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G
enomics entails the study
of large sets of genes with
the goal of understanding
collective gene function,
rather than just that of

individual genes. Genomic signal pro-
cessing (GSP) is the engineering disci-
pline that studies the processing of
genomic signals. Since regulatory deci-
sions within the cell utilize numerous
inputs, analytical tools are necessary to
model the multivariate influences on
decision-making produced by complex
genetic networks. Genomic signals
must be processed to characterize their
regulatory effects and their relationship
to changes at both the genotypic and
phenotypic levels. The aim of GSP is to
integrate the theory and methods of sig-
nal processing with the global under-
standing of genomics, placing special
emphasis on genomic regulation. GSP
encompasses various methodologies
related to signal profiles: detection, pre-
diction, classification, control, and statis-
tical and dynamical modeling of gene
networks. In this article, we give an
overview of GSP and describe how pat-
tern recognition and network analysis
are central to diagnosis and therapy for
genetic diseases. 

GENOMICS
Multicellular organisms, such as our-
selves, are made up of approximately 100
trillion cells. A cell is the basic unit of life
and, although each cell by itself is a
completely functioning unit, in a multi-
cellular organism the cells must coexist
in harmony by obeying certain social
controls. Cells replicate themselves by
cell division, and irreparably damaged
cells remove themselves by a process
called apoptosis, which is essentially pro-
grammed suicide.

Each cell contains instructions neces-
sary for its proper functioning. These
instructions are written in the form of
deoxyribonucleic acid (DNA) and must
be replicated and handed down
unchanged to the cell’s progeny when it
divides. Coded in the DNA are instruc-
tions that direct the cell to divide, under-
go apoptosis, or perform a variety of other
functions. Although all these instructions
are present in almost every cell of an
organism, they are not active at all times.
The overall behavior of the cell arises from
the manner in which the instructions are
called. Control depends on complex inter-
actions between the products of the cell and
those of its environment. As might be
expected from a highly complex system
that must be both efficient and surviv-
able, control is highly distributed and
redundant.

When a particular instruction
becomes active (in response to some
internal or external stimulus), the corre-
sponding gene (or stretch of DNA) is said
to turn on or be expressed. What really
happens is that the DNA strand (which
serves as a master copy) is copied using a
less stable molecule called ribonucleic
acid or RNA, and one or more copies are
made. The RNA strands are called mes-
senger RNAs (mRNAs). The process by
which they are produced is called tran-
scription. The mRNAs are subsequently
interpreted in accordance with a univer-
sal genetic code to produce the appropri-
ate proteins, which are the molecules
ultimately responsible for all cellular
functions. The process of producing pro-
teins from mRNAs is referred to as trans-
lation. This conduit of information flow
from DNA to RNA to protein was one of
the early central insights of molecular
biology and is known as the central
dogma of molecular biology.

GSP studies the many questions
regarding cellular control mechanisms
raised by the growing understanding of
how information stored in DNA is con-
verted into molecular machines with
various capabilities. Such machines
include those required to carry out the
copying of DNA and the transformation
of its code into RNA and protein.
Regulation of transcription requires
that transcription factors, which are
proteins that recognize specific
sequences on the DNA, bind to the DNA
and seed the formation of protein com-
plexes that constitute a recognition site.
This is the site to which the complex of
proteins that forms an RNA polymerase
can bind and initiate copying from the
DNA strand that serves as a template for
the RNA. By means of such interactions
among the proteins present in the cell
and the interactions of these complexes
with the DNA, intricate but reliable log-
ical relations are produced. These then
maintain highly varied patterns of gene
expression among the differing cell
types present in an organism.

The key point is that cellular control,
and its failure in disease, results from
multivariate activity among cohorts of
genes and their products. Since all three
levels in the central dogma—DNA, RNA,
and protein—interact, it is not possible to
fully separate them. Ultimately, informa-
tion from all realms must be combined
for full understanding; nevertheless, the
high degree of interactivity between lev-
els insures that a significant amount of
the system information is available in
each of the levels, so that focused studies
provide useful insights. Efforts are cur-
rently focused at the RNA level owing to
measurement considerations.

