IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 11, NOVEMBER 2012

6017

Software-Defined Sphere Decoding for
FPGA-Based MIMO Detection

Xuezheng Chu, Member, IEEE, and John McAllister, Member, IEEE

Abstract—Sphere Decoding (SD) is a highly effective detection
technique for Multiple-Input Multiple-Output (MIMQ) wireless
communications receivers, offering quasi-optimal accuracy with
relatively low computational complexity as compared to the ideal
ML detector. Despite this, the computational demands of even
low-complexity SD variants, such as Fixed Complexity SD (FSD),
remains such that implementation on modern software-defined
network equipment is a highly challenging process, and indeed
real-time solutions for MIMO systems such as 4 X 4 16-QAM
802.11n are unreported. This paper overcomes this barrier. By
exploiting large-scale networks of fine-grained software-pro-
grammable processors on Field Programmable Gate Array
(FPGA), a series of unique SD implementations are presented,
culminating in the only single-chip, real-time quasi-optimal SD
for 4 X4 16-QAM 802.11n MIMO. Furthermore, it demonstrates
that the high performance software-defined architectures which
enable these implementations exhibit cost comparable to dedicated
circuit architectures.

Index Terms—FPGA, MIMO, multicore, sphere decoder.

I. INTRODUCTION

ULTIPLE-INPUT, MULTIPLE-OUTPUT (MIMO)

communications systems [1] exploit spatial diversity to
provide wireless communications channels of unprecedented
capacity and throughput, prompting their adoption in wireless
communications standards such as 802.11n [2]. A generic
MIMO system employing M transmit and N receive antennas
is shown in Fig. 1.

Effectively harnessing the benefits of MIMO technology,
however, relies on the existence of accurate, high throughput
receiver equipment—a very significant embedded architecture
design problem. This difficulty is due to two main factors.
Firstly, the high computational complexity of accurate detector
algorithms such as Sphere Decoders (SDs) is apparent in the
current absence of reported real-time implementations for
even moderate MIMO systems, such as the 4 X 4 16-QAM
topologies employed in 802.11n [3]-[8]. Furthermore, such
realizations should ideally be ‘software-defined’, for inte-
gration in modern network equipment and design processes

Manuscript received February 09, 2012; revised May 01, 2012 and June 22,
2012; accepted June 24, 2012. Date of publication July 31, 2012; date of cur-
rent version October 09, 2012. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Jarmo H. Takala.
This work is supported by the U.K. Engineering and Physical Sciences Research
Council (EPSRC), under Grant EP/F031017/1.

The authors are with the Institute of Electronics, Communications and In-
formation Technology (ECIT), Queen’s University Belfast, Belfast BT7 1NN,
United Kingdom (e-mail: xchuO1@gqub.ac.uk; jp.mcallister@qub.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2012.2210951

%
1 ~

0 yl Sl 5
<]
S v K &
= 2 2, o
S V) < >
< = &
5 | g g
2 : © 3
© : o o
El : A]
© H S ©
o N VN N o
= Sy, 7 > £

| Sul | im0 channel H Iy 8

Fig. 1. Generic MIMO communication system.

[9], [10], whilst current implementations of parts of SD algo-
rithms require custom circuit architectures to achieve real-time
processing. Combining these two to achieve real-time, soft-
ware-defined detection is a highly challenging implementation
problem.
This paper presents a unique design approach which over-
comes these barriers. It extends the work in [11], [12] to create
a series of unique real-time, software-defined SD processing ar-
chitectures for 4 x 4 16-QAM 802.11n MIMO. Specifically,
four contributions are made:
1) A highly efficient, software-defined FPGA processing ar-
chitecture for baseband DSP [11], [12] is presented.

2) The architecture from 1) is used to create the first known
real-time preprocessing architecture for 802.11n FSD.

3) It is shown how 1) enables the only known software-de-
fined FSD metric calculation and sorting architecture.

4) The implementations from 2) and 3) are combined to create
the only known full FSD detector for 4 x 4 16-QAM 802.
I1n.

The remainder of this paper is organized as follows.
Section III describes the software-defined FPGA processing
paradigm, before it is used to create real-time architectures for
preprocessing and metric calculation and sorting in Sections IV
and V respectively. Finally, Section VI exploits this approach to
create the only recorded single-chip, real-time SD architecture
for 4 x 4 16-QAM 802.11n MIMO.

II. BACKGROUND AND MOTIVATION

In an M -transmit, N -receive antenna MIMO system, the
M -element transmitted symbol vector s suffers multipath
distortion and noise corruption (v) when propagating across
the channel to the receiver. Hence the N-element received
symbol vector y is formulated mathematically as (1), where
H € CY*M represents the MIMO channel, used typically
as a parallel set of flat-fading subchannels via Orthogonal
Frequency Division Multiplexing (OFDM).

v=Hs+v 1)

1053-587X/$31.00 © 2012 British Crown Copyright

6018

SD is a receiver baseband signal processing approach em-
ployed to estimate s. It offers near-ideal detection performance
with significantly reduced computational complexity relative
to the ideal ML detector [13], [14]. Despite this, SD algorithms
in general remain computationally complex and present a sig-
nificant implementation challenge, particularly in base-station
equipment where demanding real-time performance metrics
must be met, such as the maximum 480 Mbps, 4 us latency
required by 4 x 4 16-QAM 802.11n MIMO [2]. In the context
of the industry-wide move toward software-programmable
or ‘software-defined” DSP architectures which emphasize
flexibility to support multiple radio standards along with im-
plementation cost and performance [9], this is a challenging
real-time implementation problem; even recorded custom
circuit architectures have not proven capable of supporting
real-time quasi-ML SD for 4 x 4 16-QAM 802.11n [3], [5],
[15]-18].

A range of simplified SD variants have emerged in an at-
tempt to alleviate this complexity problem whilst maintaining
quasi-ML detection accuracy. Amongst these, Fixed-Com-
plexity SD (FSD) is exceptional since it uniquely combines
relatively low complexity, deterministic behavior and quasi-ML
accuracy [19]. FSD has a two-phase behavior:

1) Pre-Processing (PP): The symbols of y are ordered for de-
tection and the centre of the decoding sphere is initialized
using Zero Forcing detection.

2) Metric Calculation & Sorting (MCS): An M -level decode
tree performs a Euclidean distance based statistical estima-
tion of s.

PP orders the received symbols according to the perceived
distortion experienced by each. This is achieved by reordering
the columns of H to give 54 (the general form of which is
illustrated in Fig. 2(a)) via an M -phase iterative process:

1) Calculate W, according to (2), where H; is the channel

matrix with previously selected columns zeroed.

