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A-PPP: Array-Aided Precise Point Positioning With
Global Navigation Satellite Systems

Peter J. G. Teunissen, Member, IEEE

Abstract—In this paper, the global navigation satellite system
(GNSS) precise point positioning (PPP) concept is generalized to
array-aided PPP (A-PPP). A-PPP is a measurement concept that
uses GNSS data, from multiple antennas in an array of known
geometry, to realize improved GNSS parameter estimation (posi-
tion, attitude, time and atmospheric delays). The concept is for-
mulated such that it applies to each current and future multifre-
quency GNSS, stand-alone or in combination. A–PPP is made pos-
sible through solving a novel orthonormality-constrained multi-
variate (mixed) integer least-squares problem. It is shown that the
integer matrix constraint is necessary to obtain a precise instan-
taneous attitude- and position solution, whereas the inclusion of
the orthonormality constraint in the integer ambiguity objective
function is essential to achieve high instantaneous probabilities of
correct integer estimation. Different A-PPP applications are dis-
cussed, with their performances illustrated by means of empirical
GPS results.

Index Terms—Array-aided precise point positioning, global
navigation satellite systems, multivariate integer least squares,
orthonormality constrained integer least squares.

I. INTRODUCTION

P RECISE point positioning (PPP), first described in [1], is
a global navigation satellite system (GNSS) positioning

method that processes pseudorange and carrier phase measure-
ments from a standalone GNSS receiver to compute positions
with a high, decimeter or centimeter, accuracy everywhere on
the globe. By using satellite orbits and clocks, as well as other
corrections (e.g., for Earth rotation, tides and ocean loading,
phase wind-up, etc.), the GNSS receiver position along with
other parameters, like atmospheric delays, can be estimated
[2]–[4]. In recent years, services have been developed which
allow high accuracy ephemeris data to be made available in
real-time to users [5]–[7]. Such availability has created, and will
continue to create, a wide range of PPP applications [8], [9].
Also, various forms of PPP are possible, like, e.g., single-fre-
quency PPP using global ionospheric maps (GIMs) [3], [4],
dual-frequency PPP using ionosphere-free combinations [2],
or integer ambiguity resolution [10]–[13] enabled real-time
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kinematic (RTK) PPP [14]–[17]. Next to positioning, PPP is
also used in remote sensing, [18], [19], as an ionospheric or
tropospheric sensor, [20], [21], or for time-transfer [22]–[24].
In this paper, we extend the PPP concept to array-aided PPP

(A-PPP). A-PPP is a GNSS measurement concept that uses
GNSS data from multiple antennas in known formation to
realize real-time precise attitude and improved positioning of
a (stationary or moving) platform. It is assumed that the local
antenna geometry is known in the body (platform) frame and
that each of the antennas in the array collects GNSS pseudo-
range and carrier phase data. The A-PPP principle can then
briefly be described as follows. The known array geometry in
the platform frame enables successful integer carrier-phase am-
biguity resolution, thereby realizing a two-order of magnitude
improvement in the between-antenna GNSS pseudoranges.
These very precise pseudoranges are then used to determine
the platform’s earth-fixed attitude, thus effectively making the
platform a 3D direction finder. At the same time, the precision
of the absolute pseudoranges and carrier phases are improved
by exploiting the correlation that exists between these data and
the very precise between-antenna pseudoranges. This improve-
ment enables the improved platform parameter estimation.
Also integrity improves, since with the known array geometry,
redundancy increases, thus allowing improved error detection
and multipath mitigation [25].
This contribution is organized as follows. In Section II, the

GNSS models for precise point positioning and array-based
attitude determination are presented. Their respective estima-
tion problems are usually treated and solved independently.
In Section III it is shown why and how this can be improved.
A multivariate constrained formulation of the combined posi-
tion-attitude model is introduced, which is structured as

(1)

with the random matrix of GNSS array observ-
ables and , , and the ma-
trices containing the deterministic parameters that need to be
estimated under the attitude orthonormality and ambiguity in-
teger constraints

(2)

is the matrix of antenna positions, the matrix of carrier
phase ambiguities and the matrix of atmospheric delays and
satellite-related terms. By means of a decorrelating transforma-
tion it is shown which improvements can be realized and how
the PPP concept can be extended to array-aided PPP.

1053-587X/$31.00 © 2012 IEEE



TEUNISSEN: A-PPP WITH GNSS 2871

An essential component of A-PPP processing is solving the
constrained array estimation problem. This novel multivariate,
orthonormality-constrained, mixed integer least-squares (ILS)
problem is solved in Section IV. In contrast to the existing con-
strained ILS problems, as box-constrained ILS [26] and ellip-
soid-constrained ILS [27], our problem is a mixed real/integer
least-squares problem, of the multivariate type, with orthonor-
mality constraints on the real-valued parameters. As is shown,
the two type of constraints play a distinct role. The integer ma-
trix constraint is necessary to obtain the most precise instanta-
neous attitude and position solution, whereas the inclusion of the
orthonormality constraint in the ambiguity objective function is
essential to achieve a high probability of correction integer es-
timation [28].
In the following, a frequent use is made of the Kronecker

product and the -operator. For their properties, see, e.g.,
[29], [30]. The expectation and covariance matrix of a random
vector are denoted as and , respectively. For
the covariance matrix of a random matrix , we often write

instead of . For the weighted squared norm,
the notation is used. Although the termi-
nology of weighted least-squares estimation is used throughout,
the given least-squares (LS) estimators are also maximum like-
lihood estimators in the Gaussian case and best linear unbiased
estimators (BLUEs) in the linear model case, since the inverse
covariance matrix of the GNSS observables is used as weight
matrix.

II. POSITIONING AND ATTITUDE

In this section we present the PPP observation equations for
positioning and the array observation equations for attitude de-
termination. Although these models are currently restricted to
the usage of single- or dual-frequency GPS data, we formulate
them for the general multifrequency case, thus enabling next
generation GNSS application as well.

A. Precise Point Positioning

The undifferenced carrier-phase and pseudorange (code) ob-
servables of a GNSS receiver tracking satellite on frequency

( is speed of light; is th wavelength) are denoted
as and , respectively. When two satellites, and , are
tracked, one can form the between-satellite, single-differenced
(SD) phase, and code observables, of which the linear(ized) ob-
servation equations are given as [31]–[35]

(3)

with the PPP correction terms, and
, assumed known. The unknown deterministic

parameters in (3) are the receiver position coordinates in vector
, the ionospheric delay on frequency

and the carrier-phase ambiguity . The row-vector
contains the difference of the unit-direction vectors to satellites
and . The between-satellite differencing has eliminated the

receiver phase and the receiver code clock offsets. Likewise,
the initial receiver phases are absent in the SD ambiguity, as it
only contains the satellite initial phases and integer ambiguity,

