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H
ow well do students learn
the core concepts in signal
processing courses? Do
students learn better
through some instruction-

al formats than others? How can we
assess student learning in these courses?
This column describes our positive expe-
riences using active and cooperative
learning (ACL) methods to improve sig-
nal processing instruction. We provide
examples, references, and assessment
data that we hope will encourage other
instructors to consider this approach.
Many of our conclusions are based on
impressions gathered through conversa-
tions with students during office hours
as well as on responses from anonymous
student opinion surveys. In addition to
these subjective assessments, prelimi-
nary quantitative data measured with the
Signals and Systems Concept Inventory
(SSCI) support the benefits of ACL tech-
niques in signal processing courses [1].

Our interest in ACL was sparked by
an intriguing study on pedagogical
methods in physics classes. A survey by
Hake [2] of over 6,000 students in
Newtonian mechanics classes found
that students in traditional lecture
courses learned only about a quarter of
the concepts that they didn’t know at
the start of the course. In contrast,
Hake found that students in interactive
engagement (IE) format courses
learned nearly half of the concepts that
they didn’t know at the start of the
course. Hake defined IE methods as
those promoting “conceptual under-
standing through interactive engage-
ment of students in heads-on . . . and
hands-on . . . activities which yield
immediate feedback through discussion
with peers and/or instructors.’’ [2] The
students’ conceptual understanding

was assessed by administering the
Force Concept Inventory (FCI) exam in
a pretest/posttest protocol at the start
and end of the course. The FCI, devel-
oped by Hestenes et al. [3], is a multiple
choice exam emphasizing conceptual
understanding of Newtonian mechanics
over rote calculation.

Due to the work of Hestenes, Hake,
and others like them, physics depart-
ments are increasingly adopting IE
methods in their curricula [4], [5]. Over
the past decade, the Foundation
Coalition and other NSF-funded projects
have championed engineering curricu-
lum reform and assessment based on
these pedagogical methods [6]. Still, rel-
atively few advanced undergraduate
courses employ IE classroom techniques.

Hake’s survey gave us pause and
caused us to speculate on the effective-
ness of our own lecture-oriented courses.
Like many instructors teaching signal
processing courses like signals and sys-
tems and DSP, we believed that we
emphasized the core concepts of the
material in our lectures. Nevertheless,
nearly all of our assessments were exams
and homework that consisted predomi-
nantly of problems to solve rather than
conceptual questions to answer.
Moreover, we wondered if IE techniques,
or ACL techniques as they are described
in [7] and [8], would improve our stu-
dents’ understanding of signal process-
ing concepts. These pedagogical methods
incorporate a wide range of elements
such as in-class problem solving, peer
instruction, computer exercises, and
interactive labs. All of these methods
actively engage students in the immedi-
ate application of the key concepts of the
course. This classroom format makes
students responsible participants in their
education rather than passive consumers

of lectures delivered by an instructor. 
Since 1998, we have used some 

form of ACL in ten undergraduate and
introductory graduate signal proc-
essing courses at the University of
Massachusetts Dartmouth (UMD) and
George Mason University (GMU). The fol-
lowing section presents concrete exam-
ples of how we use ACL in our courses.
Subsequent sections discuss our insights
on creating an effective ACL environment
in the classroom, and our assessment data
supporting the benefits of ACL in improv-
ing students’ conceptual understanding. 

ACL IN THE CLASSROOM
Our ACL courses incorporate interactive
elements adapted from several sources.
We found the books by Mazur [9] and
Johnson et al. [7] helpful in developing
ACL techniques for our signal processing
classes. Mazur’s book describes his imple-
mentation of concept-oriented peer
instruction for his Harvard physics class-
es [9]. Johnson et al.’s book on coopera-
tive learning provides several good ideas
on formats and assessments for coopera-
tive learning [7]. Other helpful ACL
resources include [8], [10], and [11]. Our
implementation of ACL has two major
components: 1) reading quizzes to moti-
vate students to prepare for class and 2)
in-class problem-solving exercises to
reinforce important concepts. Since
accountability is crucial to the success of
ACL methods [7]–[9], we grade the read-
ing quizzes and in-class exercises; they
are worth approximately 10% of the over-
all course grade. In the following para-
graphs, we describe each of these ACL
classroom elements in more detail. 