A central aspect of RNA-based
genomic analysis is measurement of the
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transcriptome, the collection of mRNAs
in a cell at a given moment. Recently
developed, high-throughput technologies
make it possible to simultaneously meas-
ure the RNA abundances of thousands
of mRNAs. In particular, expression
microarrays result from a complex bio-
chemical-optical system incorporating
robotic spotting and computer image for-
mation [1]. These arrays are grids of
thousands of different single-stranded
DNA molecules attached to a surface to
serve as probes. Two major kinds include
those using synthesized oligonucleotides
and those using spotted cDNAs (comple-
mentary-DNA molecules). The basic pro-
cedure is to: 1) extract RNA from cells, 2)
convert the RNA to single-stranded
cDNA, 3) attach fluorescent labels to the
different cDNAs, 4) allow the single-
stranded cDNAs to hybridize to their
complementary probes on the microar-
ray, and then 5) detect the resulting fluor-
tagged hybrids via excitation of the
attached fluors and image formation
using a scanning confocal microscope.
Relative RNA abundance is measured via
measurement of signal intensity from the
attached fluors. This intensity is obtained
by image processing and statistical analy-

sis, with particular attention often paid to
the detection of high- or low-expressing
genes [2]. Figure 1 provides a schematic
representation of the preparation,
hybridization, image acquisition, and
analysis for cDNA microarrays.

Two major goals of functional
genomics are: 1) to use genomic signals to
classify disease on a molecular level and 2)
to screen for genes that determine specific
cellular phenotypes (disease) and model
their activity in such a way that normal
and abnormal behavior can be differentiat-
ed. These goals correspond to diagnosing
the presence or type of disease and to
developing therapies based on the disrup-
tion or mitigation of the aberrant gene
function contributing to the pathology of a
disease. Mitigation would be accomplished
by the use of drugs to act on the gene
products. Creating diagnostic tools for use
at the RNA level involves designing expres-
sion-based classifiers based on genes
whose product abundances indicate key
differences in cell state, such as one type of
cancer or another. Creating therapeutic
tools involves synthesizing nonlinear
dynamical networks, analyzing these net-
works to characterize gene regulation, and
developing intervention strategies to mod-

ify dynamical behavior. In this article, we
briefly explain and give examples of the
classification/diagnosis and network/thera-
py paradigms. 

Considerable effort in GSP has been
directed towards gaining an understand-
ing of cancer and developing potential
therapeutic approaches for treating it.
Thus, it is appropriate at the outset to give
a broad description of the disease with the
intention of introducing some basic ter-
minology. Essentially, cancer results when
a cell divides uncontrollably and fails to
undergo apoptosis. This can happen if
damage to a cell’s DNA perpetually turns
on the instructions to divide or perma-
nently switches off the instructions to
undergo apoptosis. If that happens, then
the cell and its progeny can experience
uncontrolled growth, initially forming
localized tumors. Further DNA mutation
or rearrangement can provide the cell the
ability to invade surrounding tissue, as
well as the blood or lymph system. When
malignant cells spread to distant organs,
the cancer is said to have metastasized.

CLASSIFICATION FOR DIAGNOSIS
Classification for diagnosis involves design-
ing a classifier that takes a vector of gene

[FIG1] The cDNA microarray technology. Schematic diagram showing slide preparation, hybridization, image acquisition, and analysis.
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expression levels as input and outputs a
class label, or decision. For cancer diagno-
sis, classification can be between different
kinds of cancer, different stages of tumor
development, or other such differences.
Expression-based classification has been
applied to many types of cancer, including
leukemia, breast cancer, colon cancer,
melanoma, and glioma [3]. Classifier
design involves measuring expression lev-
els from RNA obtained from the different
tissues, determining genes whose expres-
sion levels can be used as features, applying
a classification rule to construct the classi-
fier, and applying an estimation rule to esti-
mate the classifier error. 

Critical issues arise due to the preva-
lence of small samples in microarray
experiments: 1) limited classifier com-
plexity, including a simple functional
structure and a small number of fea-
tures, to avoid overfitting the sample
data; 2) error estimation using the train-
ing data from small samples; and 3)
choosing a small set of genes as features
from among thousands of genes on a
microarray. These are difficult issues,
and they are provoking a substantial
amount of statistical and engineering
research. In addition to the statistical
reasons, small feature sets are advanta-
geous from the diagnostic and thera-
peutic perspective, since sufficient
information must be vested in gene sets
small enough to serve as either conven-
ient diagnostic panels or as candidates
for the very expensive and time-consum-
ing analysis required to determine if they
could serve as useful targets for therapy. 