W, = (H; ") H;* 2)

2) The signal 5, to be detected is selected according to

(s,

= Y
arg min; (er) ‘
J

Post-ordering, groups of M symbols undergo detection
via a tree-search structure illustrated in Fig. 2(b). The
node distribution at each level in the tree is given by
ns = (ny,ng,... ,nM)T. During the first nfs levels, the
worst distorted symbols undergo Full Search (FS), where the
search space is fully enumerated resulting in P child nodes at
level © 4+ 1 per node at level #, where P is the number of QAM
constellation points. The remaining nss(nss = M —n fs) least
distorted symbols subsequently undergo Single Search (SS),
where only a single candidate detected symbol is maintained
between layers. For full diversity, n fs is given by (3). At each
MCS tree level, (4) and (5) are performed.

nfs=[VM —1]. 3)

2

arg max;, ifn; =P

ifn; # P

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 11, NOVEMBER 2012

< nss e nfs—>_
(1,1)] [(1,2)] - [(Wnss)| | [(@,nss+1)| - [(@,M-12)
(21)] [(2,2)] -+ |(2nss)| i [(2,nss+1)| ---- [(2,M-1)
(N1)| |(N,2)] -+ [(N,nss)| i |(N,nss+1)| ---- |(N,M-1)
Least Most
Distorted : Distorted
Symbol Symbol
<«—————— Increasing Distortion >
< Detection Order
(@)
Received Symbols
@ 1) Preprocessing

(i) Full Search (FS)

(i) Single Search %
(SS) o

Buios 2 uonenoed ouBN (2

(iii) Sorting

v
Detected Symbols

(b)

Fig. 2. FSD algorithm components. (a) General form of HT; (b) FSD tree
search structure.

" R Tii .)
Si=dzri— Yy, —(zrj—3)) 4)
I T
j=i+1
M,
di =Y rllszr; — §11°, Di = di + Diga (5)
j=t

In (4) and (5), r4; refers to an entry in R, obtained via QR de-
composition of H during PP, 5z ¢ is the center of the constrained
FSD sphere and 3; is the j** detected data, which is sliced to
4; in subsequent iterations of the detection process [20]. Since
D,y can be considered as the Accumulated Partial Euclidean
Distance (APED) at level j = ¢ + 1 of the MCS tree and d;
as the PED in level i, the APED can be obtained by recursively
applying (5) from level ¢ = M to i = 1. The resulting candi-
date symbols are sorted based on their Euclidean distance mea-
surements, and the final result produced post-sorting. In 802.11n
MIMO, this collective behaviour must be replicated 108 times,
once per OFDM subcarrier employed.

FSD is amongst the lowest complexity, quasi-optimal SD al-
gorithms known [21]; along with the highly parallel nature of
FSD this has proven effective in enabling real-time FSD MCS
[22]. However, three outstanding issues remain in real-time soft-
ware-defined FSD for standards such as 802.11n:

CHU AND MCALLISTER: SOFTWARE-DEFINED SPHERE DECODING FOR FPGA-BASED MIMO DETECTION

‘ L MM
Branch I col e
Detection Zero-){ D
H overhead DSP48E
. @
1:[)» Coprocessor
RF g ALU
DM
Branch Instruction Source Write
Control Fetch ID/RF Select EXE1 EXE2 | Result Select Back

Fig. 3. The FPE architecture.

1) Single-chip detectors remain elusive: there is no recorded
real-time architecture which integrates both PP and MCS
for all 108 802.11n OFDM subcarriers.

2) The high computational complexity of PP (the M iterations
of the O(M?) pseudo-inverse in (2) results ina O(M*) al-
gorithm) has, to date, prohibited real-time implementation
of even PP.

3) Existing real-time MCS realisations [22] rely on custom
dedicated circuits, whilst modern equipment design pro-
cesses require software-defined architectures.

Whilst technologies such as Field Programmable Gate Array
(FPGA) are computationally capable of hosting real-time MCS
at least, two key issues currently prevent software-defined
FPGA architectures from resolving this problem:

1) Software-defined FPGA architectures, e.g. [23], [24] are
too costly and low performance to meet the real-time de-
mands of 802.11n FSD.

2) FSD detection of all 108 OFDM subcarriers in 802.11n
is a large scale operation, requiring a highly scalable pro-
cessing architecture.

To resolve this issue, a new approach to software-defined re-
alization of SD is required. This paper presents a unique solution
which demonstrates the viability of real-time, software-defined
MIMO detection on FPGA, by realizing FSD PP, MCS and full
detector architectures which meet the 480 Mbps, 4 S latency
requirements of 802.11n. Further, we show how the resulting
realisations exhibit cost comparable to custom circuit solutions.
Section IIT describes the processing architecture exploited, be-
fore its effectiveness for FSD PP, MCS and full detection are
described in Sections IV, V and VI respectively.

III. THE FPGA-BASED PROCESSING ELEMENT (FPE)

The emergence of components such as the DSP48E on recent
generations of Xilinx FPGA offer unprecedented levels of com-
putational capacity enclosed in programmable datapath compo-
nents. Their programmability implies the need for data storage
and circuitry for datapath control, but despite modern FPGA
housing plentiful resources with which to realize these, in the
form of Look Up Tables (LUTs) and Block RAM (BRAMs),
existing FPGA processors are typically resource hungry and
performance limited. Hence whilst modern FPGA house very
high levels of programmable computational capacity, software-
defined architectures capable of exploiting these resources are
lacking. A unique, lean processing architecture known as the
FPGA Processing Element (FPE) is proposed to resolve this de-
ficiency. The architecture of the FPE is shown in Fig. 3.

6019
TABLE 1
FPE CONFIGURATION PARAMETERS

Parameter Meaning Values
DataWidth Data wordsize 16/32 bits
DataType Type of data Real/complex
ALUWidth No. DSP48E slices 1-4
PMDepth/PMWidth PM Capacity/Instrn. Width | Unlimited
DMDepth/RFDepth DM/ RF Capacity Unlimited
TxCOMM/RxCOMM No. Tx/Rx ports <1024

No./size i diate dat:
IMMDepth/IMM Width | 07 2c Hmeate G imited

memory locations

TABLE II
FPE INSTRUCTION SET

| Instruction Function

LOOP/RPT loop/repeat
BEQ/BGT/BLT branch if equal/greater/less

2 | IMP jump

5 GET/PUT load/push data from/to channel
GETCH/CLRCH load data from/clear channels
NOP no operation

- MUL/ADD/SUB multiply/add/subtract

j MULADD/MULSUB(FWD) | multiply-add/subtract (& forward)
COPROC COProcessor access

s LD/ST load/store data from/to memory

f-ﬁ LDIMM/STIMM load/store data from/to IMM
LDIAR updata IMM address register

The FPE houses the minimum set of resources required for
programmable operation: the instructions pointed to by the Pro-
gram Counter (PC) are loaded from Program Memory (PM)
and decoded by the Instruction Decoder (ID). Data operands
are read either from Register File (RF), or in the case of im-
mediate data Immediate Memory (IMM) and processed by the
ALU (implemented using a Xilinx DSP48E). In addition, a Data
Memory (DM) is used for bulk data storage and a Communica-
tion Adapter (COMM) performs on/off-FPE communications.

