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��������� � ������ �

	 	

��� �. Consider the

second term ����
���������

���. Since ��
�������� is

positive definite, using fact i) and (22), ����
���������
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. Using fact vi), the third

term, ���������� �
�
�.

Define the set,�, as� �� �� � �� �	�� � ���
� 
	� 
  ������

�
�

�
��

�.
Notice that ��� must obey ��� � �� since otherwise we can contradict
(24) by taking ��� 	 �. Since ��� � �� and � is disjoint with � �
	, (24) holds for ��� 
 �, i.e., ���

� 
	�� � � ��� ���
�
�. Also, by

definition of �, ���
� 
	� �  ������

�
�

�
��

� �� ��� � �� � �	 ��. Thus,

	 satisfies the third condition of the lemma.

Finally, � 
	�� � ������� ���� ����
���������

��� �� �
�� ���

�
�. This follows using fact v); ���� �

�
� � ��; and fact

i) and (22). Thus, we have found a 
	 and � that satisfy all required
conditions.
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Generalized New Mersenne Number Transforms

Said Boussakta, Monir T. Hamood, and Nick Rutter

Abstract—Two new number theoretic transforms named as odd and odd-
squared new Mersenne number transforms are introduced for incorpora-
tion into a generalized new Mersenne number transforms (GNMNTs) suite,
which are defined in finite fields modulo Mersenne primes where arithmetic
operations and residue reductions are simple to implement. This suite is
categorized by type, with detailed instructions regarding their derivations.
An example is given which shows their suitability for the calculation of
different types of convolutions, along with an analysis of their arithmetic
complexities for radix-2 and split radix algorithms. This in turn shows that
these new transforms are suitable for fast error free calculation of convo-
lutions/correlations for signal processing and other applications.

Index Terms—New Mersenne number transform (NMNT), number theo-
retic transforms (NTTs), odd new Mersenne number transform (ONMNT),
odd-squared new Mersenne number transform �� �����.

I. INTRODUCTION

The use of number theoretic transforms (NTTs) have been firmly
established within the field of signal processing [1]. This is owing to
their contributing ability to perform error-free calculations over a field
or a ring of integers whilst maintaining the Cyclic Convolution Prop-
erty (CCP). In contrast to other methods of calculation, such as the
fast Fourier transform (FFT) which involves complex arithmetic with
rounding and/or truncation errors in its calculations; errors also arise
in the multiplication with cosine and sine functions which are irra-
tional, preventing exact representation in a finite precision machine
[2]. Additionally, the use of NTTs have been proven to provide such
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error-free calculations by incorporating a significantly lesser-degree of
complexity than the aforementioned methods, especially when using
specific NTTs which provide a simple residue reduction based upon
a modulus power of two. The Fermat number transform (FNT) [3]
and Mersenne number transform (MNT) [4] being notable candidates
which utilize a modulus that satisfies this criteria in particular, due to
using moduli of �� � �� � � and �� � �� � � respectively. How-
ever, while the FNT has been extensively studied and is a worthwhile
candidate for the processing of error-free calculations through the use
of a simplified kernel � � � or � �

�
�, it has the inconvenience of

requiring an odd number of bits. Similarly, while the MNT also has a
simplified kernel �� � ���, it has the distinct disadvantage that the
size � is very tightly bound to the size of �, being of either � � � or
� � ��. This transform length is too short and is also not a power of
two and as such, the Cooley–Tukey fast algorithm method cannot be
used for the MNT.

Since its introduction [5], the new Mersenne number trans-
form (NMNT) has proved to be a more flexible alternative over both
the FNT and MNT techniques, offering both long transform lengths
(powers of two) and flexibility due to the variable size� � �� having
a range � � �� �� � � � � �.

While the NMNT in its present form currently has many applica-
tions in digital filtering [6], image processing [7] and encryption [8],
it has so far had the restriction that there has only been a single type
of NMNT, unlike other transforms [9]–[12]. Therefore, the aim of this
correspondence is to introduce two new transforms named odd-NMNT
(ONMNT) and odd-squared NMNT ���	
	��, which can be used
for efficient calculation of error free convolutions/correlations for
signal and image processing applications.

II. FORMAL DEFINITION OF NMNT TYPES

This section introduces two new Mersenne number transforms,
namely the odd and odd-squared NMNTs, the calculation of their
transform parameters, the proof of the forward/inverse transforms and
the skew-cyclic convolution property (SCC).

