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W
e consider a blind
multichannel iden-
tification problem
for which the maxi-
mum likelihood

estimate (MLE) does not exist. More
specifically, the likelihood function
associated with this problem turns out
to have no maximum but only saddle
points. This interesting instance of
nonexistence of the MLE for a practical-
ly relevant problem was first presented
in the statistical literature on errors-in-
variables regression [1]. In this lecture
note, we present new insights into this
result, along with a direct proof based
on the indefiniteness of the Hessian
matrix (which was considered to be too
complicated in the previous literature).

MAIN FACTS
Consider a noisy single-input, two-out-
put flat linear channel described by the
equations:

{
xn = sn + en

yn = β sn + εn
(1)

where n = 1, 2, . . . , N is the discrete-
time index (N is the number of available
observations), {xn, yn} are the observed
outputs of the channel, {sn} is the unob-
served input, β is an unknown gain, and
{en, εn} are jointly independent Gaussian
white noise sequences with means zero
and unknown variances σe and σε ,
respectively. The problem is to estimate
{σe, σε, β, {sn}N

n= 1} from {xn, yn}N
n= 1

via the maximum likelihood method
(MLM). Because the input sequence is
assumed to be deterministic, the MLM
associated with the above problem is
sometimes called, at least in the signal
processing literature, the deterministic or
conditional (on {sn}) MLM to distinguish
it from the stochastic or unconditional

MLM, which assumes that {sn} is a ran-
dom sequence with unknown distribu-
tional parameters.

The previous problem, or rather an
extended version of it, may occur in
wireless communication systems using
one transmit and two receive antennas.
It also occurs in angle of arrival or
delay estimation systems using a two-
sensor array. If we eliminate sn from
(1), we obtain

(yn − εn) = β(xn − en), (2)

which describes a linear memoryless
single-input, single-output system with
noisy-input, noisy-output observations.
In the statistical literature, such a sys-
tem is usually called errors-in-variables
linear regression. Note that, for simplic-
ity, we assume all sequences and
unknowns in (1) or (2) to be real-val-
ued. Also, we assume that the channel is
memoryless and has only one input and
two outputs. Despite these limitations,
the case discussed herein still provides a
practically interesting example of
nonexistence of the MLE. Extensions to
the more general case of complex-val-
ued, frequency-selective, multi-input,
multi-output (MIMO) channels may be
too complicated to serve as a clear
example of nonexistence of MLE, and
they will not be attempted herein.

The negative normalized log-likelihood
function associated with (1) is given by
(to within an additive constant)

f = ln(σe) + ln(σε)

+ 1
Nσe

N∑
n= 1

(xn − sn)
2

+ 1
Nσε

N∑
n= 1

(yn − β sn)
2 (3)

(we omit the arguments of f to simplify
the notation). It can be shown easily that
the above function has two stationary
points (i.e., points at which the gradient
of f is zero) given by (see, e.g., the refer-
ences in [1] and also the next section): 

β̂ = ±
(∑N

n= 1 y2
n∑N

n= 1 x2
n

)1/2

(4)

ŝn =1
2

(
xn + yn

β̂

)
,

n = 1, 2, . . . , N (5)

σ̂e = 1
N

N∑
n= 1

(xn − ŝn)
2 (6)

and

σ̂ε = 1
N

N∑
n= 1

(yn − β̂ ŝn)
2. (7)

The point, of the above two equations,
that gives the smaller value of f was con-
sidered to be the MLE of the unknown
parameters. This was at least the case until
it was shown in [1] that the said point is in
fact a saddle point of f and not a mini-
mum as required. The proof in [1] is based
on geometric arguments; a proof showing
directly that the Hessian matrix (i.e., the
matrix of second-order derivatives of f) is
indefinite at the said point was considered
to be too tedious due to the need to evalu-
ate and check all principal determinants of
the (N + 3) × (N + 3) Hessian matrix. In
this lecture note, we show that checking
all said determinants is not necessary and
that the Hessian-based algebraic proof of
the result in [1] is in fact fairly simple.
Furthermore, the new proof shows that
both stationary points in (4)–(7) are saddle
points, not only the one considered in [1]
that gives the smaller value of f .
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The reader may ponder the implica-
tions of the nonexistence result on MLE
discussed here. First, it is important to
know that neither one of the estimates in
(4)–(7) is an MLE. Consequently, the poor
performance that these estimates were
observed to have (see, e.g., [2] and [3])
should not imply that (4)–(7) give an
example of unsatisfactory MLE. Second, it
is equally important to be aware of the
possibility that the likelihood function
associated with some estimation problems
may have no maximum (hence, both the
gradient and the Hessian of the likelihood
function should normally be considered).
When this happens, such as in the prob-
lem considered here, we might be tempted
to label it as a case in which the ML princi-
ple fails. Usually this is not so: the failure
of the likelihood to have a (global) maxi-
mum is in fact an indication that there is a
certain “indeterminacy’’ of the estimation
problem under consideration [4]. 