Students spend the first five minutes
of each class individually completing a
four question true/false quiz on the
assigned reading. These readiness assess-
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ment tests, affectionately
known as RATs, are graded to
hold the students accountable
for their own preparation for
class. (See “Sample Readiness
Assessment Test (RAT)” for an
example of one of these quizes
on convolution and LTI sys-
tems). The purpose of these
simple questions is to ascer-
tain whether or not the stu-
dents did the reading, rather
than to assess conceptual
understanding. After collect-
ing the RATs, we verbally
review them, asking students
to volunteer their responses along with
their reasoning. This provides immediate
feedback and also serves to outline the
important concepts we will discuss that
day. We use the RAT scores as one com-
ponent of the course grade to stress the
need to prepare for class by reading. To
further emphasize the importance of the
reading, we warn the students that the
exams usually include a few true/false
questions based on the RATs and then fol-
low through on that warning. Other
instructors have found the just-in-time-
teaching strategy an effective alternative
to RATs [11].

Collaborative problem-solving exer-
cises are the central component of all
of our ACL courses. We intersperse
short (typically 10–15 minute) lecture
segments on key concepts with 10–
15 minute in-class group exercises. In-
class exercises challenge students to
apply what they have learned, both
through reading before class and listen-
ing during the lecture segment, to solve a
problem or answer a question. Students
receive a grade for their answers to the
in-class problems, providing an incentive
for them to come to class well prepared
to participate in group discussions. The
students work on these exercises in
groups, and at the end of the time allot-
ted, the group is assessed based on one
randomly chosen member’s solution. If
time allows, the student may present his
or her group’s solution orally. Groups not
presenting their solution orally in class
are assessed based on the written solution
of a randomly chosen member. Both

approaches fulfill our goal of making
group members accountable to their
peers. Grading these short exercises need
not be onerous, and they provide valuable
information to the instructor about the
students’ understanding. Many feedback
strategies can effectively promote group
accountability and motivation so long as
the feedback is prompt and performance
based, not just a binary grade for effort.
Other suggestions for assessment and
accountability can be found in [7].

During the in-class exercises, the
instructor circulates among the groups,
observing the students’ progress and
offering feedback or hints as necessary.
The most productive hints are often
posed as questions such as “If the system
is causal, what can you say about the
output here? Does your answer agree
with that?’’ These questions often spark
constructive discussions within the
team. The students receive immediate
and sometimes brutally honest feedback
from their peers when discussing their
proposed solutions within the group.
Listening to the group discussions pro-
vides the instructor with immediate feed-
back on what the class understands and
what they are confused about. In-class
exercises can take many forms from sim-
ple pencil-and-paper problems to MAT-
LAB programming. 

SAMPLE SIGNAL PROCESSING
ACL EXERCISES
As lecturers, we often solve several exam-
ples in class to illustrate key points. Just
as professional athletes make difficult

plays look easy, professional
signal processors can make
complex examples look simple
in lecture. While this is some-
times helpful, watching does
not necessarily translate to
understanding (or even to the
ability to do the homework
problems). Just as in athletics,
watching a “pro’’ is no substi-
tute for practice. When we
simply lectured, our students
sometimes turned in incom-
plete assignments with com-
ments to the effect that while
the class examples looked

easy, they got stuck or confused on the
homework. We have found that the sim-
plest way to engage students is to have
the second in-class example for any con-
cept be an ACL exercise. We solve the first
example and then ask the students to
work the second example in groups. For
instance, during a class on the z-trans-
form, we show students how to compute
the z-transform of the signal x1[n] =
(1/3)nu[n − 1] and then ask them to
compute the transform of x2[n] =
(1/5)nu[n − 2]. This exercise allows stu-
dents to practice some simple computa-
tional skills while also assessing whether
or not they understand the basic idea of
the region of convergence (ROC). It often
reveals weaknesses in students’ math
background (their facility with summa-
tions, in particular) that are easily
addressed with an explanation from a
peer or the instructor. 

Convolution is also well suited to
interactive instruction. One difficulty
with working convolution problems is
that they require time-consuming draw-
ings of the signals. To speed up the
process, we have the students draw the
signals on transparency paper that can be
flipped, shifted, and erased with ease. This
low-tech solution dramatically helps the
students who have difficulty visualizing
the flipping and shifting operations. One
of our students felt this approach was so
helpful that he asked permission to bring
blank transparencies to the exam. Solving
convolution problems in groups helps
students catch each other’s bookkeeping
or arithmetic mistakes and increases the

SAMPLE READINESS ASSESSMENT TEST (RAT).