. The ambiguity is constant in time as
long as the receiver keeps lock.
The PPP corrections and consist of the tropospheric

delay , the satellite phase and code clock delays, and
, and the receiver relevant orbital information of the

two satellites. The satellite ephemerides (orbit and clocks) is
publicly available information that can be obtained from global
tracking networks [5], [6].
For the tropospheric delay , one usually uses an a priori

model, such as, e.g., the model of [36]. In case such modelling
is not considered accurate enough, one may compensate by in-
cluding the residual tropospheric zenith delay as unknown
parameter in (3). Then , with provided by
the a priorimodel, the satellite elevation dependent mapping
function [37] and the unknown to be estimated tropospheric
zenith delay.
To write (3) in vector-matrix form, it is assumed that receiver
tracks satellites on frequencies. Defining the SD
phase and code observation vectors as

and , where ,

, , with a likewise def-
inition for the atmospheric delays, the ambiguities and the cor-
rections, the system of SD observation equations of receiver
follows as:

(4)

with , ,
, ,

and . Note that in (4), the first
satellite is used as reference (pivot) in defining the SD. This
choice is not essential as any satellite can be chosen as pivot.
The system of SD observation (4) forms the basis for multi-

frequency PPP. In case of single-frequency PPP, of (4) be-
comes part of and , as the ionospheric delays are then
provided externally by GIMs [3], [4], [8]. As demonstrated in
[38] and [39], the single- and dual-frequency PPP convergence
times depend significantly on the precision of the code and iono-
sphere-free observables. The variance reduction achieved by
A-PPP (cf. Section III-C) will therefore reduce their conver-
gence times.

B. The GNSS Array Model

Now consider a platform-fixed array of antennas/re-
ceivers, all tracking the same GNSS satellites on the same
frequencies. With two or more antennas, one can formulate

the so-called double-differences (DD), which are between-an-
tenna differences of between-satellite differences. For two an-
tennas, and , tracking the same satellites on the same
frequencies, the DDs are defined as and

. In the DDs, both the receiver clock offsets
and the satellite clock offsets get eliminated. Moreover, since
double differencing eliminates all initial phases, the DD ambi-
guity vector is an integer vector. This is an im-
portant property. Inclusion of integer constraints into the model,
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strengthens the parameter estimation process and allows one
to determine the noninteger parameters with a significantly im-
proved accuracy [11], [40]. To emphasize the integerness of the
DD ambiguity vector , we write .
The array size is assumed such that also the between-antenna

differential contributions of orbital pertubations, troposphere,
and ionosphere are small enough to be neglected. Hence, the two
correction terms, and , that are present in the between-
satellite SD model (4), can be considered absent in the DD array
model [5], [31]–[33]. Also, since the unit-direction vectors of
two nearby antennas to the same satellite are the same for all
practical purposes, we have . For two nearby
antennas, and , the vectorial DD observation equations follow
therefore from (4) as

(5)

in which is the baseline vector between the two
antennas.
In case of more than two antennas, the single-baseline model

(5) can be generalized to a multibaseline array-model. Since the
size of the array is assumed small, the model can be formulated
in multivariate form, thus having the same design matrix as that
of the single-baseline model (5). For the multivariate formula-
tion, we take antenna 1 as the reference antenna (i.e., the master)
and we define the phase and code observation matrices as

and , the
baseline matrix as , and the DD
integer ambiguity matrix as . The multi-
variate equivalent to the DD single-baseline model (5) follows
then as

(6)

The unknowns in this model are the matrices and . The
matrix consists of the unknown baseline vectors
and the matrix consists of the unknown DD
integer ambiguities.
The array geometry is described by the baseline matrix .

Once has been determined, the attitude of the platform can
be determined if use is made of the known array geometry in
the platform-fixed frame. Let be the dimension of
the antenna array (linear, planar or three dimensional) and let
the coordinates in the platform-fixed frame of the known array
geometry be given by the column vectors of the matrix .
Then and are related as

(7)

in which the column vectors of are orthonormal, i.e.,
or . From this matrix equation, one can

solve the attitude matrix in a least-squares sense, once an
estimate of is available from solving (6) [41], [42].

III. ARRAY-AIDED POSITIONING

In this section, array-aided PPP is introduced as generaliza-
tion of the PPP concept. Its various positioning applications are
described together with the improvements that can be realized.

A. A Combined Position-Attitude Model

Usually the point positioning model (4) is processed indepen-
dently from the attitude determination model (6). Moreover, in
current GNSS attitude determination methods, also the integer
estimation problem is treated separately from the attitude esti-
mation process. Existing approaches either first resolve the in-
teger ambiguities and then use the precise baseline estimates for
attitude determination [43]–[45] or they use the baseline length
constraints only for validation purposes [46], [47]. In this sec-
tion, however, we combine the two models, (4) and (6), and
show the improvement that a combined processing brings.
If we define , ,

, , , the models
(4) and (6) can be written in the compact form

(8)

where , , and .
Note that the two sets of observation equations have no param-
eters in common. This is the reason why one has treated the two
equation sets of (8) separately. The first set is then used to de-
termine the position of the array, i.e., to determine from ,
while the second set is used to determine its attitude, i.e., to de-
termine the rotation matrix from via (7). However, despite
the lack of common parameters in (8), the data of the two sets
are correlated and therefore not independent. Thus in order to
be able to solve the system (8) rigorously, one needs to take this
correlation into account. This is possible if we know the com-
plete covariance matrix of .
To determine the covariance matrix of , we first have

to define the covariance matrix of the SD phase and code ob-
servables.
Definition 1 (SD Covariance Matrix): Let

, with
and , where the undifferenced phase and code
data vectors of antenna are given as ,

and ,
, . Then the covariance

matrix of is given as

(9)

where and , ,
and are positive definite cofactor matrices.
The structure of the covariance matrix has been

defined such that it accomodates differences in the phase pre-
cision, differences in the code precision, frequency dependent
tracking precision, satellite elevation dependency and differ-
ences in quality of the antenna/receivers in the array. The pre-
cision contribution of antenna/receivers and frequency can be
specified through and , while the cofactor matrices
and identify the relative precision contribution of phase and
code, including the satellite elevation dependency. The covari-
ance between the phase observables and the code observables is
assumed zero.
The required covariance matrix of follows, with

(9), from applying the variance-covariance propagation law
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(i.e., propagation of second order (central) moments) to
, with the differencing matrix and

. The complete structure of the combined
positioning-attitude model can therefore be summarized as
follows.
Definition 2 (Combined Position-AttitudeModel): Themulti-

variate observation equations and covariance matrix of the com-
bined position-attitude model are given as

(10)

with cofactor matrices

(11)

and with the constraints , , .
The nonzero correlation between and is due to the

nonzero term in (11).

B. A Decorrelating Transformation

Although the equations of and [cf. (10)] have no param-
eters in common, their nonzero correlation implies that treating
the positioning problem independently from the attitude deter-
mination problem is suboptimal. To properly take the nonzero
correlation into account, the two sets of observation equations
need to be considered in an integral manner.
We now show how the nonzero correlation can be taken into

account, while still being able to work with a system of ob-
servation equations that has the same structure as the original
one (10). The idea is the following. We first decorrelate the
two sets of data with an appropriate decorrelating transforma-
tion [cf. (12)]. Then we use the decorrelating transformation to
reparametrize the parameters such that the positioning-parame-
ters and the array-parameters are decoupled again. Thus a trans-
formed system of decorrelated equations is obtained with the
same structure as the orginal system and that therefore can be
solved as such.
Theorem 1 (Decorrelated Positioning-Attitude Model): Let

the invertible transformation be
given as

(12)

and define . Then

(13)

with blockdiagonal cofactor matrix

(14)

and with constraints , , , where
, ,

.
Proof: The proof is given in the Appendix.