A. NMNT and Preliminary

For the sake of clarity, the original NMNT transform is briefly de-
scribed here. The NMNT ��	� of an integer sequence 
��� of trans-
form length � � �� for � � �� �� � � � � � is defined as [5]

��	� �

���

���


��� ���	�

��

	 ��� �� � � � � � � � (1)

where ���� denotes modulo ��, �� � ��� � is a Mersenne prime
for � � �� � �� �� �� ��� ��� � � � � etc and the transform kernel � is
given by

���� ������ � �����

����� � ������ � ����
��
��

����� � ������ � ����
��
��

(2)

where

�� � � ����
��

�

�� � � ����
��

��� � � ���� (3)

Re(.) and Im(.) denote real and imaginary parts of the enclosed terms
respectively. For transform lengths equal to �

�
, �� and �� can be

calculated as

����� � �� ��� � ����
�

�

��

����� � �� ��� � ����
�

�

��
(4)

where � � � �
�

� is an integer power of two and the term ���� ����
is of order ����. The inverse NMNT is defined as


��� � �
��

���

	��

��	� ���	�

��

� ��� �� � � � � � � � (5)

From (5), it is clear that the NMNT has the same inverse and except
for the scale factor ���, there is no need to distinguish between the
forward and inverse transforms.

B. Odd New Mersenne Number Transform

The forward odd NMNT (ONMNT) of an integer sequence 
��� for
transform length � � �� for � � �� �� � � � � �� � is defined as

�
�	� �

���

���


��� �
���	 � ��

�
��

	 � �� �� � � � � � � � (6)

Let ��	 � �
���	���

�
for � � �� 	 � � � � be the elements of

the ONMNT matrix. According to (6),� can be written as


 �
���� ���� ���� ���� ��� ����

�� � �� � �� � �� � ��� �� �

���� ���� ��	� ��
� ��� �������

�� � �� � �� � �� � ��� �

...
...

...
...

. . .
...
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(7)

For matrix � to be orthogonal, its transpose should be equal to its
inverse. In order to achieve this, the inverse ONMNT matrix is obtained
by multiplying the transpose of� by a scale factor ���. Therefore,
the inverse ONMNT is defined as


��� � �
��

���

	��

�
�	� �
���	 � ��

�
��

� � �� �� � � � � � � � (8)

The proof that (8) is the inverse of (6) can be obtained by assuming that
�
��� is the inverse ONMNT of�
�	�. Therefore, we need to prove that
�
��� is equal to 
��� as follows:
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(9)
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Using the orthogonality property of the ���� function which was proved
in [5], the second summation of (9) can be written as

���

���

�
���� � ��

�
�

���� � ��

�
��

�
� if � � �

� otherwise.

(10)

Substituting (10) into (9), we get

����� � �
��

���

���

����
� if � � �

� otherwise
��

� ����� (11)

Therefore, (6) and (8) form a transform pair.

C. Odd-Squared New Mersenne Number Transform 	�
�
�

The forward 	�
�
� and its inverse of an integer sequence ����
and transform length � � �� where � � �� ��    � 	 � � is defined
as


� ��� �

���

���

���� �
���� ������ ��

�
��

� � �� ��    � � � �� (12)

and

����� �
��

���

���


� ��� �
���� ������ ��

�
��

� � �� ��    � � � �� (13)

The proof that (12) and (13) form a transform pair can be shown by
following the same procedure shown in (9)–(11). Also, it should be
noted that the forward and inverse 	�
�
�� are exactly the same
except from the scale factor ���.

D. Calculation of the Transform Parameters

As shown from the definition of the ONMNT and 	�
�
�, it is
required to calculate the half and quarter index values of the transform
parameters (i.e., ����� � and ���

�
�
� for the ONMNT and ���

�
�
� and

���
�

�
� for the 	�
�
�). These values can be calculated from the

definitions of �� and �� given in (4) as follows:
i) The transform length � of ONMNT is defined by � � ��,

therefore the value of � for maximum transform length ����� �

����� is equal to � � �

�
� �. Therefore, the ONMNT

parameters �� �
�

and �� �
�

for ���� can be calculated as

��
�

�
� �� ��� � ���

� �

��

��
�

�
� �� ��� � ���

� �

��
� (14)

ii) Similarly, the transform length � of 	�
�
� is defined by
� � ��, � � � � 	� � and therefore, the value of � for the
maximum transform length ����� � ����� for the 	�
�
�

transform is equal to � � �

�
� �. Likewise, for a given 	

and � , the values of 	�
�
� parameters �� �

�
and �� �

�

have the same values of the ONMNT parameters �� �

�
and

��
�

�
at length �� .