This “indeterminacy’’ should not be
confused with that caused by “lack of
identifiability.’’ The latter, which leads to
a more serious form of indeterminacy
than that considered here, is reflected in
the likelihood function being maximized
over a continuum of points instead of at
just one point.

The aforementioned forms of inde-
terminacy are more a deficiency of the
data model than of the ML approach,
and they are correctly pinpointed by the
MLM. For the problem discussed here,
the large number of unknowns (N + 3)

compared with the number of observa-
tions (2N) , and the interplay among
these unknowns, already suggest some
potential difficulty. Interestingly, reduc-
ing the number of unknowns by just
one, assuming that the ratio σe/σε is
known [e.g., σe/σε = 1, as is usually
hypothesized in the array processing
applications of (1)], is enough to guaran-
tee the existence of a well-behaved MLE
(see, e.g., [3] and the references therein).

We also note, in passing, that another
quite different method of obtaining a
well-behaved MLE of the parameters of
interest in (1), which are β and possibly
σe and σε , consists of assuming that {sn}
is a random sequence, such as a
Gaussian white sequence with unknown

mean and unknown variance. This type
of assumption leads to the stochastic or
unconditional MLE that can also be
interpreted as a Bayesian estimate (since
the previous assumption on {sn} can be
viewed as a hypothesis on the prior dis-
tribution of this sequence). Interestingly,
the unconditional MLE can outperform
the conditional MLE of the parameters of
interest even when the distributional
assumption made on {sn} does not hold
true (see, e.g., [5] for an example of a
general array processing problem where
this occurs). This remarkable behavior of
the conditional MLE, which is not com-
pletely understood, will hopefully one
day receive the attention of researchers
that it deserves.

DERIVATIONS
First, we prove that (4)–(7) give the only
stationary points of f . We use a prime to
denote first-order derivatives and a
subindex to indicate the variable with
respect to which the derivative is taken,
such as f ′

β , etc. A simple calculation
shows that

f ′
σe

= 1
σe

− 1

Nσ 2
e

N∑
n= 1

(xn − sn)
2 (8)

f ′
σε

= 1
σε

− 1
Nσ 2

ε

N∑
n= 1

(yn − β sn)
2

(9)

f ′
β = 2

Nσε

N∑
n= 1

(β sn − yn)sn (10)

and

f ′
sn

= 2
Nσe

(sn − xn)

+ 2
Nσε

β(β sn − yn),

n = 1, 2, . . . , N. (11)

Hence, the stationary points of f satisfy
the equations

σ̂e = 1
N

N∑
n= 1

(xn − ŝn)
2 (12)

which is the same as (6),

σ̂ε = 1
N

N∑
n= 1

(yn − β̂ ŝn)
2, (13)

which is the same as (7),

N∑
n= 1

(β̂ ŝn − yn)ŝn = 0, (14)

and

1
σ̂e

(xn − ŝn) = β̂

σ̂ε
(β̂ ŝn − yn),

n = 1, 2, . . . , N. (15)

From (15), it follows that

1

σ̂ 2
e

1
N

N∑
n= 1

(xn − ŝn)
2

= β̂2

σ̂ 2
ε

1
N

N∑
n= 1

(yn − β̂ ŝn)
2 (16)

or equivalently [see also (12) and (13)]

1
σ̂e

= β̂2

σ̂ε
. (17)

This equation and (15) imply that

β̂ ŝn − yn = β̂(xn − ŝn), (18)

which gives

ŝn = 1
2

(
xn + yn

β̂

)
,

n = 1, 2, . . . , N, (19)

which is the same as (5). Using (19) in
(14) yields the following equation in β:

N∑
n= 1

(β̂xn − yn)(β̂xn + yn)

=
N∑

n= 1

(β̂2 x2
n − y2

n) = 0 (20)

whose solutions are

β̂ = ±
(∑N

n= 1 y2
n∑N

n= 1 x2
n

)1/2

(21)

which is the same as (4). Thus, the proof
of (4)–(7) is concluded. 