Compare (13) and (14) to (10) and (11), respectively. The
transformed set of (13) has the same structure as the original set

(10), but since is blockdiagonal, while is not, it follows that
the observation equations of the decorrelated and can be
solved separately. Moreover, the same software packages can
be used to solve for the parameters of (13) as has been used
hiterto to solve for the parameters of (10). Importantly, however,
with (13) the results will then be based on having taken the full
covariance matrix into account.

C. The A-PPP Model and Its Applications

The decorrelating transformation (12) changed the posi-
tioning equations, but not those for attitude. Hence, it is the
positioning that takes advantage of the array data when the
full correlation between and is taken into account. The
model for will be referred to as the array-aided precise point
positioning model.
Definition 3 (Array-Aided PPP Model): The observation

equations and covariance matrix of the A-PPP model are given
as

(15)

with the array-aided data vector and
.

The precision of is always better than that of . This can be

shown as follows. Since
(cosine rule) and , since

for , the strict inequality
holds, and therefore, from (10) and (13), the ma-

trix inequality

(16)

follows. Hence, any linear function of will always have a
smaller variance than the same function of . As an example,
consider an array with receivers that all are of the same
quality. Then is a unit matrix and .
This ’1 over ’ rule improvement propagates then also into
A-PPP’s parameter estimation, thus resulting in improved
results.
The A-PPP model can be applied in different ways. Although

A-PPP, like PPP, can be used for other applications than posi-
tioning, e.g., remote sensing or time-transfer, attention will be
restricted here to positioning. Three different positioning modes
are considered: platform positioning, on-platform positioning
and between-platform positioning. Each require different infor-
mation from the array.
1) Platform Positioning (Without Ambiguity Resolution):

This is the simplest A-PPP variant, as it can be solved in
exactly the same way as any of the current PPP-variants. is
the only array information that is required to construct . Since
the baseline matrix and the ambiguity matrix do not need
to be known, the solution of (15) can do without solving the
attitude observation equations of model (13).
To interpret the platform positioning vector, recall from

(13) that . Since
and , it follows that

. Hence, is the weighted
least-squares combination of the antenna positions. For
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TABLE I
SINGLE-FREQUENCY, KINEMATIC (MOVING PLATFORM) N-E-U ONE-SIGMA

POSITIONING PRECISION OF PPP AND FOUR-ANTENNA A-PPP

a diagonal weight matrix , for
instance, the position vector is equal to the weighted average

(17)

Thus A-PPP, based on (15), determines the position of the
“center of gravity” of the antenna configuration rather than that
of a single antenna position. If needed, these two positions can
be made to coincide by using a suitable symmetry in the array
geometry. That is, if .
Table I illustrates the single-frequency platform positioning

performance of PPP and A-PPP. The experiment took place in
Perth, Australia, on 30 July 2010 (05:24:00–07:03:59 UTC).
The platform consisted of four Sokkia GSR2700 ISX antenna/
receivers, three of which were placed in a triangle, 2 meters
apart, with the fourth one exactly in the middle of the triangle.
The 1-Hz single-frequency L1 GPS phase and code data were
collected with a zero degree cut-off elevation angle. To allow
for low velocity (pedestrian) platform movement the data was
processed in kinematic mode, using as a priori PPP correc-
tions, final IGS orbits, final IGS 30-second clock corrections,
and final GIM maps. Table I shows the empirically determined
North-East-Up (N-E-U) standard deviations (in millimeters) for
kinematic PPP and A-PPP. The improvements are clearly vis-
ible, although horizontal positioning benefits more than vertical
positioning. The height improvement is less, because the PPP
and A-PPP common a-priori corrections uncertainty impacts
the vertical component most.
2) Platform Positioning (With Ambiguity Resolution): PPP

with integer ambiguity resolution is possible by means of exter-
nally provided corrections that transform the PPP ambiguities
to integers [14]–[17]. The advantage of this PPP-RTK method
over standard PPP is the considerable strengthening the integer
constraints bring to the model. The question is now whether one
can still take advantage of this in the A-PPP setup. Afterall, with
A-PPP, the ambiguity vector of (15) remains noninteger even
after the original SD ambiguities have been corrected to inte-
gers. The weighted average of integers is namely generally non-
integer.
To resolve the problem of the nonintegerness of , use is made

of the relation

(18)

which shows that one can undo the effect of averaging and ex-
press in , provided the integer matrix is known. Hence,
the A-PPP RTK observation equations become

(19)

with the -corrected observation vector given as

(20)

Since (19) has the same structure as the original PPP RTK equa-
tions, it can be solved in the same way. As to the required array
information, now both and are needed. is needed to
obtain from , and is needed to obtain from . The
A-PPP system (19) can therefore only be solved, after has
been solved from the attitude equations of model (13).
Critical in the application of (19) is how fast and how well

the integer matrix can be estimated. Preferably this should be
on a single-epoch (instantaneous) basis, with a sufficiently high
probability of correct integer estimation, i.e.,
, where is the integer estimator of [11], [48]. Only if this
probability, also referred to as the ambiguity success rate, is suf-
ficiently close to one, can one neglect the uncertainty in the in-
teger estimator of and does
hold, meaning that one can take advantage of the improved pre-
cision of over . Section IV shows that such array integer
ambiguity resolution is indeed possible with our method of in-
teger -estimation.
To illustrate the potential of A-PPP RTK, the GPS experiment

of Table I was repeated but now with ionospheric- and satellite
clock corrections provided by a regional dual-frequency CORS
network [17]. The results showed cm-level positioning accu-
racy ( ) and a one-minute
time-to-fix, twice faster for A-PPP RTK than PPP RTK.
3) On-Platform Positioning: Next to determining the posi-

tion of the platform, it is often also of importance to be able to
determine the position of an arbitrary point on the platform. In
many applications, for instance, the platform will be equipped
with additional (remote sensing) sensors. The sensor positions
are then needed so as to be able to colocate the remote sensing
data with an earth-fixed frame.
Let and be the position vector of the sensor in the earth-

fixed frame and in the platform-fixed frame, respectively. Then

(21)

with the counterpart of in the platform-fixed
frame. Hence, since and are assumed known, and are
needed to determine , the sensor position in the earth-fixed
frame. Thus next to positioning, now also an attitude solution is
needed.
As with , the rotation matrix can be determined with

or without integer ambiguity resolution. But, as is shown in
Section IV, the quality of is rather poor for small sized arrays,
when solved without the integer ambiguity constraints. There-
fore the integer ambiguity resolved rotation matrix has prefer-
ence and, as is shown in the next section, it can be determined
with a high success rate with our method of integer -estima-
tion.
4) Between-Platform Positioning: The A-PPP concept can

also be applied to the important field of relative navigation and
formation flying. Examples of applications that can benefit from
multiplatform A-PPP include land (robotics and cars [49], [50]),
air (uninhabited air vehicles [41], [51]), and space (spacecraft
formations and attitude [42], [52]) systems.
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TABLE II
SINGLE-FREQUENCY, SINGLE-EPOCH, BETWEEN-PLATFORM