The FPE is configurable such that its architecture can be cus-
tomized pre-synthesis in terms of the aspects listed in Table [; in
addition, the ALU can be extended with custom coprocessors, to
accelerate critical operations. Further, the FPE is programmable
via the instruction set described in Table II; it is currently pro-
grammed manually at the assembly level, and the instruction
set is extensible to incorporate new instructions for specific co-
processors. When implemented on Xilinx Virtex 5 VLX110T
FPGA, the computational capability and cost of six FPE config-
urations—16 bit Real (/6R), 32 bit Complex (32C) and 32 bit
Real (32R) variants—are as described in Table III!.

Table III describes a range of performance/cost metrics that,
to the best of the authors’ knowledge, are unmatched in any
other software-defined FPGA architecture; for instance, the FPE
occupies only 18% of the resource of a conventional MicroB-
laze processor, whilst enabling a factor 2.8 increase in compu-
tational capacity. These metrics imply that the FPE is the most

A1l synthesis results are post place-and-route, employing flat criteria, with
neither speed nor area prioritized.

6020
TABLE III
FPE ARITHMETIC PERFORMANCE
Confi Resource Latency | Clock | Throughput
& LUTs | DSP48Es | (Cycles) | (MHz) | (MMACs/s)
16 R 90 1 4 483 483
132 1 7 476 119
16 C 172 2 5 453 226.5
140 4 5 474 474
»R 185 2 6 431 215.5
182 3 7 431 431
. 4x4 16-QAM FSD SQRD ORDERING Fixed Point Simulation
10 e T e
107! o i .
2 102k
o o5 E
5 1
] 4
@ 4
T 10k g
o :]
-y - 1‘6 bn—8 frac;tioﬁr
|| = = = 16 bit-9 fraction : :
107 | ——@== 16 bit=10 fraction|: :3::diiiiiisderriandrrnianierrniairies:
—P— 16 bit—11 fraction[=::
~—&— 16 bit—12 fraction| ***"*
=—+— 16 bit-13 fraction| '
—8— Floating Point : : :

i
6 8 10 12 14 16 18 20 22 24 26
SNR (dB)

Fig. 4. 4 x 4 16-QAM fixed point simulation.

likely of any software-defined FPGA architecture to support
real-time FSD. Sections [IV-VI examine implementation of PP,
MCS and full detector architectures using the FPE processing
paradigm.

IV. FPE-BASED PRE-PROCESSING USING SQRD

Section II described how the complexity of SD PP has, to
date, prohibited real-time implementation for MIMO systems
such as 4 x 4 802.11n. However the recent emergence of sub-
optimal PP algorithms such as Sorted QRD (SQRD) [25], [26]
can potentially overcome this issue. This section tests the ability
of the FPE to support real-time SQRD-based PP for FSD.

SQRD-based ordering for FSD transforms the input channel
matrix H to the product of a unitary matrix Q and an upper-tri-
angular R via QR decomposition, whilst deriving order, the
order of detection of the received symbols during MCS. It oper-
ates in two phases, as described in Algorithm 1 [26]. In Phase 1
Q. R, order, norm and n fs are initialized as shown in lines
2-5 of Algorithm 1, where q; is the i*" column of Q. Phase 2
comprises M iterations, in each of which the £*" lowest entry
in norm is identified (lines 9 & 10) before the corresponding
column of R and elements in order and norm are permuted
with the i** (line 11) and orthogonalized (line 12—18). The re-
sulting Q, R, and order are used for FSD MCS as defined in
(4) and (5). Note the merged ordering and QRD of H in Phase

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 11, NOVEMBER 2012

2; this avoids the M iterations of QRD in V-BLAST, enabling
an observed order-of-magnitude complexity reduction for FSD
PP.

Algorithm 1: Sorted QR decomposition for FSD

input: H, M/
output: Q, R, order
1 Phase 1: Initialization
2Q =H,R = 0y,
3order = [1,---, M],nfs = [VM — 1]
4forz — 1to M do
5 mnorm; = ||q;|?
6 end
7 Phase 2: SORD ordering
8fori «— 1to M do
9 k=min(nfs+1,M—i+1)
10 k= argkmin norm;
j=iy, M
11 Exchange columns i and k; in R, order, norm and Q
12 Tii =
13 q =

norm;

di
Tii

14 for! «— i+ 1to M do
15 rig=q -
16 QU =qQ — 7

17 norm; = norm; — r?y,/
18 end
19 end

The quasi-ML accuracy of floating-point SQRD-based FSD
is demonstrated in [26], however since FPE-based realization
requires reduced-precision fixed-point arithmetic, similar veri-
fication under these conditions is required. To this end, the BER
performance of SQRD-based FSD detection ofa4 x 4 16-QAM
Rayleigh Fading MIMO channel has been performed for 32, 24
and 16 bit fixed-point variants and is compared with the ideal
floating-point version in Fig. 42. As Fig. 4 shows, 16 bit arith-
metic in the SQRD phase is sufficient to enable detection per-
formance almost equal to that of the ideal floating-point solu-
tion, particularly when integer wordsizes of 9 or 10 bits are
employed. Hence, FPE-based realization is viable and 16 bit
fixed-point arithmetic with a 10 bit fractional part is chosen for
FPE-based SQRD.

Despite its relatively low complexity and suitability for fixed-
point implementation, there are two major issues that must be
resolved to enable FPE-based SQRD PP for 4 x 4 802.11n:

1) SQRD remains highly computationally demanding, as out-
lined in Table IV; given the capabilities of a single FPE,
it appears that a large-scale multi-FPE architecture is re-
quired to enable SQRD for 4 x 4 802.11n.

2) The square root (line 12) and division (line 13) operations
used in SQRD offer very low performance on sequential

2For clarity, the behaviors under 32 and 24 bit fixed point conditions are
omitted from Fig. 4 due to the high detection performance of 16 bit solutions.

CHU AND MCALLISTER: SOFTWARE-DEFINED SPHERE DECODING FOR FPGA-BASED MIMO DETECTION

TABLE IV
4 x 4 SQRD OPERATIONAL COMPLEXITY

| Operation | No. per second (x109)

+/ - 3.24
X 12.72
= 0.12
N 0.12

processors [27]; special consideration of these is required
for real-time PP for 802.11n MIMO.