III. FAST ALGORITHMS FOR GNMNTS

Since the transform lengths of the GNMNTs are powers of two, it
is possible to develop fast algorithms such as the radix-2, radix-4 and

split-radix, where the decimation can be done either in time (DIT) or
in frequency (DIF).

A. Radix-2 DIT Algorithm for the ONMNT

Dividing the input sequence into its odd and even parts, (6) can be
decomposed to
��� � 
�����
����, where
���� and
���� are
given by:


���� �

��

���

����� ������ ����

��

� 
����� (15)

and


���� �

��

���

����� �� �
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�
���� ��

��

� (16)

Using the following NMNT identity that was proved in [5]:

���� �� � ��������� � ����������� (17)

The ���� term in (16) can be simplified as

�
�� � �
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���� �� � ��

�� � �

�

� ����� �� �����
�� � �
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� (18)

Therefore, (16) can be written as
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�� � �

�

��

���

������� � ����� � ����

��

� (19)

Substituting (15) and (19) into, we obtain the recursive formula for the
radix-2 ONMNT:


��� � 
����� � ��
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�

��	����

���
�� � �

�

��	��� � � � ��

��

(20)

where 
����� and 
��	���� can be identified as the �

�
-point ON-

MNTs of the even and odd parts of ����, respectively. Another point
of the DIT decomposition 
 � � �

�
can be computed as follows:


 � �
�

�
� 
������ ��

�� � �

�

��	����

���
�� � �

�

��	��� � � � ��

��

� (21)

Combining the four points together, produces an in-place radix-2
ONMNT butterfly as shown in Fig. 1.

B. Split-Radix Algorithm for the ONMNT

The split-radix algorithm is one of the most efficient algorithms
for computing fast transforms. It applies radix-2 decomposition to
the even samples and radix-4 decomposition to the odd samples.
Therefore 
���� can be divided into even-indexed samples 

�

� ���
and odd-indexed samples 
�

� ���, each of length �

�
given by


���� � 


�
� ��� �


�
� ���

��
(22)
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Fig. 1. An in-place butterfly of the radix-2 ONMNT DIT algorithm; where
solid and dotted lines stand for addition and subtraction, respectively.

where ���
� ��� is as given by (15), and it is equal to ������, while

���
� ��� can be developed by applying radix-4 algorithm to the odd-

indexed samples as follows:
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�(23)

Applying the NMNT identity given in (17), ���
� ��� can be further de-

composed as
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Equation (24) can be written as
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� ���
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������
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where �	�
���� and �	�
���� are two ONMNTs of length �

	
, de-

fined as
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���� �
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��

(26)
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� (27)

Substituting (15) and (25) into (22), ����� can be written as

�����

� ������ � �	�
������
�� � �

�
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�
�
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� (28)

Using the NMNT identities [5], other DIT decompositions can be de-
rived, as follows:
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Combining the eight points together produces an in-place split-radix
ONMNT butterfly as shown in Fig. 2.

C. Fast Algorithms for the 	�
�
�

Converting the 	�
�
� to ONMNT by multiplying both sides of
the 	�
�
� given in (12) by ���
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�
	

, we obtain
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Fig. 2. An in-place butterfly of the split-radix ONMNT DIT algorithm; where
� solid and dotted lines stand for addition and subtraction, respec-

tively.

From (17), we can obtain the following relation:

���� �� � ���� �� � ����������� (33)

Substituting (33) into (32) with � � ������
�

and � � ������������
�

,
then for � � � � �������

�
and � � � � �����������

�
, we get
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Using (17) and rearranging, (34) can be written as
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The right-hand side of (35) is exactly an ONMNT of length 	 .
Since the sequence ���� is anti-periodic, then ����� � ���	���

and as such, (35) can be written as

�� ��� � 
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���

���

����� � ���� ��	 �
���� ���

�
��

(36)

where


��
�� � �

�
� ���

�� � �

�

��

(37)

and ��	�� denotes the multiplicative inverse of the enclosed term.