AMBIGUITY SUCCESS RATES FOR TWO SINGLE-ANTENNA AND
TWO QUADRUPLE-ANTENNA PLATFORMS, SEPARATED BY SHORT

(IONOSPHERE-FIXED) AND LONG (IONOSPHERE-FLOAT) DISTANCES (SF:
SINGLE-FREQUENCY, DF: DUAL-FREQUENCY, XYZ-FIXED: STATION

COORDINATES KNOWN, WL: WIDELANE)

Consider two A-PPP equipped platforms, and , each
having a system of observation equations like (19). By taking
the between-platform difference, one gets

(22)

with and a likewise definition for , and
.
To solve (22), the and of both platforms are needed, but

not their attitude. The rotation matrices of the two platforms,
and , would be needed though, if next to the relative position,
also the between-platform relative attitude, , is
required.
Note, importantly, that the DD ambiguity vector in (22)

is integer. The following example illustrates how its success-
rate can be improved by A-PPP. The success rates are given
in Table II for the case the ionospheric delays are assumed ab-
sent in the model (ionosphere fixed), as for the case they are
estimated as unknown parameters (ionosphere float). They are
based on 1 Hz GPS phase and code tracking, with zero de-
gree cut-off elevation angle, from two identical Sokkia-receiver
equipped platforms, hundred meter apart, having the same con-
figuration as in the experiment of Table I.
Table II shows the single-epoch succes rate improvement

when going from a one-antenna equipped pair (1-1) to a
quadruple-antennas equipped platform pair (4-4). The second
column of Table II shows a significant improvement of the
single-frequency (SF), ionosphere-fixed success rate, thus
enabling faster single-frequency precise baseline positioning.
Such improvement is not seen for the dual-frequency (DF)
case. However, when compared with the SF results, we do
see that the SF, multiantennas platform has a close to standard
dual-frequency receiver performance.
The results of the fourth column indicate that A-PPP

equipped CORS stations, having known coordinates [1], [17],
can also benefit significantly. Finally, the last column of Table II
indicates the A-PPP improvement of widelane (WL) ambi-
guity resolution. When positioning under ionosphere-float, full
ambiguity resolution is often replaced by partial ambiguity
resolution using the widelane [53].
We remark that the success rates of Table II are unconditional,

since they are not conditioned on assuming the integer ambi-
guity matrices of both platforms, and , known [cf. (20)].
Hence, Table II’s success rates give the probabilities of correctly
estimating the between-platform integer ambiguities, irrespec-
tive of whether the integer array ambiguities of both platforms

were estimated correctly or not. The method used for integer es-
timating the array ambiguities is described in the next section.
There the improved performance of the method is also com-
pared with the standard method of integer ambiguity resolution.

IV. CONSTRAINED ARRAY ESTIMATION

In the previous section it was shown that different A-PPP
versions require different array information. For platform po-
sitioning without ambiguity resolution, it suffices to know ,
(cf. 15). On-platform positioning, however, requires both and
, [cf. (21)], while any version that includes integer ambiguity

resolution needs as well. In order to make these A-PPP appli-
cations possible, it is shown in this section how to best estimate
and .

A. The Array and its Constraints

To determine and , the array-part of model (13) needs
to be solved. Would one only need , the simplest approach
would be to solve model (13) with (7) in a least-squares sense
while disregarding the integerness of . In case of GNSS, how-
ever, this approach suffers from the drawback that a disregard
of the integerness of , implies that the baseline solution, and
therefore the solution of as well, is driven by the relatively
poor code data.
Alternatively therefore, one could solve the array-part of

model (13) for in a least-squares sense, but now with the
integerness of enforced, and then use this baseline solution
to solve for . This second approach is an improvement over
the first. Still, however, it can be further improved upon, since
the determination of the integer matrix will then not have
benefitted from the orthonormality of . As will be shown, this
improvement turns out to be very significant indeed.
The above discussion makes clear that both constraints, the

orthonormality constraint of in and the integer con-
straint on , need to be enforced from the beginning. The aim
of this section is therefore to show how the following, orthonor-
mality-constrained, multivariate (mixed) integer model can be
solved in a weighted least-squares sense.
Definition 4 (Constrained Array Model): The matrix

observation equation and covariance matrix of the constrained
array model are given as

(23)

with the two sets of constraints

(24)

and where .
Thus the unknown parameters in this array model are the ma-

trices and , constrained by (24).

B. The Role of Integer Ambiguity Resolution

To get a better understanding of the role played by integer
ambiguity resolution in determining , let us for the moment
disregard the first constraint, , and consider, instead
of the second constraint, the two extremes cases: is known or
is completely unknown.
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Lemma 1 ( Known, Unknown): Let the -constrained
LS-estimator of in model (23) be defined as

(25)

with . Then and its covariance ma-
trix are given as

(26)

with the LS-inverses and
.

Proof: The proof is given in the Appendix.
This LS estimator of is denoted as to emphasize its

dependence on the value taken for .
Through the presence of the matrices and , we clearly

recognize the contributions of both the receiver-satellite geom-
etry, via , and the antenna-array geometry, via . Without the
antenna-array geometry (i.e., or ), the solution
would read . But with the antenna-array
geometry included, a further least-squares mapping takes place,
from to .
Now the other extreme, that of a completely unconstrained
-matrix, is considered.
Lemma 2 ( Unknown, Unknown): Let the unconstrained

LS-estimators of and in model (23) be defined as

(27)
Then , and their covariance matrices are given as

(28)

and

(29)

with ,
, , ,

, and .
Proof: The proof is given in the Appendix.

Since is assumed unknown in (27), the precision of is, of
course, poorer than that of . Importantly, in case of GNSS,
this difference is very significant. In case of GNSS, the preci-
sion of is driven by the very precise carrier-phase mea-
surements, while the precision of is driven by the relatively
low precision code measurements. Denoting the phase variance
as and the code variance as , the covariance matrices of
the two attitude estimators can shown to be related as

(30)

where, in case of current GPS, [40]. This shows that
a very large precision improvement in the determination of the

attitude matrix can be realized if one would be able to integer
estimate with negligible uncertainty, i.e., with a success rate

. Achieving the latter, is the goal of integer
ambiguity resolution [28].