A. FPE-Based Division Acceleration

Binary division is usually achieved using digital recurrence
or convergence algorithms [27]. Of these alternatives, recur-
rence algorithms generally exhibit lower complexity and la-
tency, and hence are usually preferred. Non-restoring recurrence
algorithms generally enable higher performance FPGA imple-
mentations by avoiding sophisticated control overhead [28].

Non-restoring 16 bit division [27] requires 312 cycles on a
16R FPE. This equates to approximately 1.2 MDIV/s (millions
of divisions per second), which means that to achieve the 120
MDIV/s required by real-time 4 x 4 SQRD for 802.11n would
require at least 100 FPEs dedicated solely to division. The high
resource cost such a solution could entail may potentially be
avoided by exploiting the configurable nature of the FPE, specif-
ically its ability to incorporate coprocessors within the ALU, to
accelerate FPE-based division.

Radix-2/4 non-restoring division coprocessors [27] are con-
sidered in this context—the structure of these coprocessors are
outlined in Fig. 5. The performance, cost and efficiency (in
terms of throughput per LUT, or TP/LUT) of the programmed
FPE implementation (FPE — P) and radix-2/4 coprocessor
augmented FPEs (F'PE — Ry, F'PE — R4) when implemented
on Virtex 5 FPGA is described in Table V. As this shows,
FPE — Ry and FPE — R4 increase throughput by factors
of 8.9 and 13.3 and hardware efficiency by factors of 9.4 and
10.7 as compared to F'PE — P respectively. Given the need
for 120 MDIV/s for SQRD-based detection of 4 x 4 802.11n
MIMO systems, the implied implementation cost and perfor-
mance metrics of each option are summarized in Table V. This
suggests that F'PE — R, represents the lowest cost real-time
solution, enabling a 93.4% reduction in resource cost relative
to 'PE — P. Accordingly, this approach is adopted in the
FPE-based SQRD implementation.

B. FPE-Based Acceleration of Square Root Operations

Implementing square root operations poses a similar problem
to that of division—120 MSQRT/s (million square root opera-
tions per second) are required for real-time SQRD-based de-
tection of a 4 x 4 802.11n system. There are two primary op-
tions for achieving this: software-based execution on the na-
tive FPE, using the pencil-and-paper method [27], or by using
a standard CORDIC component available in vendor IP libraries
[29]. The programmed solution (FPE — P) is compared with
that incorporating the CORDIC coprocessor (FPFE — C) in

6021

MSB

‘ ‘ Partial ‘ remainder ‘

Divisor
— 1

Complement

Add/Sub

——

16 16

\ 16-bit Adder }47
16 /"1/2

1 quotient bit obtained per
iteration

12

Fig. 5. SQRD divider coprocessor architecture.

TABLE V
SQRD DIVISION IMPLEMENTATIONS

. Resource Throughput
Solution
FPEs ‘ DSP48Es | LUTs (MDiv/s)
FPE-P 100 100 13,600 120
FPE-R> 5 5 900 120
FPE-R4 4 4 944 144
TABLE VI

COMPARISON OF 16 BIT PSQRT, CSQRT oON FPE

| | FPE-P [27] | FPE-C [29]

- PM/RF locations 29/14 8/1
S LUTs 142 330

DSP48Es 1 0

Clock (MHz) 367.7 350

Latency (Cycles) 191 8
Throughput (MSQRT/s) 1.93 43.6
TP/LUT (x10~3) 13.6 132.1

TABLE VII
FPE-BASED SQRT IMPLEMENTATIONS

. Resource Throughput
Solution
FPEs | DSP48Es | LUTs | (MSqrt/s)
FPE-P 63 63 8946 121.6
FPE-C 3 3 990 130.8

Table VI. As this shows, I'PE — ' offers simultaneous in-
creases in throughput and efficiency by factors of 23 and 10
respectively as compared to #'PE — P. This implies that the
resources required to realise real-time square-root for SQRD-
based detection of 4 x 4 802.11n are summarized in Table VII.
Hence F'PE — (' enables real-time operation whilst incurring
only 11% of the resource required by F'PE — P, and is adopted
for realising FPE-based square root operations.

C. FPE-Based SORD

Whilst Sections IV-A and IV-B have provided FPE-based
components of sufficiently high performance and low cost to

6022
i=1
vy v
Tl k .
k; = arg min norm
Joie M
7;; = /norm;
q; = qi/r,;i
=i+l @ Y
N
T22 T.1 T23
permute Q,,Q, | permute R, R, |permute norm;, norm,
forlini+1—> M | for /ini+1to A | for/ini+1to M
@G=q,-nq] =4 q norm, =norm, —r;
end end end
Toz2
>I0 FPE; | ~ < > | FPE, FOC<«
L« > TO—>

> 110>
(O«

(b

Fig. 6. 4 x 4 SQRD FPE-MIMD mapping. (a) 4 X 4 SQRD; (b) 4 x 4 SQRD
architecture.

enable real-time division and square-root, integrating these
components into a coherent processing architecture to perform
SQRD, and replicating that behaviour to provide PP for the
108 subcarriers of 802.11n MIMO is a large scale, challenging
implementation problem.

Fig. 6(a) describes the SQRD algorithm as a flow chart com-
posed of four main iterative tasks (71,751 — T2.3). The first
task, 77, conducts the iterative channel norm ordering, and com-
putes the diagonal elements of R (lines 11-13 in Algorithm 1),
with the subsequent concurrent tasks 7% 1 — 75 3 permuting and
updating Q, R and norm respectively (lines 14-18 in Algo-
rithm 1).