Fig. 3. Fast Algorithm for the� ���� based on the ONMNT.

Therefore, a length	 ���� is reduced to a length	 ONMNT
with just 	 pre-additions and 	 post-multiplications. The signal flow
graph for this algorithm according to (36) is shown in Fig. 3.

D. Arithmetic Complexity

In general, a radix-2 ONMNT algorithm requires ����	 stages,
where each stage involves �

�
butterflies and each butterfly calculates

four points together involving 4 multiplications and 6 additions. There-
fore, the calculation of the whole transform satisfies the following equa-
tions:


��	� � �
�

	

�
�	

���	� � ���
	

�
�

�	

�
(38)

where 
��	� and ���	� denotes the total number of integer mul-
tiplications and additions required to calculate length 	 ONMNT re-
spectively. The initial values are taken for a four point ONMNT are

���� � � and ����� � �.

The split-radix ONMNT algorithm also requires ����	 stages,
where each stage involves �

	
butterflies and each butterfly calculates

eight points together involving 8 multiplications and 16 additions.
Therefore, the calculation of the whole transform satisfies the fol-
lowing equations:


��	� �
�

	

�
� �
�

	

�
�	

���	� ���
	

�
� ���

	

�
� �	� (39)

For the ���� algorithm described in Section III-C, the number
of integer multiplications 
� �	� and additions �� �	�, can be cal-
culated by adding 	 multiplications and 	 additions to those of the
ONMNT:


� �	� �
��	� �	

�� �	� ����	� �	� (40)

Analysis of the radix-2 and split-radix arithmetic complexities over dif-
ferent transform lengths for the ONMNT and ���� algorithms is
shown in Tables I and II respectively.
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TABLE I
OPERATION COUNTS FOR RADIX-2 AND SPLIT-RADIX ONMNT ALGORITHMS

TABLE II
OPERATION COUNTS FOR RADIX-2 AND SPLIT-RADIX

� ���� ALGORITHMS

IV. SKEW-CYCLIC CONVOLUTION PROPERTY FOR GNMNTS

The skew-cyclic convolution (SCC) ���� of two sequences ���� and
���� for � � �� �� � � � � � � � is defined as

�����

�

���

�������� ���

���

�����

������� � �� ��� (41)

SCC is an efficient tool for fast computation of the cyclic (CC) and
linear convolutions [13]. Also, the SCC is used for computing discrete
cosine transforms (DCTs) [14], [15]. Therefore, the SCC can be com-
puted by mapping it to CC [16] (and vice versa), which can then be
computed by fast CC algorithms. Furthermore, we can calculate the
linear convolution using both SCC and CC. For example, let ������
and ������� be the output of the cyclic and skew cyclic convolutions,
respectively, for � � �� �� � � � � � � � and let ��	� � ������ �����	
be the output of the linear convolution for	 � �� �� � � � � 
���. Then
��	� can be computed from ������ and ������� as follows:

����� �
�



������� � �	�����	

����� �
�



������� � �	�����	 � (42)

A significant advantage of this method is that the linear convolution can
be calculated by combining two types of circular convolutions (SCC

Fig. 4. Fast SCC using the ONMNT.

and CC) each of length � instead of the traditional method based on
padding with zeros, which requires 
� point transforms.

For error-free calculations, the SCC can be efficiently computed ei-
ther by ONMNT or �����.

A. SCC Property for the ONMNT

Let 
����, �����, and ���� be the ONMNT of ����, ���� and
���� respectively. The relationship between these sequences can be
written as:


���� ������ �� ����

�������

�
� ��� ����� � � � ���

�
� ��� (43)

where � is point-by-point multiplication, 
�
� ��� and �

� ���, stand
for even and odd parts of ���� respectively and are given by



�
� ��� �

����� ���� � � � ���



��


�
� ��� �

��������� � � � ���



��

� (44)

The process for calculating the SCC using the ONMNT is shown in
Fig. 4, where the operator

�
is as defined by (43).