C. Ambiguity Resolution Without Orthonormality Constraint

Although matrix is not known, we know that its entries are
all integers. Hence, if one could estimate these entries with a
probability of correct integer estimation that is sufficiently close
to one, one could treat the integer estimated for all practical
purposes as known and therefore indeed compute a very precise
attitude matrix.
With the integer constraints included, the LS problem turns

into a (mixed) integer least-squares (ILS) problem [13]. To de-
termine its solution, we first write its objective function as a
sum-of-squares.
Lemma 3 (Multivariate Orthogonal Decomposition): Let
, , and their covariance matrices be given as in (26),

(28), and (29) and let . Then

(31)

Proof: The proof is given in the Appendix.
With this orthogonal decomposition the following result can

be proven.
Lemma 4 ( Integer, Unknown): Let the -unconstrained

(mixed) integer LS-estimators of and in model (23) be de-
fined as

(32)

Then and are given as

(33)

Proof: Since the first term on the right-hand side (RHS)
of (31) is a constant, while the third term on the RHS can be
made zero for any , i.e., by setting , the integer
ambiguity matrix solution, , follows from integer minimizing
the second term on the RHS of (31). Substitution of this integer
solution into gives the attitude matrix solution of (33).
The estimators of (33) are given the suffix to emphasize

that this solution is still -orthonormality unconstrained.
If the probability mass function of is sufficiently peaked

at the true but unknown value , i.e., ,
then the uncertainty in can be neglected for all practical pur-
poses and the covariance matrix of can be approximated by

, being the covariance matrix of the very precise es-

timator , cf. (30). Hence, if a precise orthonormal attitude
matrix is asked for, one can use as estimator , with

defined as the orthonormality-constrained least-squares
solution

(34)

This problem reduces to Wahba’s problem [54]–[56], also
known as the “orthogonal Procrustes problem” [57], [58], in
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case the covariance matrix of would have the special
structure , with diagonal.
The many solution methods of Wahba’s problem have been
reviewed in [59]. One of the simplest is based on the singular
value decomposition (SVD) of the baseline matrix. It allows a
direct computation of the attitude matrix.
For our GNSS array, is fully populated, and

therefore no such direct solution, as with Wahba’s problem,
can be used to solve (34). This nonlinear least-squares problem
is therefore iteratively solved by means of one of the gradient
descent methods, like the Gauss-Newton method, having a
local linear rate of convergence, or the Newton method, having
a local quadratic rate of convergence. These gradient descent
methods work well when initialized by a good starting value.
In our case, the solution of Wahba’s problem provides a good
starting value. For a numerical-statistical analysis of nonlinear
least-squares procedures as used in positioning, we refer to,
e.g., [60]–[62].

D. Ambiguity Resolution With Orthonormality Constraint

As is shown in [45], the required high probability of correct
integer estimation of is feasible in the GNSS multifrequency
case , but generally problematic in the single-frequency
case. This shows that the single-frequency array model needs a
further strengthening.
To increase the strength of the array model, we now include

the orthonormality constraint from the start. With
this constraint rigorously incorporated into the integer estima-
tion process, a higher probability of correct integer estimation
can be achieved. The inclusion of the constraint is
thus not so much for the purpose of forcing the solution of
to be orthonormal per se, but rather to aid the integer ambiguity
resolution process.
With both the integer constraint and the orthonormality

constraint included, the minimization problem becomes a
constrained (mixed) ILS problem.
Theorem 2 ( Integer, Orthonormal): Let the orthonor-

mality-constrained (mixed) integer LS-estimators of and
in model (23) be defined as

(35)
Then and are given as

(36)

with the ambiguity objective function given as

(37)
Proof: The proof is given in the Appendix.

Note, importantly, that the ambiguity objective function (37)
differs from that of [cf. (33)] by the presence of the -de-
pendent second term. The presence of both constraints is there-
fore felt when evaluating this objective function. In integer min-
imizing , not only the weighted distance between and
counts [as is the case in (33)], but also the weighted distance
between and its closest orthonormal matrix . The

TABLE III
SINGLE-FREQUENCY, SINGLE-EPOCH, UNCONSTRAINED- (U) AND

CONSTRAINED-(C) AMBIGUITY SUCCESS RATES FOR TWO DUAL-ANTENNA
PLATFORMS AND ONE TRIPLE-ANTENNA PLATFORM. THE SUCCESS RATES ARE

GIVEN FOR A VARYING NUMBER OF TRACKED SATELLITES (5–9)

weights are determined by the inverses of and ,
respectively. And as remarked earlier, in case of GNSS, the co-
variance matrix is driven by the very precise car-
rier-phase data [cf. (30)]. Thus the second term in the ambiguity
objective function (37) receives a relatively large weight and
contributes significantly to the improved success rate perfor-
mance of over . This method is therefore also our method
of choice for realizing array-aided PPP.
The following experiment illustrates the very high success

rates that can be achieved when working with the ambiguity
objective function (37), instead of with the standard quadratic
ambiguity objective function of (33). Located at a stationary
point in Limburg, the Netherlands, a fixed array of three an-
tennas (a Trimble Zephyr Geodetic L1/L2, the Master, and two
Trimble Geodetic W Groundplane, the auxiliaries), connected
to three Trimble receivers (a Trimble R7 and two Trimble SSi),
was used to collect (10:44–13:29 UTC) and process 1 Hz data,
with a zero cut-off elevation angle. The two baselines formed
by the three antennas have lengths 2.214 m and 1.742 m, with a
66.4–degree relative orientation.
The single-frequency, single-epoch success rates are given in

Table III as function of the number of tracked satellites and the
number of antennas used. For each configuration, the uncon-
strained (U) and constrained (C) success rates are given, based
on using (33) and (37), respectively. The number of tracked
satellites was artificially reduced to show the robustness against
constellation availability. Also, different baselines have been in-
cluded in the model: for the two single-baseline (dual-antennas)
cases only the baseline length is used as a priori constraint,
whereas for the two-baseline (triple-antennas) case the complete
geometry is used to construct the matrix of (7).
As the results show (compare the U- and C-columns), the

success rates improve dramatically when the constraints are ex-
ploited using (37). For the worst scenario, with only five satel-
lites in view, the inclusion of the dual-antennas length constraint
is sufficient to increase the success rate from about 9% to about
75%–79%. The constrained success rate increases even further
to 99.6% when the full sets of constraints for the three antennas
is exploited. Also note that the constrained success rates are far
more robust against variability in number of tracked satellites
than the unconstrained success rates are. The results of Table III
are typical for the performance of the ambiguity objective func-
tion (37). The high success rates show that real-timeA-PPP plat-
form ambiguity resolution is possible and that reinitialization, in
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case of a complete loss of lock, only requires a few epochs at
most.
The estimation theory and method presented is not restricted

to a minimum or maximum antenna separation. But the implicit
assumption is of course that the antennas do not interfere with
one another. As to the suitability of antenna spacing: smaller
spacing makes the integer estimation process simpler (if less
than 0.5 wavelength the simplest integer rounding techniques
get closer to optimal performance in terms of maximizing the
success rate). Larger spacing, however, improves platform’s at-
titude resolution performance [cf. (26) and (29)].