Readiness Assessment Test (RAT)

1) Name: _____________________________
2) T/F Any discrete time signal can be written as a sum of

delayed and scaled impulses.
3) T/F The convolution sum is a valid method of computing the

output for any system, not just linear and time-invariant
systems.

4) T/F Convolution is not an associative operation, i.e.,

x[n] ∗ (h1[n] ∗ h2[n]) �= (x[n] ∗ h1[n]) ∗ h2[n].

5) T/F For a linear time-invariant system to be causal, its impulse
response must be equal to zero for all time.



[signal processing EDUCATION] continued

IEEE SIGNAL PROCESSING MAGAZINE [78] MARCH 2005

likelihood that they obtain the
correct answer. We believe many
students receive a significant
confidence boost by overcoming
their initial mistakes in class with
the support of their peers and the
instructor. This makes them
more likely to persevere when
they encounter difficulties in the
homework. Finally, these experi-
ences reinforce the benefits of
working in cooperative groups
for the homework assignments.

In addition to straight-for-
ward practice problems, in-class exercises
can also challenge students to synthesize
several concepts to answer a single ques-
tion. “Example of In-Class Exercise”
shows an exercise that requires students
to make some general conclusions about
the stability of FIR and IIR systems. The
in-class problems that preceded this exer-
cise provided several examples of both
types of systems for students to draw
upon. The definition of stability was pre-
sented in a previous class, so this exercise
pushed students to link concepts from
different classes. The discussions sparked
by these types of questions force students
to move beyond rote calculations and to
think about what their results mean. 

We have found that “reverse reason-
ing’’ exercises are very effective for
improving students’ conceptual under-
standing. These problems reverse a typi-
cal class example by switching which
quantities are the givens and which are
the unknowns. If the first example pro-
vides the input spectrum X( j�) and
the frequency response H( j�) and asks
for a sketch of the output spectrum
Y( j�), the subsequent reverse reason-
ing version of the problem might pro-
vide a different X( j�) and Y( j�) and
ask which of several candidate system
functions is consistent with that infor-
mation. Reverse reasoning is also used
in physics ACL classes, as discussed in
[12]. We believe that students think
more thoroughly about the concepts
when solving these types of problems
than when they are simply pattern
matching new figures or expressions
with a previous example. Reverse rea-
soning skills are crucial for engineering

design. Sherlock Holmes once noted 
There are few people, however,

who, if you told them a result,
would be able to evolve from their
own inner consciousness what the
steps were which led up to that
result. This power is what I mean
when I talk of reasoning back-
wards . . . [13]

We want our engineering students to be
among those few people who possess this
power of reasoning backwards. 

MAKING ACL WORK
There are several important issues asso-
ciated with adopting ACL methods. First
and foremost is the student reaction to
this alternative approach. Many instruc-
tors find that students initially, and
sometimes vociferously, resist the shift
in format that requires them to be
responsible for the material on a daily
basis rather than simply show up for the
course. It is important to acknowledge
that this requires more work up front for
the students, but also to explain that they
will benefit from this based on our expe-
rience in previous courses and documen-
tation in the literature. We make it clear
that we will not be reverting to standard
lectures. After roughly a quarter to a
third of the term, almost all students
accepted the new format; on the end-of-
semester anonymous opinion surveys,
we found that the majority of students
ultimately preferred the ACL format
course. Some students are quite enthusi-
astic; one student said that in-class prob-
lems are the “best teaching tool ever
encountered.’’ Another commented that
the exercises gave him “an opportunity

to spot areas of concern while
the instructor was present so
they could be addressed proper-
ly.’’ Another common student
comment on ACL is that it makes
class periods fly by quickly. 

It is important to recognize
that it takes time for students to
adjust to the new method. Some
students initially feel intimidated
having to interact so much with
their peers and the instructor. One
said “The way you teach is much
different than any other teacher

and at the beginning seems difficult and
scary.’’ This student went on to note that
as the semester progressed, he realized
that his knowledge of signals and systems
was increasing and he was grateful for
that. At the end of the term, some students
still feel strongly that the instructor
should work all the examples on the
board. While some may never be con-
vinced of the benefits of active classes, one
student said that he changed his opinion
during the second ACL course he took,
deciding that the new format was better.
Compared to their GMU counterparts,
most students at UMD accepted ACL class
formats with much less resistance since
most participated in a first-year engineer-
ing curriculum using an ACL format.