To realise this behaviour a 4-FPE Multiple Instruction,
Multiple Data (MIMD) processing architecture, illustrated
in Fig. 6(b), is used; the FPEs employ 16 bit datapaths, in
accordance with the analysis in Section IV, and are otherwise
configured as described in Table VIIi(a). FPE; — FPE;

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 11, NOVEMBER 2012

TABLE VIII
4-FPE BASED SQRD. (a) FPE CONFIGURATION; (b) FPE-SQRD METRICS
() (b)
| Parameter | Value | | Aspect | Value |
PM Depth 350 - LUTs | 2109
RFDepth 32 S DSP48Es | 4
IMMDepth 32 BRAMs 0
DMDepth 64 Clock (MHz) 3.15
TxComm 32 T (MSQRDY/s) 1.07
RxComm 32 Latency (uS) 0.9

W
=

r
Subcarrier [|3

Br r
Subcarrier [_ |6
5
1 4

N

Subcarrier [Tier r{l(()eg
/‘ 106 107

(«»{ FPE1 w FPE2 |<—>
—)
MLy i

FPE1 H FPE2 |<—>

Core 3

Fig. 7. 4 x 4 SQRD mapping.

perform permutation of Q, R. and norm and iterative updating
(T>.1 — T 3 in Fig. 6(a)), whilst F' P I/ calculates the diagonal
elements of R (77). Across the architecture, SQRD-based PP
of a 4 x 4 matrix occurs in three phases. Initially, H and the
calculation of norm are distributed amongst the FPEs, with
the separate parts of norm gathered by F'PF, to undergo
ordering, division and square root. These resulting metrics are
distributed to the outer FPEs for independent iterative permuta-
tion and update of Q, R and norm. Inter-FPE communication
occurs via point-to-point FIFO links, chosen due to their rela-
tively low cost on FPGA and implicit ability to synchronize the
multi-FPE architecture in a data-driven manner whilst avoiding
data access conflicts. The performance and cost of the 4-FPE
grouping is given in Table VIII(b).

According to the metrics quoted in Table VIII(b), the
throughput of each 4-FPE group is sufficient to support
SQRD-based PP of 3 subcarriers within the real-time con-
straints of 802.11n. Hence, to implement PP for all 108
subcarriers of 802.11n, the architecture illustrated in Fig. 7, in-
corporating 36 groups of the 4-FPE array, is used. The mapping
of subcarriers to groups is as described in Fig. 7.

D. Implementation Evaluation

When implemented on Xilinx Virtex 5 VSX240T FPGA, the
cost and performance of the 802.11n PP architecture (FPFE —
SQRD) described in Fig. 7 are as quoted in Table IX. These
results are notable since, to the best of the authors’ knowledge,
they constitute the only recorded real-time SQRD PP and FSD

CHU AND MCALLISTER: SOFTWARE-DEFINED SPHERE DECODING FOR FPGA-BASED MIMO DETECTION

TABLE IX
4 x 4 SQRD IMPLEMENTATIONS

Ref | FPE-SQRD [30]
° LUTs 70,560 33,512
§ DSP48Es 144 426
k BRAMs 0 N/A
ELUTSs (x 103) 152.5 276.0
Clock (MHz) 265 87

T (MSQRD/s) 325 2

L (uS) 1.1 143

TABLE X

802.11N FSD OPERATIONAL COMPLEXITY

| Operation ‘ No. per second (x109) |

+/ - 32.37
X 19.20

TABLE XI
FPE-BASED MCS IMPLEMENTATIONS

16R-MCS | 16R + Coprocessors |
- PM/RF Locations | 4591/32 1420/32
S LUTs | 2520 805
DSP48Es 1 0
Clock (MHz) 367.7 350
Latency (Cycles) 3281 1420
Throughput (MOP/s) 1.9 4.5

(b)

Fig. 8. FPE Coprocessors for switch and min acceleration. (a) Switch copro-
cessor; (b) Min coprocessor.

PP architectures for 4 x 4 MIMO. They achieve 32.5 MSQRD/s
(millions of SQRD operations per second) exceeding the re-
quired 30 MSQRD/s.

Given that they are unique in enabling real-time PP for
SD-based detection for 4 x 4 MIMO, comparing with other
PP realisations is difficult—whilst a number of SD implemen-
tations rely on SQRD-based PP, such as [31], [32], they do
not implement it. Further, whilst the work in [33] describes an
SQRD implementation, balanced objective comparison is dif-
ficult since it reports only the resource cost for an ASIC-based
2 x 2 SQRD, giving no measure of real-time performance.
Table IX compares F'PE — SQRD with a custom circuit-based
V-BLAST detector [30]. The implementation in [30] does not
achieve the required throughput for real-time processing and
whilst FPE — SQ@RD consumes significantly more LUT
resource, it significantly reduces the demand for DSP48E re-
sources by 66%; combining these relates to an overall reduction

6023

0f 45% in terms of Equivalent LUTs (ELUTs)3, whilst enabling
an increased throughput of almost 50%.

Hence, this analysis shows that the FPE has enabled the only
software-defined real-time PP architecture for 4 x 4 16-QAM
802.11n FSD, whilst incurring resource costs comparable to ex-
isting circuit architectures. Indeed, further, the FPE-SQRD it
is the only real-time realization of any kind. Section V inves-
tigates its ability to support the second major suboperation of
FSD: MCS.

V. FPGA-BASED FSD MCS FOR 802.11N

The MCS stage of FSD for 4 x 4 16 QAM 802.11n is even
more computationally demanding than SQRD-based PP, as de-
scribed in Table X. When a single 4 x 4 16-QAM FSD MCS
is implemented on a /6R FPE, the performance and cost are as
reported as /6R-MCS in Table XI.

Table XI reports a large increase in resource cost for
16R-MCS as compared to the basic /6R reported in Table III.
The observed order of magnitude increase is a consequence of
the large PM required to house the 4591 instructions required.
A significant factor in this large number of instructions are the
comparison operations required for slicing (4) and sorting the
PED metrics, which require branch instructions. Associated
with these branch instructions are NOPs, whose number is
swollen by the FPE’s deep pipeline [12]; the wasted cycles
these NOPs represent dramatically increase cost and reduce
throughput—indeed branch and NOP instructions represent
50.7% of the total number of instructions. As a result, op-
timizing the FPE architecture to reduce the impact of these
branch instructions could have a significant impact on the MCS
cost/performance.

Employing ALU coprocessors, in a manner similar to that
described in Section IV to accelerate division and square root
operations, can significantly reduce these penalties. A SWITCH
coprocessor (Fig. 8(a)), which compares the input to one of a
number of pre-defined options can be used to accelerate slicing,
whilst a MIN coprocessor (Fig. 8(b)) can accelerate the sorting
operation.

Each of these coprocessors costs 20 LUTs, but their ability to
eliminate wasted instructions can significantly reduce the PM
size leading to an overall cost decrease and performance in-
crease when these coprocessors are used, as described in column
3 of Table XI. As this shows, including these components results
in a 68% reduction in resource cost and a factor 2.3 increase
in throughput. This produces an implementation capable of re-
alising FSD MCS for a single 802.11n subcarrier in real-time,
providing a good foundation unit for implementing MCS for all
108 subcarriers.

A. SIMD-Based Implementation of 802.11n FSD MCS

A large, coherent collection of FPEs is required to implement
FSD MCS for all 108 subcarriers of 802.11n MIMO. Two im-
portant observations of the application’s behaviour help guide
the choice of multiprocessing architecture:

1) In the tree-structured FSD MCS (Fig. 2(b)), each tree

branch performs an identical sequence of operations on

3ELUTs combine measurement of resource on modern Xilinx FPGA in a
single quantity; the reader is referred to [34] for details.