E. The Integer Ambiguity Search

An integer search is needed to solve for the integer minimizer
of [cf. (37)]. Such search is conceptually simple in prin-
ciple. The search can be confined to any nonempty discrete set
of the type

(38)

where is a user-defined positive constant; it controls the size
of the search space. If is nonempty, then the integer min-
imizer is, by definition, contained in it. It is then found by first
collecting all integer matrices inside , followed by se-
lecting the one that returns the smallest function value .
Although conceptually simple, the actual search in our A-PPP

case turns out to be somewhat more complex. To appreciate this
complexity, several issues need to be addressed. First, consider
the shape of the search space . The search space would
be ellipsoidal, in case the second, -dependent, term in
would be absent [cf. (37)]. The presence of this attitude-de-
pendent term, however, turns into a nonellipsoidal, non-
convex search space. This effect is emphasized the more so,
since the covariance matrix in the first term of is
driven by the relatively poor code precision, while the covari-
ance matrix in the second term of is driven by
the very precise carrier phase precision.
Second, consider the user-defined positive constant in

(38). It determines the size of the search space. Any choice
, with an integer matrix, guarantees that the

search space is nonempty. At the same time, however, one
would like to be small enough, so as to have a search space
with not too many integer candidates. Therefore some care
needs to be excersized in choosing . Any which is too
far from the actual integer minimizer can be expected to result
in a too large , especially due to the amplifying effect of
the second term in . We therefore choose ,
where is the real-valuedminimizer of and denotes
rounding to nearest integer. It is our experience that this choice
works very well. Note that is the orthonormality-constrained
least-squares solution of the ambiguity matrix .
Third, consider the actual evaluation of (cf. 37). Any

such evaluation also requires the evaluation of and
therefore, for any candidate , the solution of a nonlinear
constrained least-squares problem like (34). Since such min-
imization for every candidate in is a computational
burden on the search, the search efficiency can be improved if
one would be able to work with an easier-to-evaluate function

of which the level set would still be a good approxima-
tion to . We therefore work with an easy-to-evaluate,
sharp upper bounding function , having as level set

. Then

(39)

Note that for any orthonormal matrix , the function

(40)
is an upper bound for . Thus can expected to be a
good approximation to , if is a good approximation to

. This suggests that we take the closed form solution of
Wahba’s problem as our choice for . And indeed, it is our
experience that this choice results in a sharp upper bound. The
drawback of this choice is, however, that it requires the solution
of an SVD for every candidate . Our method of choice is there-
fore to use, instead of the SVD, the (weighted) Gramm-Schmidt
orthogonalization of . This is faster to execute than the
SVD and still results in a sharp enough upper bound.
The actual search is similar as used in [10] and proceeds as

follows. We start the search for an integer candidate in the ini-
tial search space , where . Let
this candidate be . Then , which gives
the shrunken search space , in which again an integer
candidate is searched, say . This iterative process of ’search
and shrink’ is repeated until the integer minimizer of ,
say , is found. Since this minimizer need not be the mini-
mizer of (although in practice it usually is), the search
space , with , is searched. The
sought-for minimizer is then selected from the candidates in

. In practice, with our choice of bounding function,
contains only a few candidates and usually even only one. As a
result the integer minimizer of can be found efficiently.

V. SUMMARY AND CONCLUSION

In this paper, the GNSS A-PPP concept was introduced as a
generalization of PPP. A-PPP is a GNSS measurement concept
that uses GNSS data from multiple antennas in known forma-
tion to realize improved GNSS parameter estimation (position,
attitude, time, and atmospheric delays).
For its stochastic model a general structure was introduced

so as to accomodate differences in phase precision, differences
in code precision, frequency dependent tracking precision,
satellite elevation dependency and also differences in quality of
the antenna/receivers in the array. By means of a decorrelating
transformation, applied to a combined positioning and attitude
model, it was shown which improvements array-aiding brings
to the different forms of positioning. The improvements can be
exploited in different ways, e.g., to improve accuracy, to reduce
convergence time, to achieve higher success rates or to improve
between-platform positioning. The A-PPP improvements were
illustrated by means of empirical results obtained from GPS
experiments.
To enable fast and accurate A-PPP, a novel orthonormality-

constrained multivariate (mixed) integer least-squares problem
was introduced and solved. It was shown that its integer matrix
constraint is necessary to obtain the most precise instantaneous
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attitude- and position solution, whereas the inclusion of the or-
thonormality constraint in the ambiguity objective function is
essential to achieve high instantaneous probabilities of correct
integer estimation. We also discussed the nonlinear A-PPP am-
biguity objective function and presented a search for its integer
matrix minimizer.
The A-PPP principle is generally applicable. It applies to

single-, dual-, and multifrequency GNSS receivers, as well as to
any current and future GNSS (e.g., Europe’s Galileo and China’s
Compass), standalone or in combination. The integer ambiguity
resolved array-aiding concept is not restricted to GNSS, as it
may apply to, e.g., acoustic phase-based positioning [63] and
other interferometric techniques as well.

APPENDIX

Proof of Theorem 1: Application of the one-to-one
-transformation, , to the multi-

variate observation equations of (10), directly gives those of
(13).
To derive the covariance matrix , we first

substitute , with ,
into . This gives

(A1)

in which denotes the orthogonal projector
.With [cf. (9)],

an application of the variance-covariance propagation law to
(A1) gives

(A2)

with

(A3)

Since and the projector can alternatively
be expressed as , because

, we finally obtain

(A4)

This concludes the proof of the theorem.
Proof of Lemma 1: The system of multivariate normal

equations of the LS-problem (25) is given as

(A5)
With the use of the Kronecker product property

( and invertible matrices), inversion of (A5)
gives of (26). The covariance matrix follows
from an application of the variance-covariance propagation law
to the expression for .

Proof of Lemma 2: The multivariate normal equations of
the LS-problem (35) are given as

(A6)

After reduction for , the reduced normal equations are ob-
tained as

(A7)
with , and

. Inversion of (A7) gives of (28).
With given, the normal equation for follows from (A6)

as

(A8)

Inversion gives of (28). The covariance matrices and
of (29) follow from an application of the variance-covari-

ance propagation law to the expressions of and in (28).
Proof of Lemma 3: Denote the objective function

, which is a quadratic form
in , as . Since its gradient vanishes at its
minimizer , the quadratic form can be written as
the sum of its zero-order and second-order term

(A9)

with being the normal matrix of (A6) (it is times the Hes-
sian matrix of ). Define the blocktriangular transformation

(A10)

Then

(A11)

and

(A12)

Hence

(A13)

This combined with (A9) concludes the proof.
Proof of Theorem 2: Using the orthogonal decomposition

(31), we can write

(A14)
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Hence, if we define
, the integer ambiguity matrix minimizer of (A14)

is as follows:

(A15)

and the corresponding orthonormal attitude matrix minimizer as
.

ACKNOWLEDGMENT

The author would like to acknowledge P. Buist and G. Giorgi
of the Delft University of Technology, Delft, the Netherlands.
They have been instrumental in helping implement and test the
multivariate estimation algorithms. L. Huisman and D. Odijk of
the Curtin University of Technology, Perth, Australia, executed
and analyzed the A-PPP experiments.

REFERENCES

[1] J. Zumberge, M. Heflin, D. Jefferson, M. Watkins, and F. Webb,
“Precise point positioning for the efficient and robust analysis of GPS
data from large networks,” J. Geophys. Res., vol. 102, no. B3, pp.
5005–5017, 1997.

[2] J. Kouba and P. Heroux, “Precise point positioning using IGS orbit and
clock products,” GPS Solutions, vol. 5, no. 2, pp. 12–28, 2001.

[3] S. B. Bisnath, T. Beran, and R. B. Langley, “Precise platform posi-
tioning with a single frequency receiver,”GPSWorld, pp. 42–49, 2002.

[4] O. Ovstedal, “Absolute positioning with single frequency GPS re-
ceivers,” GPS Solutions, vol. 5, no. 4, pp. 33–44, 2002.