Interpersonal dynamics within teams
is an important issue in ACL courses.
Instructors may encounter forceful stu-
dents who dominate a team or disen-
gaged students who do not contribute to
a team. These issues remain the most
challenging in our ACL courses. Some
colleagues cite these issues as their
major reason for not adopting ACL or
including group work in the students’
grades. We believe that some healthy
friction and challenge in team interac-
tions is an important element of the stu-
dents’ education for the “real-world”
conditions of their future engineering
careers. Most students will participate in
project teams where their personal per-
formance reviews include an element of
the team’s performance. The depiction of
the engineering workplace in Scott
Adam’s Dilbert is drawn from life, all too
often equal parts documentary and com-
edy. Dysfunctional teams are real issues

EXAMPLE OF IN-CLASS EXERCISE.

In-class exercise: stability of FIR/IIR systems
a)   Choose the statement that best describes FIR systems.

• All FIR systems are stable.
• Some, but not all, FIR systems are stable.
• No FIR systems are stable.

Give examples to support your conclusion.
b)   Choose the statement that best describes IIR systems.

• All IIR systems are stable.
• Some, but not all, IIR systems are stable.
• No IIR systems are stable.

Give examples to support your conclusion.



IEEE SIGNAL PROCESSING MAGAZINE [79] MARCH 2005

in engineering projects. As responsible
instructors, we owe our students some
supervised classroom experiences navi-
gating the challenges of team dynamics
before their professional success depends
upon it. A number of helpful suggestions
for addressing these concerns can be
found in [7]. Ultimately, our courses are
structured so that even extreme issues in
group assignments do not cause a stu-
dent to lose or gain more than half a let-
ter grade. We believe this risk is justified
by the benefits of the ACL experience for
the majority of the students. 

Another common concern of instruc-
tors is that the time given to in-class
exercises will not allow them to cover all
the material on the syllabus. However, as
we often remind ourselves, “Just because
you said it, doesn’t mean they got it.’’ Our
preliminary assessments mirror those of
Hake in [2] (see the section below). Even
when everything is “covered” in a tradi-
tional lecture course, assessment indi-
cates that the students are only learning
about a quarter of the concepts. Rather
than lecturing on all the material, we
believe it is better to spend class time on
interactive exercises that reinforce the
core concepts. Studies have shown that
students who have a conceptual frame-
work for organizing information can
apply what they have learned to new situ-
ations and can learn related information
more quickly [14]. We help students to
develop this conceptual framework in
class and then expect them to learn addi-
tional material outside of class through
homework assignments. To reinforce the
idea that students are responsible for all
the reading, not just what is covered in
class, we assign homework and exam
questions on material included in the
reading that is not discussed in class. We
make it clear to students that this will be
the case (and after the first exam contains
a problem based on one of these home-
work problems, most take us seriously).
The course description and outcomes
remain unchanged even if we don’t
explicitly talk about every aspect of every
topic each time we teach the course;
rather, we prioritize those topics that the
students find confusing or that we believe
to be difficult to understand.

The success of the ACL format depends
on students reading the assigned textbook
material before class. In our initial experi-
ences with ACL, we were very concerned
that our students would not complete the
reading assignments. We were pleasantly
surprised that the daily reading quizzes
provided sufficient incentive for most stu-
dents to prepare for class. Interestingly,
many students are also in favor of the
RATs. The RATs were cited by 40% of GMU
students on anonymous end-of-term sur-
veys when asked an open-ended question
concerning what should not change about
the class. One student commented that
the RATs are “tough love and should con-
tinue.” Statistical analysis of RAT scores at
both schools indicates that most students
perform significantly (p < 0.05) better
than chance, suggesting that they are
reading in preparation for class.