We demonstrate classification for
expression-based diagnosis by consider-
ing a glioma study performed at the
University of Texas M.D. Anderson Cancer
Center. This study uses expression data
from microarrays for 597 genes to identi-
fy gene combinations for use as glioma
classifiers [4]. Gliomas are the most com-
mon malignant primary brain tumors.
These tumors are derived from neuroep-
ithelial cells and can be divided into two
principal lineages: astrocytomas and
oligodendrogliomas. Using a group of 25
patients, gene combinations have been
identified for distinguishing four types of
glioma: oligodendroglioma (OL), anaplas-

tic oligodendroglioma (AO), anaplastic
astrocytoma (AA), and glioblastoma mul-
tiforme (GM). Linear classifiers, which
have low complexity, have been derived
using a form of analytic noise injection
that serves as a regularization technique
to improve classifier design for small
samples. Error estimation has been done
by bolstered resubstitution, a method
that provides better results than cross
validation on small samples and that is
suitable for testing thousands of classi-
fiers thanks to its speed of implementa-
tion. Thus, the first two small-sample
issues mentioned previously have been
addressed. For feature selection, the exis-
tence of only 597 genes on the microar-
ray and the use of computationally
efficient classifier design and error esti-
mation have permitted the use of a super-
computer to test all possible feature sets.
Figure 2 shows examples of hyperplanes
for three-gene discriminators found by
the method that yield low estimated
errors for: (a) OL from others, (b) GM
from others, (c) AO from others, and (d)
AA from others. The axes give the names
of the genes composing the classifiers.

Due to the difficulty of designing clas-
sifiers on small samples and the high
variation of error estimators based on
small training samples, it is imprudent
to take a single classifier designed on a
single set of microarray experiments as
the final product of classification. We
quote from a previous paper: 

Separation of the sample data by
designed classifiers will likely have to
be taken as evidence that the corre-
sponding gene sets are potential vari-
able sets for classification. Their
effectiveness will have to be checked
by large-replicate experiments
designed to estimate their classifica-
tion error, perhaps in conjunction
with biological input or phenotype
evidence. There may, in fact, be many
gene sets that provide accurate classi-
fication of a given pathology. Of these,
some sets may provide mechanistic
insights into the molecular etiology of
the disease, while other sets may be
indecipherable. [5]

This is precisely the approach taken in the
glioma study we have been discussing.

NETWORKS FOR THERAPY
Cellular control and its failure in disease
result from multivariate activity among
cohorts of genes. Thus, for therapeutic
purposes, it is important to model this
multivariate interaction. In the literature,
two somewhat distinct approaches have
been taken to carry out this modeling.
The first approach is based on construct-
ing detailed biochemical network models
for particular cellular reactions of interest
and makes use of ordinary differential
equations, partial differential equations,
and their variants [6]. While this method
yields insights into the details of individ-
ual reaction pathways, it is not clear how
the information obtained can be used to
design a therapeutic regimen for a com-
plex disease like cancer, which simultane-
ously involves many genes and many
signalling pathways. A major problem for
fine-scale modeling is its large data
requirement. Consequently, here we focus
on the second approach, which is geared
towards building coarse models of genetic
interaction using the limited amount of
microarray gene expression data that is
usually available. Paradigms that have
been considered in this context include
directed graphs, Bayesian networks,
Boolean networks, generalized logical
networks, and most recently, probabilistic
Boolean networks. Here we will explicitly
discuss Boolean and probabilistic Boolean
networks since the therapy aspect is cur-
rently most developed within these two
frameworks. The reader is referred to [6]
and the references therein for in-depth
discussions of other paradigms.

A Boolean network is defined by a set of
nodes, V = {x1, x 2, . . . , xn}, and a list of
Boolean functions, F = { f1, f2, . . . , fn}.
Each xk represents the state (expression) of
a gene, gk , where xk = 1 or xk = 0,
depending on whether the gene is
expressed or not expressed. The Boolean
functions represent the rules of regulatory
interaction between genes. Network
dynamics result from a synchronous clock
with times t = 0, 1, 2, . . . , and the value
of gene gk at time t + 1 is determined
by xk(t + 1) = fk(xk1, xk2, . . . , xk,m(k)) ,
where the nodes in the argument of fk
form the regulatory set for xk (gene gk).
The numbers of genes in the regulatory
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sets define the connectivity of the network,
with maximum connectivity typically no
more than three. At time point t, the state
vector x(t) = (x1(t), x2(t), . . . , xn(t))
is called the gene activity profile (GAP).
The functions together with the regulatory
sets determine the network wiring. A
Boolean network is a very coarse model;
nonetheless, it facilitates understanding of
the generic properties of global network

dynamics [7], [8], and its simplicity miti-
gates data requirements for inference. 