[5] IGS, Real-time GNSS satellite orbit and clock corrections from IGS
and EUREF sources, 2010 [Online]. Available: http://igs.bkg.bund.de/
ntrip/orbits

[6] J. Kouba, A Guide to Using International GPS Service (IGS) Products,
Publication of the IGSCentral Bureau, 2003 [Online]. Available: http://
igscb.jpl.nasa.gov/igscb/resource/pubs

[7] P. Tetreault, J. Kouba, P. Heroux, and P. Legree, “CSRS-PPP: An in-
ternet service for GPS user access to the Canadian spatial reference
frame,” Geomatica, vol. 59, no. 1, pp. 17–28, 2005.

[8] P. Heroux, Y. Gao, J. Kouba, F. Lahaye, Y. Mireault, P. Collins, K.
Macleod, P. Tetreault, and K. Chen, “Products and applications for pre-
cise point positioning—moving towards real-time,” Proc. ION GNSS
ITM, pp. 1832–1843, 2004.

[9] S. Bisnath and Y. Gao, “Current state of precise point positioning
and future prospects and limitations,” in Observing Our Changing
Earth, M. Sideris, Ed. New York: Springer-Verlag, 2008, vol. 133,
pp. 615–623.

[10] P. J. G. Teunissen, “A new method for fast carrier phase ambiguity
estimation,” in Proc. IEEE Position Location and Navigation Symp.
PLANS ’94, 1994, pp. 562–573, DOI: 10.1109/PLANS.1994.303362.

[11] A. Hassibi and S. Boyd, “Integer parameter estimation in linear models
with applications to GPS,” IEEE Trans. Signal Process., vol. 46, no. 11,
pp. 2938–2952, 1998.

[12] T. Ballal and C. Bleakley, “Phase-difference ambiguity resolution for a
single-frequency signal in the near-field using a receiver triplet,” IEEE
Trans. Signal Process., vol. 58, pp. 5920–5926, 2010.

[13] P. J. G. Teunissen, “Mixed integer estimation and validation for next
generation GNSS,” in Handbook of Geomathematics, W. Freeden, Ed.
et al. Berlin, Germany: Springer-Verlag, 2010, ch. 33.

[14] G. Wuebbena, M. Schmitz, and A. Bagge, “PPP-RTK: Precise point
positioning using state-space representation in RTK networks,” Proc.
ION-GPS, pp. 2584–2594, 2005.

[15] M. Ge, G. Gendt, M. Rothacher, C. Shi, and J. Liu, “Resolution of GPS
carrier-phase ambiguities in precise point positioning (PPP) with daily
observations,” J. Geodesy, vol. 82, pp. 389–399, 2008.

[16] J. Geng, F. N. Teferle, X. Meng, and A. H. Dodson, “Towards PPP-
RTK: Ambiguity resolution in real-time precise point positioning,” J.
Adv. Space Res., vol. 47, no. 10, pp. 1664–1673, 2010.

[17] P. J. G. Teunissen, D. Odijk, and B. Zhang, “PPP RTK: Results of
CORS network-based PPP with integer ambiguity resolution,” J. Aero-
naut., Astronaut. Aviation, Ser. A, vol. 42, no. 4, pp. 223–230, 2010.

[18] Y. Gao, A. Wojciechowski, and K. Chen, “Airborne kinematic posi-
tioning using precise point positioning methodology,” Geomatica, vol.
59, no. 1, pp. 275–282, 2005.

[19] X. Yuan, J. Fu, H. Sun, and C. Toth, “The application of GPS precise
point positioning technology in aerial triangulation,” ISPRS J. Pho-
togrammetry Remote Sens., vol. 64, pp. 541–550, 2009.

[20] R. F. Leandro, M. C. Santos, and R. B. Langley, “PPP-based
ionospheric activity monitoring,” Proc. ION GNSS 20th ITM, pp.
2849–2853, 2007.

[21] Y. Gao, S. Skone, K. Chen, andN. A. Nicholson, “Real-time sensing at-
mospheric water vapor using precise orbits and clock products,” Proc.
ION GNSS ITM, pp. 2343–2352, 2004.

[22] F. Lahaye, “GPS time transfer: using precise point positioning for clock
comparisons,” GPS World, 2006.

[23] J. Delporte, F. Mercier, D. Laurichesse, and O. Galy, “Fixing integer
ambiguities for GPS carrier phase time transfer,” in Proc. IEEE Int.
Freq. Contr. Symp., 2007, pp. 927–932.

[24] P. Defraigne, N. Guyennon, and C. Bruyninx, “GPS time and fre-
quency transfer: PPP and phase-only analysis,” Int. J. Navigat.
Observat., 2008, DOI:10.1155/2008/175468.

[25] J. K. Ray, M. E. Canon, and P. Fenton, “GPS code and carrier mul-
tipath mitigation using a multiantenna system,” IEEE Trans. Aerosp.
Electron. Syst., vol. 37, no. 1, pp. 183–195, 2000.

[26] R. K.Martin, C. Yan, H. Fan, and C. Rondeau, “Algorithms and bounds
for distributed TDOA-based positioning using OFDM signals,” IEEE
Trans. Signal Process., vol. 59, no. 3, pp. 1255–1268, 2011.

[27] X. W. Chang and G. H. Golub, “Solving ellipsoid-constrained integer
least-squares problems,” SIAM J. Matrix Anal. Appl., vol. 31, no. 3, pp.
1071–1089, 2009.

[28] P. J. G. Teunissen, “Statistical GNSS carrier phase ambiguity resolu-
tion: A review,” in Proc. IEEE 11th Workshop Statist. Signal Process.,
2001, pp. 4–12, DOI: 10.1109/SSP.2011.955208.

[29] D. A. Harville, Matrix Algebra From A Statistician’s Perspective.
New York: Springer-Verlag, 1997.

[30] J. R. Schott, “Matrix analysis for statistics,” in Wiley Series in Proba-
bility and Statistics. New York: Wiley, 1997.

[31] P. J. G. Teunissen and A. Kleusberg, GPS for Geodesy, 2nd ed.
Berlin, Germany: Springer, 1998.

[32] B. Parkinson and J. J. Spilker, GPS: Theory and Applications, Vols. 1
and 2. Washington, DC: AIAA, 1996.

[33] B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle, GNSS Global
Navigation Systems; GPS, GLONASS, Galileo and More. New York:
Springer-Verlag, 2008.

[34] P. Misra and P. Enge, Global Positioning System: Signals, Measure-
ments, and Performance, 2nd ed. Lincoln, MA: Ganga-Jamuna,
2001.

[35] E. D. Kaplan and C. J. Hegarty, Understanding GPS. Principles and
Applications, 2nd ed. Dedham, MA: Artech House, 2006.

[36] J. Saastamoinen, “Contributions to the theory of atmospheric refrac-
tion,” Bull. Geodesiq., pp. 279–298, 1973.

[37] A. E. Niell, “Global mapping functions for the atmosphere delay at
radio wavelengths,” J. Geophys. Res., vol. 101, no. B2, pp. 3227–3246,
1996.