Many instructors considering the
adoption of ACL methods find it intimi-
dating to relinquish the control that a
lecture format gives them. Adopting one
or two ACL elements in a course may be
less threatening for both the students and
the instructor, and still provide some of
the benefits of ACL instruction. The
introduction of ACL methods into cours-
es at GMU began with assigning a collab-
orative warm-up question at the start of
each traditional lecture class while stu-
dents arrived. These warm-ups were
short exercises intended to refresh stu-
dents’ memories about concepts from the
previous class and to prepare them for
the material to be covered that day. Often,
the exercises required a short calculation
that was later used in an example in the
class. We encouraged students to discuss
problem-solving strategies and compare
answers with their peers. On the end-of-
term surveys, student response to the
warm-up questions was overwhelmingly
positive. As we grew more comfortable
with the method, we introduced more
ACL elements into our courses until we
converged on the class format described
above. We found that it takes less time to
prepare ACL classes than lectures, but
that a good ACL course requires more
attention and energy from us during class;
we must think on our feet and engage the
students in the material.

ASSESSING STUDENT LEARNING
Both our pedagogical instincts and the
student opinion surveys told us that the
students were learning more when we
adopted ACL techniques in our courses.
Our experiences, like those reported in
[15], suggest that these surveys must be
interpreted with a grain of salt, as positive
student reviews do not guarantee that stu-
dents are learning. We wanted to confirm
these subjective assessments with an
objective quantitative measure of student
learning like the FCI. Since no analog to
the FCI existed for signals and systems, we
developed the SSCI. The SSCI is a 25-
question, multiple-choice exam designed
to be given in one hour, and is available in
both discrete-time (DT) and continuous-
time (CT) versions. The exam tests the
core concepts of linearity, time-invariance,
transform representations, convolution,
filtering, sampling, and background math-
ematics in a manner emphasizing concep-
tual understanding over mechanistic
problem solving. If the students under-
stand the concepts tested, they can choose
the correct answer without performing
any written calculations. Conversely, if the
students do not understand the concepts
tested, the questions contain little or no
information that they can plug into rote
calculations or memorized formulae. Also,
each question’s incorrect choices, or dis-
tractors, embody common student mis-
conceptions about signals and systems.

The current versions of the SSCI are
the culmination of three years of devel-
opment and calibration described in [1].
To date, 28 instructors at 12 institutions
have administered the SSCI in some
form to over 1,000 students in signal
processing classes. The SSCI has been
used both for instructors’ personal
assessment of student progress and also
as one component of departmental ABET
assessment strategies. Qualified instruc-
tors can download the most recent ver-
sions from the SSCI Web site [16] after
e-mailing the authors to obtain the pass-
words used to protect the exams. The
paper cited above describes several inter-
esting results from our pedagogical study
using the SSCI. For this column, we will
focus on using the SSCI to assess
instructional techniques. 
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Administering an assessment exam
like the SSCI at the beginning and end of
a course and computing the difference
between the pretest and posttest scores is
a standard technique used to quantify
how much students have learned [2],
[17]. If the exam is only administered as
a posttest, it assesses achievement,
rather than improvement, since there is
no control for the students’ initial
knowledge. As in Hake’s survey [2], we
use normalized gain 〈 g〉, defined as

〈 g〉 = posttest − pretest
100 − pretest

,

as a metric for the improvement in stu-
dents’ conceptual understanding. The
pre- and posttest values are the averages
computed for the course using only the
cohort of students who took both the
pretest and posttest. Thus, normalized
gain is the fraction of the available
improvement in score that was achieved

in the course. An equivalent interpreta-
tion is that the students learned
100〈 g〉% of the material that they didn’t
know at the start of the course.

Pedagogical research in physics has
found that 〈 g〉 is robust to variations in
instructor experience, student back-
ground, class size, and university rank-
ing [2], [3]. Hake’s major conclusion
was that 14 traditional lecture format
classes achieved normalized gain
〈 g〉 = 0.23 ± 0.04, while 48 IE (or ACL)
courses achieved 〈 g〉 = 0.48 ± 0.14,
nearly two standard deviations better
than lecture courses. Subsequent papers
have reported similar performance for IE
methods in physics courses [4]. In our
study using the SSCI, we found results
strikingly similar to those reported by
Hake. We computed 〈 g〉 for 20 signals
and systems courses. The 15 lecture for-
mat courses had normalized gain
〈 g〉 = 0.20 ± 0.07, while the five ACL
courses for which we have data achieved
〈 g〉 = 0.37 ± 0.06. The gain for these

ACL courses is more than two standard
deviations above the lecture courses. 

