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continued

Table 1. Arctan expressions versus octant location.
Octant Arctan approximation
: , 10
first or eighth = W
I
second or third 0'=m/2 - QZ—}—O—‘%HZSIZ
0 + e
=TT = o e e
fourth or fifth 12 +0.28125Q 2
) 5%
sixth or seventh 0'=—m/2— 02+0.2812512

number residing in any octant. We
do this by using the rotational sym-
metry properties of the arctangent

tan ' (—=Q /1) = —tan ' (Q /I) (3)
tan"1(Q /I) = /2 —tan}(Q /1)
3"

Those properties allow us to create
Table 1, listing the appropriate arc-
tan approximation based on the
octant location of complex x.

So we have to check the signs of
Q and I, and see if |Q| > III, to
determine the octant location and
then use the appropriate approxima-
tion in Table 1. The maximum
angle approximation error is 0.26°
for all octants.

When 6 is in the fifth octant, the
above algorithm will yield a 6’ that’s
more positive than +7 radians. If
we need to keep the 0" estimate in
the range of —m to +m, we can
rotate any 0 residing in the fifth
quadrant +/4 rad (45°) by multi-
plying (I + jQ) by (1 + j), placing
it in the sixth octant. That multipli-
cation yields new real and imaginary
parts defined as

I'= I-Q)and Q' =jI+0Q).
)

110

The fifth octant 6’ is then estimated
using I’ and Q " with

eéth oct. — _37[/4
I/Q/
07402812517
(5)

Concluding Remarks

This arctangent algorithm may be
useful in a digital receiver applica-
tion where I? and Q2 have been
previously computed in conjunction
with an amplitude modulation
demodulation process or envelope
detection associated with automatic
gain control.
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An Update to the
Sliding DFT

Eric Jacobsen
and Richard Lyons

ecause of our contin-
ued investigation of
the sliding DEFT
(SDFT), and the
interest the March
2003 article [1] generated among
our DSP brethren, we provide this
update to our readers:
A 1) Referring to [1], while the
typical Goertzel algorithm descrip-
tion in the literature specifies the
frequency resonance variable % in
(2) and Figure 1 to be an integer
(making the Goertzel filter’s output
equivalent to an N-point DFT bin
output), % can in fact be any value
between 0 and N-1 giving us full
flexibility in specifying a Goertzel
filter’s resonance frequency.
A 2) Since we wrote the article,
we’ve been made aware of several
other versions of the SDFT expres-
sion, Sp(n) in (4). While (4) in [1]
provides the correct DFT magni-
tude results for real-time spectrum
analysis, its Sp(7) phase contains a
fixed offset requiring correction if
DFT phase results are required. A
better expression for the SDFT is

Sp(n) = eMN[S,(n — 1) + x(n)
—x(n—N)]. (1)

Equation (1), implemented with a
comb filter followed by a complex
resonator, as shown in Figure 1,
provides both correct DFT magni-
tude and phase results.

A 3) We’ve discovered a useful prop-
erty of the SDFT that’s not widely
known but is important. If we change
the SDFT’s comb filter feedforward
coefficient from -1 to +1, the
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comb’s zeros will be rotated counter-
clockwise around the unit circle by an
angle of 7/N radians. Tans. This sit-
uation, for N = 8, is shown on the
right side of Figure 2(a). The zeros
are located at angles of
27 (k+1/2)/N radians. The £ =0
zeros are shown as solid dots. Figure
2(b) shows the zeros locations for an
N =9 SDFT under the two condi-
tions of the comb filter’s feedforward
coeflicient being —1 and +1.

This alternate situation is useful,

and we can now expand our set of
spectrum analysis center frequencies
to more than just N angular fre-
quency points around the unit circle.
The analysis frequencies can be
2 k/N or 2n(k+1/2)/N, where
integer k is in the range 0 < % <
N — 1. Thus we can build an SDFT
analyzer that resonates at any one of
2 N frequencies between 0 and f;
Hz. Of course, if the comb filter’s
feedfoward coefficient is set to +1,
the resonator’s feedforward coefti-
cient must be e2THHI2/N 1o
achieve pole /zero cancellation.
A 4) To correct typographical
errors in Table 1 of [1], the column
headings should be aj, a2, and a3
(not @y, a2, and «z). For the
Hanning window in Table 1, coeffi-
cient a; = 0.5 (not 0.25).
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A 1. Improved SDFT structure.
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A 2. Four possible orientations of comb filter zeros on the unit circle.
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