[38] A. Q. Le, C. C. J. M. Tiberius, H. Van der Marel, and N. Jakowsky, M.
Sideris, Ed., “Use of global and regional ionospheric maps for single-
frequency precise point positioning,” in Proc. IAG Symp. Observing
our Changing Earth, 2008, pp. 759–769.

[39] M. O. Kechine, A. Q. Le, and H. Van der Marel, “Single and dual-
frequency precise point positioning: approaches and performances,”
Proc. NAVITEX 2006, pp. 1–8, 2006.

[40] P. J. G. Teunissen, “A canonical theory for short GPS baselines. Part
I: The baseline Precision; Part II: The ambiguity precision and Corre-
lation; Part III: The geometry of the ambiguity search Space; Part IV:
Precision versus reliability,” J. Geodesy, vol. 71, no. 6, 1997, Part I:
320-336, Part II: 389-401, Part III: 486-501, Part IV: 513-525.

[41] A.M. Fosbury and J. L. Crassidis, “Relative navigation of air vehicles,”
J. Guidance, Contr., Dyn., vol. 31, no. 4, pp. 824–834, 2008.

[42] A. Hauschild, G. Grillmayer, O. Montenbruck, M. Markgraf, and P.
Vorsmann, “GPS based attitude determination for the flying laptop
satellite,” in Small Satellites for Earth Observation. Amsterdam,
The Netherlands: Springer, 2008, pp. 211–220.

[43] J. L. Crassidis, F. L. Markley, and E. G. Lightsey, “A new algorithm for
attitude determination using global positioning system signals,” AIAA
J. Guidance, Contr., Dyn., vol. 20, no. 5, pp. 891–896, 1997.



TEUNISSEN: A-PPP WITH GNSS 2881

[44] B. Wang, L. Miao, S. Wang, and J. Shen, “A constrained LAMBDA
method for GPS attitude determination,” GPS Solutions, vol. 13, pp.
97–107, 2009.

[45] P. J. G. Teunissen, “Integer least squares theory for the GNSS com-
pass,” J. Geodesy, no. 83, pp. 1–15, 2010.

[46] L. V. Kuylen, P. Nemry, F. Boon, A. Simsky, and J. F.M. Lorga, “Com-
parison of attitude performance for multi-antenna receivers,” Eur. J.
Navig., vol. 4, no. 2, pp. 1–9, 2006.

[47] M. S. Hodgart and S. Purivigraipong, “New approach to resolving in-
stantaneous integer ambiguity resolution for spacecraft attitude deter-
mination using GPS signals,” in Proc. IEEE Position Location and
Navig. Symp. PLANS ’00, 2000, pp. 132–139.

[48] P. J. G. Teunissen, “An optimality property of the integer least-squares
estimator,” J. Geodesy, vol. 73, no. 11, pp. 587–593, 1999.

[49] Y. U. Cao, A. S. Fukunaga, and A. B. Kahng, “Cooperative mobile
robotics: Antecedents and directions,” Autonomous Robots, vol. 4, no.
1, pp. 7–27, 1997.

[50] N. Luo and G. Lachapelle, “Relative positioning of multiple moving
platforms using GPS,” IEEE Trans. Aerosp. Electron. Syst., vol. 39,
no. 3, pp. 936–948, 2003.

[51] M. DeGarmo and G. Nelson, “Prospective unmanned aerial vehicle
operations in the future national airspace system,” Proc. AIAA Paper
2004–6243, 2004.

[52] D. B. Cox and J. D. Brading, “Integration of LAMBDA ambiguity res-
olution with Kalman filter for relative navigation of spacecraft,” Navi-
gation, vol. 47, no. 3, pp. 205–210, 2000.

[53] P. J. G. Teunissen, “On the GPS widelane and its decorrelating prop-
erty,” J. Geodesy, vol. 71, pp. 577–587, 1997.

[54] D. Mortari, “ESOQ: A closed-form solution to the Wahba problem,” J.
Astronaut. Sci., vol. 45, no. 2, pp. 195–204, 1997.

[55] G. Wahba, “Problem 65-1: A least squares estimate of spacecraft atti-
tude,” SIAM Rev., vol. 7, no. 3, p. 409, 1965.

[56] J. Farrel and J. Stuelpnagel, “A least squares estimate of spacecraft
attitude,” SIAM Rev., vol. 8, no. 3, pp. 384–386, 1966.

[57] P. H. Schonemann, “A generalized solution of the orthogonal Pro-
crustes problem,” Psychometrika, vol. 31, no. 1, pp. 1–10, 1966.

[58] Y. Yang, R. S. Blum, Z. He, and D. R. Fuhrmann, “MIMO radar wave-
form design via alternating projection,” IEEE Trans. Signal Process.,
vol. 58, no. 3, pp. 1440–1445, 2010.

[59] J. L. Crassidis, F. L. Markley, and Y. Cheng, “Survey of nonlinear
attitude estimation methods,” J. Guidance, Contr., Dyn., vol. 30, no. 1,
pp. 12–28, 2007.

[60] G. W. Pulford, “Analysis of a nonlinear least square procedure used in
global positioning systems,” IEEE Trans. Signal Process., vol. 58, no.
9, pp. 4526–4534, 2010.

[61] J. Yan, C. C. J. M. Tiberius, P. J. G. Teunissen, G. Bellusci, and G. J. M.
Janssen, “A framework for low complexity least-squares localization
with high accuracy,” IEEE Trans. Signal Process., vol. 58, no. 9, pp.
4836–4847, 2010.

[62] P. J. G. Teunissen, “First and second moments of nonlinear least
squares estimators,” Bull. Geodesique, vol. 63, no. 3, pp. 253–262,
1989.

[63] D. C. Das Neves Viegas and S. R. Cunha, “Precise positioning by phase
processing of sound waves,” IEEE Trans. Signal Process., vol. 55, no.
12, 2007.

Peter J. G. Teunissen (M’10) received the Ph.D. de-
gree in geodesy (summa cum laude) in 1985, from
the Delft University of Technology (TUDelft), Delft,
The Netherlands.
Immediately following, he was awarded the

prestigious five-year Constantijn en Christiaan Huy-
gens Fellowship (1986–1991) by the Netherlands
Organization for the Advancement of Pure Research.
In 1988, he attained full Professor of Geodesy and
Navigation, TUDelft, where he has held various se-
nior academic positions: Head of Mathematical and

Physical Geodesy Department, Faculty of Geodesy (1993–1998); Vice-Dean
of Faculty of Civil Engineering and Geosciences (2001–2002); Director of
Education (2002–2004), Program Director Delft Research Centre Earth and
Atmosphere (2004–2008), Chair of the Netherlands Geodetic Commission
(1993–2009), and Head of Earth Observation and Space Systems Department,
Faculty of Aerospace Engineering (2003–2006). He is the inventor of the
LAMBDA method and has 25 years of research experience in GNSS posi-
tioning and navigation. He is currently Federation Fellow of the Australian
Research Council working on the theory and modeling for the next generation
GNSS.
Dr. Teunissen was elected Fellow of the Royal Netherlands Academy of Sci-

ences in 2000 and Fellow of the International Association of Geodesy (IAG)
in 1991. He is a Professor Honoris Causa of Wuhan University (2000) and of
Tongji University, Shanghai, China (2010).