Next, we show that the estimates in
(4)–(7) are saddle points of f. The fact that
neither of them can be a global minimum
point is easy to see. For example, observe
that for fixed β and σε > 0, and for
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sn = xn (n = 1, 2, . . . , N), the function f
tends to −∞ as σe → 0; hence f cannot
have any global minimum. However, to
prove that (4)–(7) are saddle points, we
need to show that the Hessian matrix evalu-
ated at (4)–(7) is indefinite, which requires
more calculations. Let Hσeσe , Hσεσε

, etc.
denote the blocks of the said Hessian
matrix, H, corresponding to the different
elements of the parameter vector. A simple
differentiation of (8)–(11) gives the follow-
ing expressions for the blocks of H:

Hσeσe = − 1

σ̂ 2
e

+ 2σ̂e

σ̂ 3
e

= 1

σ̂ 2
e

(22)

Hσeσε
=0 (23)

Hσeβ =0 (24)

Hσesn = 2

Nσ̂ 2
e
(xn − ŝn) (25)

Hσεσε
= 1

σ̂ 2
ε

(26)

Hσεβ =0 (27)

Hσε sn = 2
Nσ̂ 2

ε

β̂(yn − β̂ ŝn) (28)

Hββ = 2
Nσ̂ε

N∑
n= 1

ŝ2
n (29)

Hβ sn = 2
Nσ̂ε

(2β̂ ŝn − yn) (30)

and

Hsnsl =
{ 2

Nσ̂e
+ 2β̂2

Nσ̂ε
if n = l

0 if n �= l.
(31)

Hence, the Hessian matrix is given by

H =
[

D �T

� �

]
, (32)

where (·)T denotes the transpose and

D =


1

σ̂ 2
e

0

1
σ̂ 2

ε

0
2

Nσ̂ε

N∑
n= 1

ŝ2
n




, (3 × 3)

(33)

��� = 2(σ̂ε + β̂2σ̂e)

Nσ̂eσ̂ε
I, (N × N ) (34)

and

���T =


2(x1−ŝ1)

Nσ̂ 2
e

· · · 2(xN−ŝN)

Nσ̂ 2
e

2β̂(y1−β̂ ŝ1)

Nσ̂ 2
ε

· · · 2β̂(yN−β̂ ŝN)

Nσ̂ 2
ε

2(2β̂ ŝ1−y1)

Nσ̂ε
· · · 2(2β̂ ŝN−yN)

Nσ̂ε




,

(3 × N). (35)

Because � is a positive definite matrix
(� > 0), H is positive semidefinite if and
only if (see, e.g., [6, Appendix A ])

��� = D − ���T���−1��� ≥ 0. (36)

The (1, 1)-element of � is easily seen to
be zero

���11 = 1

σ̂ 2
e

− Nσ̂eσ̂ε

2(σ̂ε + β̂2σ̂e)

× 4

N2σ̂ 4
e

N∑
n= 1

(xn − ŝn)
2

= 1

σ̂ 2
e

(
1 − 2σ̂ε

σ̂ε + β̂2σ̂e

)

∼ β̂2σ̂e − σ̂ε = 0, (37)

where ∼ means “proportional to.’’
Then, by a well-known property of posi-
tive semidefinite matrices, (36) can
hold only if any off-diagonal element in
the first row of � is also equal to zero.
However, a simple calculation shows
that [see (19)]

�12 ∼
N∑

n= 1

(xn − ŝn)(yn − β̂ ŝn)

∼
N∑

n= 1

(
xn − yn

β̂

)
(yn − β̂xn)

∼
N∑

n= 1

(yn − β̂xn)
2. (38)

Hence, �12 = 0 if and only if yn = β̂xn

(n = 1, 2, . . . , N) and therefore only if

(
N∑

n= 1

ynxn

)2

=β̂2

(
N∑

n= 1

x2
n

)2

=
(

N∑
n= 1

y2
n

)(
N∑

n= 1

x2
n

)
,

(39)

which, in view of the Cauchy-Schwarz
inequality, can hold if and only if
yn ∼ xn (n = 1, 2, . . . , N). Since this is
probabilistically nearly impossible, we
conclude that � is indefinite, and hence
so is H. With this observation, the proof
of the fact that (4)–(7) are saddle points
of f is complete. As a final remark, note
that the following blocks of H have not
been used in the proof: Hσeβ , Hσεσε

,
Hσεβ , Hββ , and Hβ sn ; hence, the proof
could be slightly shortened by not deriv-
ing expressions for these blocks.
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