6024
8
ae) o e o
M ARe| ™ [RE|[™ [RE] ... |™| [RE | [iMm [

PN .
o

‘ALU|"' _J ‘ALU|<—— D

Fig. 9. SIMD processor architecture.

TABLE XII
SIMD PROCESSOR CONFIGURATION PARAMETERS

Parameter Meaning Values |
SIMDways No. parallel FPE elements Unlimited
IMMDepth/IMMWidth | No./width of IMM locations | Unlimited
PMDepth/PMWidth No./width of PM locations Unlimited

distinct data streams—the definition of Single Instruction
Multiple Data (SIMD) behavior.

2) The number of FPEs required to implement MCS for all
108 OFDM subcarriers on a single, very wide SIMD pro-
cessor implies limitations on the achievable clock rate as a
result of high signal fan-outs to broadcast instructions from
a central PM to a very large number of ALUs, restricting
performance [11]. Hence, a collection of smaller SIMDs is
used.

To enable these multi-SIMD architectures, the FPE is used
as a foundation for a configurable SIMD processor component,
as illustrated in Fig. 9. Note that the PC, PM, ID and IMM are
now all centralized in the SIMD, and hence do not appear in
each FPE way. Table XII defines the configurable aspects of the
SIMD processor. All of the FPE instructions (except BEQ, BGT
and BLT) can be used as SIMD instructions.

The increasing limiting effect of instruction broadcast from
the central PM results in 16-way SIMD configurations offering
the best cost/performance balance; accordingly FSD MCS for
all 108 802.11n subcarriers is implemented on a dual-layer net-
work of such processors, as illustrated in Fig. 10. Level 1 con-
sists of 8 SIMDs. The 802.11n subcarriers are clustered into 8
groups {G; = {j : (j — 1) mod 8 = 1};98 }7_, where j is the
set of subcarriers processed by Core . The 16 branches of the
MCS tree for each subcarrier are processed in parallel across
the 16 ways of the Level 1 SIMD onto which they have been
mapped. Sorting for the subcarriers implemented in each Level
1 SIMD is performed by adjacent pairs of ways in the Level 2
SIMD—hence given the 8 Level 1 SIMDs, the Level 2 SIMD
is composed of 16 ways.

The analysis in [22] shows that 16 bit data is sufficient for
FSD-based detection of 4 x 4 16-QAM 802.11n, hence each
FPE is configured to exploit 16 bit real-valued arithmetic. All
processors exploit PM Depth = 128, RF Depth = 32 and
DM Depth = 0, and communication between the two levels
exploit 8-element FIFO queues. The Level 1 SIMDs incorpo-
rate SWITCH coprocessors to accelerate the slicing operation,
whilst the Level 2 SIMDs support the MIN ALU extension to
accelerate the sort operation.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 11, NOVEMBER 2012

Subcarrier Subcarrier Subcarrier
- 1198 = 106 < 108

—jier i
Subcarrier 9 Subcarrier |1e(; Subcarrier I,]eé

1 2 8|

(8 x 16-way
SIMD Cores)

Core 1

Core 0

N~ 5 3
T =2 PrY
23= ©
g =»
v v v
Fig. 10. 802.11n OFDM MCS-SIMD mapping.
FPE4 FPEg
Slice41 Slice4,15 T
Slices2 Slices 16
APED4s
FPE; FPE, FPE1s APED4»
EXT | Sics,
Slcea;
= 3,1
APEDs v
0 = > - " o
APED;: | [APED:, | A (3 g:!cem g:!cezns 9
= ICe22 ICe2 16
[sice: | IEENM |3 [aPEdes| e | o
APED,. | [N |2 ASFI"EDZZ i g
ICe1.1 ICe1,15
Slice12 Slicer 16
AP APED:
12
) e pUT
PUT v
v Slicing v A
Nops APED 8 Interleaved
FSD tasks
(a) (b)

Fig. 11. FPE branch interleaving. (a) Original FSD threads; (b) Interleaved
threads.

The program flow for each Level 1 SIMD is as illustrated in
Fig. 11(a). As this shows, each FPE performs a single branch of
the MCS tree, with the empty parts of the program flow repre-
senting NOP instructions, used to properly synchronize move-
ment of data into and out of memory. These NOP cycles rep-
resent 29% of the total instruction count but since they repre-
sent ALU idle cycles they should preferably be eliminated. To
achieve this, the NOP cycles in one branch can be occupied
by the useful, independent instructions from another, i.e., the
branches may be interleaved as illustrated in Fig. 11(b). As this
shows, interleaving branches occupies wasted NOP cycles, to
the extent that when two branches are interleaved the propor-
tion of wasted cycles is reduced to 4%.

When implemented on Xilinx Virtex 5 VSX240T FPGA the
performance and cost of the FSD-MCS for 802.11n are reported
as FPE — MCS in Table XIII. As this shows, it comfortably
exceeds the real-time performance criteria of 802.11n, and is the
first software-defined implementation to do so.

CHU AND MCALLISTER: SOFTWARE-DEFINED SPHERE DECODING FOR FPGA-BASED MIMO DETECTION

TABLE XIII
4 x 4 16-QAM FSD IMPLEMENTATIONS

Ref | FPE-MCS [22] [17] [18]
LUT | 16,601 13,197 18,893 6,587
DSP4SE 144 160 64 0
BRAM 0 49 12 0
ELUT (x103) 98.5 1680 N/A N/A
Clock (MHz) 296 150 100 52
T (Mbps) 502.5 600 200 277
L (uS) 0.9 N/A N/A N/A

Table XIII also compares the FPE-MCS with existing Xilinx
FPGA custom circuit SD realisations. The work in [22] dis-
plays a slightly lower LUT cost and higher throughput, but the
FPE — MCS enables software-programmability whilst main-
taining real-time behaviour and comparable cost. The architec-
tures in [17], [18] operate well below real-time, and the archi-
tectural changes necessary to enable real-time performance are
such that direct comparison is very difficult. The work in [8]
presents a very high performance 800 Mbps single subcarrier ar-
chitecture on Altera FPGA, but in common with [6] the resource
and performance implications of adapting this to enable all 108
802.11n subcarriers is unknown, making comparison difficult.
Finally, target technology variations between the FPE-MCS and
the 2 x 2 ASIC-based custom circuit in [35] make comparison
very difficult also.