Microarray technology yields simulta-
neous measurements of expression status
for thousands of genes and can be utilized
for network inference. By viewing gene
status across different conditions, it is pos-
sible to establish relationships between
genes that show variable status across the
conditions. Owing to limited replications,

we assume that gene expression data is
quantized using the methods in [2]. One
way to establish multivariate relationships
among genes is to quantify how the esti-
mate for the expression status of a particu-
lar target gene can be improved by
knowledge of the status of some other pre-
dictor genes. This is formalized via the
coefficient of determination (CoD) [9],
which is essentially a nonlinear, multivariate

[FIG2] Glioma classification: hyperplanes for three-gene discriminators: (a) OL from others; (b) GM from others; (c) AO from others; and
(d) AA from others.
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generalization of the familiar goodness of
fit measure in linear regression. For our
purposes, it is sufficient to note that the
CoD measures the degree to which the
best estimate for the transcriptional activi-
ty of a target gene can be improved using
the knowledge of the transcriptional activ-
ity of some predictor genes, relative to the
best estimate in the absence of any knowl-
edge of the transcriptional activity of the
predictors. The CoD is a number between
zero and one, a higher value indicating a
tighter relationship. Given a target gene,
several predictor sets may provide equally
good estimates of its transcriptional activi-
ty, as measured by the CoD. Moreover, one
may rank several predictor sets via their
CoDs. Such a ranking provides a quantita-
tive measure to determine the relative
ability of each predictor set to improve the
estimate of the transcriptional activity of
the particular target gene. While attempt-
ing to infer inter-gene relationships, it
makes sense to not put all our faith in one
predictor set; instead, for a particular tar-
get gene, a better approach is to consider a
number of predictor sets with high CoDs.
Considering each retained predictor set to
be indicative of the transcriptional activity
of the target gene with a probability pro-
portional to its CoD represents feature
selection for gene prediction.

Having inferred intergene relation-
ships, this information can be used to
model the evolution of the gene activity
profile over time. It is unlikely that the
determinism of the Boolean-network
model will be concordant with the data.
One could pick the predictor set with the
highest CoD, but as noted previously,
there are usually a number of almost
equally performing predictor sets, and the
CoDs we have for them are only estimates
from the data. By associating several pre-
dictor sets with each target gene, it is not
possible to obtain with certainty the tran-
scriptional status of the target gene at the
next time point; however, one can com-
pute the probability that the target gene
will be transcriptionally active at time
t + 1 based on the gene activity profile at
time t. The time evolution of the gene
activity profile then defines a stochastic
dynamical system. Since the gene activity
profile at a particular time point depends

only on the profile at the immediately pre-
ceding time point, the dynamical system is
Markovian. Such systems can be studied
in the established framework of Markov
chains and Markov decision processes.
These ideas are mathematically formalized
in probabilistic Boolean networks (PBNs)
[10]. In a PBN, the transcriptional activity
of each gene at a given time point is a
Boolean function of the transcriptional
activity of the elements of its predictor sets
at the previous time point. The choice of a
Boolean function and associated predictor
set can vary randomly from one time point
to another in accordance with the CoD-
based selection probabilities associated
with the different predictor sets. This
defines an instantaneously random PBN. 

An alternative approach is to take the
view that the data on the microarrays
come from distinct sources, each repre-
senting a context of the cell. That is, the
data derive from a family of deterministic
networks and were we able to separate the
samples according to context, there would
in fact be CoDs with value one, indicating
deterministic biochemical activity for the
wiring of a particular constituent net-
work. Under this perspective, the only rea-
son that it is not possible to find predictor
sets with CoD equal (or very close) to one
is that they represent averages across the
various cellular contexts with their corre-
spondingly various wirings. This perspec-
tive leads to the view that a PBN is a
collection of Boolean networks in which
one constituent network governs gene
activity for a random period of time before
another randomly chosen constituent
network takes over, possibly in response
to some random event, such as an exter-
nal stimulus. Since the latter is not part of
the model, network switching is random.
This model defines a context-sensitive
PBN. The probabilistic nature of the con-
stituent choice reflects the fact that the
system is open, not closed. The context-
sensitive model reduces to the instanta-
neously random model by having network
switching at every time point.

Given a Boolean network, one can par-
tition the state space into a number of
attractors along with their basins of attrac-
tion. The attractors characterize the long-
run behavior of the Boolean network and