Figure 1 contains two plots illustrat-
ing the similarity between our results
and those in Hake’s survey [2]. Figure
1(a) is reproduced from [2] by permis-
sion of Richard Hake and the American
Physical Society, while Figure 1(b) con-
tains data measured using the SSCI.
Both figures plot the class average
pretest score on the abscissa and the
class average raw gain (posttest minus
pretest) on the ordinate. Using these
axes, lines of constant 〈 g〉 appear on
the graph as radiating out of the bottom
right corner with a constant slope. The
average values of 〈 g〉 for each class for-
mat are represented by solid lines
labeled with 〈〈 g〉〉. In Figure 1(a), the 14
yellow shaded points represent the lec-
ture format classes, while the 48 open
points represent IE format classes. The
different symbol shapes indicate
whether the data point represents a
high school (square), college (circle), or

[FIG1] Comparison of the Force Concept Inventory (FCI) and Signals and Systems Concept Inventory (SSCI) results contrasting students’
gain in conceptual understanding for IE/ACL format courses versus lecture format courses. Each point represents a single course, with
the abscissa being the average pretest score and the ordinate being the raw gain. Gain is defined as the posttest average minus the
pretest average ( i.e., %〈Gain〉 = posttest − pretest). Both exams find that students in IE/ACL courses (open points) achieve a
normalized gain that is roughly two or more standard deviations above the normalized gain in traditional lecture courses (shaded
points). (a) FCI results: Comparison of the effects of traditional (T) and interactive engagement (IE) pedagogical methods on students’
conceptual understanding of Newtonian mechanics as assessed by the FCI [3]. The plot shows data for 6,542 students in 14 traditional
and 48 interactive courses. (Reprinted from [2] with permission). (b) SSCI results: Equivalent gain data for signals and systems courses
assessed using the SSCI [1] in a pretest/posttest protocol. The plot shows data for 600 students in 15 traditional and 5 interactive
engagement courses. 
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university (diamond) class. Note that in
Hake’s data all courses in the medium
gain region (0.3 ≤ 〈 g〉 ≤ 0.7) are IE
courses. Figure 1(b) plots the data from
the SSCI in a similar format. Here, the
blue shaded points represent traditional
courses, while the open points represent
IE courses. Circles are used to represent
CT signals and systems courses and
squares are used to represent DT ones.
In this limited data set, the IE courses
achieve larger values of 〈 g〉 than the
traditional courses. All five ACL classes
fall in the medium gain region
(0.3 ≤ 〈 g〉 ≤ 0.7), while only two of the
15 traditional lecture courses achieved a
〈 g〉 in this region. The similar values of
〈〈 g〉〉T obtained for the two exams using
a comparable number of traditional
courses encourages speculation that
normalized gain in lecture classes is not
only robust to instructor experience,
class size, and student background, but
perhaps also to the material taught. The
smaller data set on ACL methods for the
SSCI precludes strong conclusions, but
the congruence of this limited data with
that reported for physics classes ([2],
[4], [5]) supports our subjective assess-
ments that ACL methods improved our
signals and systems courses. 

CONCLUDING REMARKS
Our data show that our students learn
core concepts in signal processing better
when the class requires active participa-
tion than when a traditional lecture for-
mat is used. We strongly encourage
other instructors to try ACL methods in
their signal processing courses. We’ve
provided some samples from our courses
to spark ideas. Additional ACL informa-
tion and examples can be found at [6]
and [16]. Also, it is not hard to adapt
textbook and exam problems into class
exercises. Nothing motivates student
interest like a casual comment that the
current exercise was taken from last
year’s final exam. 

We hope that instructors who are
using ACL will share both their experi-
ences and materials. Finally, we encour-
age instructors of both ACL and lecture
courses to use the SSCI in a pretest/
posttest protocol in their courses to

measure how much their students are
learning. Some of the leading pedagogi-
cal reformers in physics were skeptical of
Hestenes et al.’s initial results until they
administered the FCI in their own classes
[15], [9]. If possible, send us the average
pretest and posttest scores for your stu-
dents so that we can further populate
Figure 1 and determine whether our pre-
liminary findings on the advantages of
ACL hold up with a more extensive data
set. To ensure good quality data for the
study, we ask instructors submitting
their class scores to follow the instruc-
tions and complete the survey on the
SSCI Web site [16]. 
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