Given these comparisons, the novel aspect of the FPE-MCS
is clear: it is the only software-defined approach which supports
real-time FSD MCS for 4 x 4, 16 QAM 802.11n. Similarly
to the FPE-SQRD presented in Section IV, it shows that mas-
sively parallel networks of simple processors (> 140 in this case)
on FPGA can support real-time processing with resource costs
comparable to custom circuits. Like all software-defined radio
platforms, it trades absolute performance/cost for flexibility and
ease of design: it offers a predominately software-based design
approach, and hence is inherently more flexible for adaption to
other SD or even other more general DSP algorithms, as well as
being more suited to existing software radio design processes.
In Section VI, the FPE-based design approach is applied to the
design of a full FSD detector.

VI. FPGA-BASED SOFTWARE-DEFINED FSD FOR 802.11N

When the PP and MCS implementation strategies, described
in Sections IV and V respectively, are combined to create a full
FSD detector implementation, the cost and performance of the
implementation are as reported in Table XIV. Given that this
implementation realizes the real-time processing requirements
of4 x 416 QAM 802.11n, to the best of the authors’ knowledge
it is the only single-chip implementation to do so, despite its
software-defined nature.

VII. CONCLUSION

This paper has presented a uniquely capable approach for im-
plementing SD detectors for MIMO receivers: it is the first soft-
ware-defined platform to support real-time detection for appli-
cations such as 4 x 4 16 QAM 802.11n MIMO. This paper has
shown how, by composing fine-grained, very high performance

6025

TABLE XIV
4 x 4 SQRD FSD FULL DETECTOR IMPLEMENTATIONS

| Aspect | FPE-FSD

o LUTs | 96,115
§ DSP48Es | 408
ks BRAMs | N/A
ELUTs (x10%) | 328
Clock (MHz) | 189
T | 483
LS | 23

programmable components into large scale multiprocessing ar-
chitectures on FPGA, the resulting software-defined architec-
tures satisfy the demanding real-time performance metrics of
modern MIMO standards, whilst incurring resource costs of
the order of existing dedicated circuit architectures. We have
demonstrated this by creating three unique implementations:
1) The only recorded SQRD-based PP architecture for 4 x 4
802.11n MIMO.

2) The only recorded real-time software-defined FSD MCS
architecture for 4 x 4 16-QAM 802.11n MIMO.

3) The only recorded single-chip integrated quasi-optimal de-
tector for 4 x 4 16-QAM 802.11n MIMO.

It is important to note that their software-defined nature im-
plicitly eases the design process for architectures such as these.
However, this is only the case given supporting Computer Aided
Design (CAD) and software compilation infrastructure. This
paper has concentrated on demonstrating the feasibility of the
architectures to support such realisations, but has constructed
and programmed them manually at the Register Transfer Level
(RTL) and assembly level respectively. Creating these technolo-
gies is left as future work of similar significance to the demon-
stration of architectural viability presented here.

ACKNOWLEDGMENT

The authors would like to thank Prof. Roger Woods, Prof.
John Thompson, Dr Chengwei Zheng and Mr. Matthew Milford
for their valuable assistance in this work.

REFERENCES

[1] P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela, “V-BLAST:
An architecture for realizing very high data rates over the rich-scat-
tering wireless channel,” in Proc. URSI Int. Symp. Signals, Syst., Elec-
tron., 1998, pp. 295-300.

802.11n-2009 IEEE Local and Metropolitan Area Networks-Specific

Requirements Part 11: Wireless LAN Medium Access Control (MAC)

and Physical Layer (PHY) Specifications Amendment 5: Enhancements

for Higher Throughput, IEEE802.11n, 2009.

[3] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H.
Bolcskei, “VLSI Implementation of MIMO detection using the sphere
decoding algorithm,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp.
15661577, Jul. 2005.

[4] X. Huang, C. Liang, and J. Ma, “System architecture and implemen-
tation of MIMO sphere decoders on FPGA,” IEEE Trans. VLSI Syst.,
vol. 16, no. 2, pp. 188-197, 2008.

[5] M. Li, B. Bougard, W. Xu, D. Novo, L. Van Der Perre, and F. Catthoor,
“Optimizing Near-ML MIMO detector for SDR baseband on parallel
programmable architectures,” Proc. Des., Autom., Test in Eur.(DATE),
pp. 444-449, Mar. 2008.

[6] P. Bhagawat, R. Dash, and G. Choi, “Dynamically reconfigurable
soft output MIMO detector,” in Proc. IEEE Intl. Conf. Comput. Des.
(ICCD), Oct. 2008, pp. 68-73.

[2

—

6026

[7] J.Janhunen, O. Silvén, and M. Juntti, “Programmable processor imple-
mentations of K-best list sphere detector for MIMO receiver,” Elsevier
J. Signal Process., vol. 90, no. 1, pp. 313-323, 2009.

[8] M. Khairy, M. Abdallah, and S.-D. Habib, “Efficient FPGA implemen-
tation of MIMO decoder for mobile WIMAX system,” in /[EEE Intl.
Conf. Commun. (ICC), Jun. 2009, pp. 1-5.

[9] J. Bard and V. J. Kovarik, Jr., Sofiware Defined Radio: The Software
Communications Architecture. New York: Wiley, 2007.

[10] J. H. Reed, Software Radio: A Modern Approach to Radio Engi-
neering. Englewood Cliffs, NJ: Prentice-Hall, 2002.

[11] X.ChuandJ. McAllister, “FPGA based soft-core SIMD processing: A
MIMO-OFDM fixed-complexity sphere decoder case study,” in Proc.
IEEE Int. Conf. Field-Programmable Technol. (FPT), Dec. 2010, pp.
479-484.

[12] X. Chu, J. McAllister, and R. Woods, “A pipeline interleaved hetero-
geneous SIMD soft processor array architecture for MIMO-OFDM de-
tection,” in Proc. 7th Int. Conf. Reconfigurable Comput.: Architect.,
Tools, Appl. (ARC), Mar. 2011, pp. 133-144.

[13] M. Pohst, “On the computation of lattice vectors of minimal length,
successive minima and reduced bases with applications,” SIGSAM
Bull., vol. 15, no. 1, pp. 3744, 1981.

[14] C.P.Schnorr and M. Euchner, “Lattice basis reduction: Improved prac-
tical algorithms and solving subset sum problems,” Math. Programm.,
vol. 66, no. 1, pp. 181-199, 1994.

[15] J. Antikainen, P. Salmela, O. Silven, M. Juntti, J. Takala, and M. Myl-
lyla, “Application-specific instruction set processor implementation of
list sphere detector,” in Conf. Rec. 41st Asilomar Conf. Signals, Syst.,
Comput., Nov. 2007, pp. 943-947.

