1), with the results being further
enhanced via a cascaded fusion scheme
using motifs as the feature. From a long-
term perspective, the proposed fusion

schemes do not have to be limited to
genomic data analysis. They may be fur-
ther applied to, for example, the fusion of
genomic, proteomic, and transcriptomic
data. Before concluding, it has to be reit-
erated that any computational prediction
of gene clusters must be ultimately veri-
fied in the laboratory. Nevertheless, it is
the authors’ belief that the future
advance in bioinformatics will continue
to depend on a close partnership with
machine learning communities.
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[FIG4]  (a) Performance of predicting ribosomal genes in yeast using nine different combinations of preprocessing methods for the
conditions and genes. In the legend, “GMetric = m; CMetric = n’’ means that coherence models m and n were assigned to the genes and
conditions, respectively. In other words, it corresponds to Box (m, n) in Table 1. The shading area represents the region of consistent
fusion. (b) Decision boundaries that lead to consistent fusion. The (horizontal) decision boundaries based on model (3, 1)—boundaries
a, b, and c—have relatively higher sensitivity, while the (vertical) decision boundaries based on model (3, 1)—boundaries e, f, and g—
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