have been conjectured by Kauffman to be
indicative of the cell type and phenotypic
behavior of the cell. For instance, it is
thought that apoptosis and cell differenti-
ation correspond to some singleton
attractors and their basins, while cell pro-
liferation corresponds to a cyclic attractor
along with its associated basin [8].
Changes in the Boolean functions, via
mutations or rearrangements, can lead to
a rewiring in which attractors appear that
are associated with tumorigenesis. This is
likely to lead to a cancerous phenotype
unless the corresponding basins are
shrunk via new rewiring, so that the cellu-
lar state is not driven to a tumorigenic
phenotype, or, if already in a tumorigenic
attractor, the cell is forced to a different
state by flipping one or more genes. The
objective of cancer therapy would be to
use drugs to do one or both of the above.
These ideas for Boolean networks can be
generalized to PBNs by noting that the
dynamic behavior of PBNs can be
described by Markov Chains, so that a PBN
has equivalence classes of communicating
states analogous to the basins of attraction
for Boolean networks. Similarly, since all
the states in an equivalence class commu-
nicate, there is a steady-state distribution
local to each equivalence class so that the
long-run behavior within that class can be
studied. Furthermore, by assuming that
each gene has a small probability of under-
going a random flip, we can make the
overall Markov chain ergodic, which then
guarantees the existence of a global
steady-state distribution [10].

One objective of PBN modeling is to
use the PBN to design different approach-
es for affecting the evolution of the gene
activity profile of the network. To date,
such intervention studies have used three
different approaches: 1) resetting the state
of the PBN, as necessary, to a more desir-
able initial state and letting the network
evolve from there [10], 2) changing the
steady-state (long run) probability distri-
bution of the network by minimally alter-
ing its rule-based structure [10], and 3)
manipulating external (control) variables
that affect the transition probabilities of
the network and can, therefore, be used to
desirably affect its dynamic evolution over
a finite time horizon [11]. 
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We briefly describe the results in
[11], where an intervention study was
carried out using a PBN derived from
gene expression data collected in a
study of metastatic melanoma. In this
expression profiling study, the abun-
dance of mRNA for the gene WNT5A
was found to be highly discriminating
between cells with properties typically
associated with high metastatic compe-
tence versus those with low metastatic
competence. These findings were vali-
dated and expanded in a second study
in which experimentally increasing the
levels of the Wnt5a protein secreted by
a melanoma cell line via genetic engi-
neering methods directly altered the
metastatic competence of that cell as
measured by the standard in vitro
assays for metastasis. Furthermore, it
was found that an intervention that
blocked the Wnt5a protein from acti-
vating its receptor (the use of an anti-
body that binds Wnt5a protein) could
substantially reduce Wnt5a’s ability to
induce a metastatic phenotype. This
suggests that a reasonable control
strategy would be to use an interven-
tion that reduces the WNT5A gene’s
action in affecting biological regula-
tion, since the available data suggest
that disruption of this influence could
reduce the chance of a melanoma
metastasizing, a desirable outcome. 

To this end, a seven-gene network,
including the activity of the WNT5A gene,
was derived from the available gene
expression data. This network, along with
the multivariate relationships between

the genes, is shown in Figure 3. For each
gene in this network, the two best two-
gene predictors were used and their asso-
ciated CoDs computed. This information
was used to obtain the transition proba-
bilities for the Markov chain associated
with the PBN. The intervention problem
was then posed as a finite horizon opti-
mal control problem. The performance
index or cost function was chosen to
reflect the tradeoffs between the interven-
tion effort and the terminal penalty asso-
ciated with ending up in an undesirable
(bad) state at the end of the control hori-
zon. Since the control objective here is to
reduce the activity of the WNT5A gene,
the entire state space was partitioned into
good and bad regions, with bad regions
being characterized by WNT5A over-
expression. Bad states were assigned
higher terminal penalties than the good
ones, and the optimization problem was
solved by Dynamic Programming. Two
possible interventions were considered:
intervening with Wnt5a directly (through
its antibody) and intervening through
another gene called pirin. In each case, it
was found that the network with control
performed better (in a probabilistic
sense) than the network without control,
so that the control objective was met.
Furthermore, controlling WNT5A direct-
ly yielded better performance than trying
to control it through pirin, which again is
in agreement with intuitive expectations.

The intervention approaches 1) and
3) above do not attempt to alter the
steady-state behavior of the network,
while approach 2) attempts to increase
the steady-state probability mass in the
desirable states. However, all of these
approaches are essentially first-cut solu-
tions and will have to be improved upon.
For instance, the approach in 2) uses a
brute-force search algorithm, and a
more systematic approach will have to
be found through which one can
increase the steady-state probability
mass in the desirable set of states, while
correspondingly decreasing the mass in
the undesirable ones. Another aspect
that merits further investigation is moti-
vated by the fact that the currently avail-
able gene expression data comes from
the steady-state phenotypic behavior

and really does not capture any temporal
history. Consequently, the process of
inferring PBNs from the data will have
to be modified, in the sense that it will
have to be guided more by steady-state
and limited connectivity considerations.
Major research efforts in these direc-
tions are currently under way. 
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