[16] J. Janhunen, O. Silven, M. Juntti, and M. Myllyla, “Software defined
radio implementation of K-best list sphere detector algorithm,” in
Proc. Int. Conf. Embedded Comput. Syst.: Architect., Model., Simul.
(SAMOS), Jul. 2008, pp. 100-107.

[17] Q. Qi and C. Chakrabarti, “Parallel high throughput soft-output sphere
decoder,” in Proc. IEEE Workshop Signal Process. Syst. (SIPS), Oct.
2010, pp. 174-179.

[18] B. Wuand G. Masera, “A Novel VLSI architecture of fixed-complexity
sphere decoder,” in Proc. 13th Euromicro Conf. Digit. Syst. Des.: Ar-
chitect., , Methods, Tools, Sep. 2010, pp. 737-744.

[19] L. Barbero and J. Thompson, “Fixing the complexity of the sphere
decoder for MIMO detection,” IEEE Trans. Wireless Commun., pp.
2131-2142, Jun. 2008.

[20] L. Hanzo, W. Webb, and T. Keller, Single and Multi-Carrier Quadra-
ture Amplitude Modulation: Principles and Applications for Personal
Communications, WATM and Broadcasting. New York: IEEE Presss-
Wiley, 2000.

[21] C. Zheng, X. Chu, J. McAllister, and R. Woods, “Real-valued fixed-
complexity sphere decoder for high dimensional QAM-MIMO sys-
tems,” IEEE Trans. Signal Process., vol. 59, 1n0. 9, pp. 4493-4499, Sep.
2011.

[22] L. G. Barbero and J. S. Thompson, “Rapid prototyping of a fixed-
throughput sphere decoder for MIMO systems,” in Proc. IEEE Int.
Conf. Commun., Jun. 2006, pp. 3082-3087.

[23] P. Yiannacouras, J. G. Steffan, and J. Rose, “Fine-grain performance
scaling of soft vector processors,” in Proc. Int. Conf. Compilers, Ar-
chitec., Synthesis Embedded Syst. (CASES), Oct. 2009, pp. 97-106.

[24] J. Yu, G. Lemieux, and C. Eagleston, “Vector processing as a soft-
core CPU accelerator,” in Proc. Int. ACM/SIGDA Symp. Field Pro-
grammable Gate Arrays (FPGA), Feb. 2008, pp. 222-232.

[25] D. Wubben, R. Bohnke, V. Kuhn, and K.-D. Kammeyer, “MMSE ex-
tension of V-BLAST based on sorted QR decomposition,” in Proc.
IEEE Veh. Technol. Conf. (VTC), Oct. 2003, vol. 1, pp. 508-512.

[26] X. Chu, J. McAllister, and R. Woods, “A low complexity real-time
MIMO-preprocessing for fixed-complexity sphere decoder,” in Proc.
Wireless Innovation Forum (SDR’11-WINNComm), Nov. 2011, pp.
601-604.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 11, NOVEMBER 2012

[27] B.Parhami, Computer Arithmetic: Algorithms and Hardware Designs,
2nd ed. New York: OUP USA, 2010.

[28] N. Sorokin, “Implementation of high-speed fixed-point dividers on
FPGA,” J. Comput. Sci. Technol., vol. 6, no. 1, pp. 8-11, 2006.

[29] Xilinx Inc., LogiCORE IP CORDIC v4.0 2011.

[30] X. Chu, K. Benkrid, and J. Thompson, “Rapid prototyping of an im-
proved cholesky decomposition based MIMO detector on FPGAs,”
in Proc. NASA/ESA Conf. Adapt. Hardware Syst. (AHS), 2009, pp.
369-375.

[31] N. Moezzi-Madani, T. Thorolfsson, and W. Davis, “A low-area flexible
MIMO detector for WiFi/WiMAX standards,” in Proc. Des., Autom.
Test Eur. (DATE), Mar. 2010, pp. 1633-1636.

[32] M. Myllyla, J. Cavallaro, and M. Juntti, “Architecture design and im-
plementation of the metric first list sphere detector algorithm,” JEEE
Trans. VLSI Syst., vol. 19, no. 5, pp. 895-899, May 2011.

[33] J. Im, M. Cho, Y. Jung, and J. Kim, “Low-power low-complexity
MIMO-OFDM baseband processor for wireless LANS,” in Proc. [EEE
Int. Symp. Circuits Syst. (ISCAS), May 2009, pp. 601-604.

[34] D. Sheldon, R. Kumar, R. Lysecky, F. Vahid, and D. Tullsen, “Applica-
tion-specific customization of parameterized FPGA soft-core proces-
sors,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., 2006, pp.
261-268.

[35] T. Cupaiuolo, M. Siti, and A. Tomasoni, “Low-complexity high
throughput VLSI architecture of soft-output ML MIMO detector,” in
Proc. Des., Autom. Test Eur. e (DATE), Mar. 2010, pp. 1396-1401.

Xuezheng Chu (M’11) received the MRes. degree in
electronics engineering from The University of Ed-
inburgh, Edinburgh, U.K. in 2008 and the Ph.D. de-
gree in electronics engineering from Queen’s Univer-
sity Belfast, Belfast, U.K. in 2011, for his work on
Efficient and Adaptive FPGA-based MIMO Detec-
tors and Massively Parallel Processor Architecture
for FPGA-based real-time signal processing systems.

He is currently with ARM, Ltd., Cambridge,
U.K. His research interests include SoC, many-core
system and on-chip Interconnect designs, wireless
signal processing systems, and their implementation.

John McAllister (S’02-M’04) received the Ph.D.
degree in electronic engineering from Queen’s
University Belfast, Belfast, U.K., in 2004.

Since July 2005, he has lead a group of researchers
in embedded processing architectures, and electronic
system level synthesis tools and technologies for
streaming applications, with a specialty particularly
high performance software radio transceiver archi-
tectures and design tools for MIMO communications
applications. In 2008, he co-founded CapnaDSP,
Ltd., to commercialize the unique FPGA synthesis
tool technology he invented; this currently exists as the Intrinsic Toolsuite. He
was Chief Technology Office of CapnaDSP from its foundation until 2011.

Dr. McAllister is a member of the IEEE Signal Processing Society and its
Technical Committee on Design and Implementation of Signal Processing
Systems (DISPS). He is an Associate Editor of the IEEE TRANSACTIONS ON
SIGNAL PROCESSING, and serves on the program committees of a number
of IEEE conferences, including the International Conference on Embedded
Computer Systems: Architectures, Modelling and Simulation (SAMOS),
the International Conference on Acoustics, Speech and Signal Processing
(ICASSP), and the Workshop on Signal Processing Systems: Design and
Implementation (SIPS).