It is necessary that the modulus �� must be chosen so that the con-
volution result does not exceed ��. One suggested upper bound is
given by [3], [5]

������ � ������
��	

���

���

������ �
��



� (45)

The proof of the SCC property for the ONMNT as given by (43), is
carried out by assuming that the sequences ���� and ���� are anti-
periodic [17] and ���� is the skew-cyclic convolution. Therefore, (41)
can be written as

���� �

���

���

���� ���� ��� (46)

The ONMNT of (46) is


���� �

���

���

���� �
��
� � ��



��

�

���

���

���

���

���� �������
��
����



��

� (47)

Changing the variable 	 � � � � in (47), we get


���� �

�����

����

���

���

���� ��	� �
�	� ���
�� ��



��

�

(48)
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Applying (17), we get

����� �

�����

����

�����
���� � ��

�

���

���

����

� ��
����� ��

�

�

�����
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����� �
����� ��

�

�
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���� ��
����� ��

�
��

� (49)

Equation (49) can be written as:

����� � 	����

���

���

���� ��
����� ��

�

�	��
 � � � ��

���

���

������
����� ��

�
��

� (50)

Using the fact that ����� � ������ �����, we obtain the following
relations:

����� �
�

�
����� � ������

����� �
�

�
������ ������ � (51)

Substituting (51) into (50), we get
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�
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	����
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�
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���
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 � � � ��
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���� � �
��� � ���

�
��

� (52)

From the definition of the ONMNT given in (6), we have

����� �

���

���

���� ��
���� ���

�
�

��

���
 � � � �� �

���

���

���� � �
���� ���

�
��

� (53)

Substituting (53) into (52) yields

����� �
�

�
�	���� ������ ����
 � � � ���

� 	��
 � � � �� ����������
 � � � ����
��

� (54)

Fig. 5. Fast SCC using the� ���� based on (56).

Fig. 6. Fast SCC using the� ���� based on (57).

Using the definition of ���

� ��� and ���

� ��� given in (44), we get the
proof of the SCC property for the ONMNT given in (43), as follows:

����� � 	����
�

�
������ ����
 � � � ���

�	��
�����
�

�
����������
������

��

�	������
��

� ��� �	��
 � � � ����
��

� ��� (55)

B. SCC Property for the 	�
�
�

Let �� ���, 	� ��� and �� ��� be the 	�
�
� of ���, ����
and ���� respectively. In this case, the relationship between these se-
quences becomes

�� ��� �	���� � �� ���

�	��
 � � � ����
��

� ��� �	������
��

� ���� (56)

or

�� ��� �	� ��� 	 �����

�	� �����
��

� ����	� �
 � � � ����
��

� ��� (57)

where ���

� ��� and ���

� ��� in (56) stand for even and odd parts of
�� ���, respectively, and are given by

�
��

� ��� �
��� ��� ��� �
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�
��

�
��

� ��� �
��� ������ �
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�
��

(58)

and ���

� ��� and ���

� ��� in (57) are as given by (44).
The proof of the SCC property for the 	�
�
� can be derived

following the same procedure shown in (47)–(55) for the case of the
ONMNT.

Figs. 5 and 6 show the process for calculating the SCC using the
	�
�
�, where the operators

�
and

	
are as defined by (56)

and (57), respectively.
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V. EXAMPLE OF THE CALCULATION OF CONVOLUTIONS

USING THE ONMNT

To prove the validity of the new transforms, including their skew
cyclic convolution property and the developed algorithms, an example
is given in this section. For the sake of demonstration and without
loss of generality, it is required to use the ONMNT to calculate the
cyclic convolutions (SCC and CC) and the linear convolution for the
following two 16-point integer sequences generated randomly:

���� � ������������	������
�����������������

and

���� � ���������	�
���������������������������

Choosing �� � ���� �, from (3), the initial values of �� and �� can
be calculated as �� � ��� ��� � ��� and �� � ���� ��� � ���
are used in order to obtain the new values for the transform length	 �
� using (14).

Since 
 � 	��, applying (14), we get

�� �
�

�
������� � ����������� � �����

and

�� �
�

�
������� � ����������� � ���

Using these parameters, ���� and ���� are transformed into the
ONMNT domain, producing the following sequences:

��� �
��	������������
�����
��	���
�
���
�

��	����	���	��
��������������
	

and
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�
������	�
����	��

���	����������	�	��	����	�����������
�

First, the skew-cyclic convolution of ���� and ���� can be calculated
using the skew convolution property of the ONMNT as described in
Section IV. The skew convolution output will be

������� �
���� ����� 	�	�� 	��� 		
�� 	��� ��
�

����� ����� ���������
	�	
���		���

�

Second, the cyclic convolution of ���� and ���� can be calculated ei-
ther by using the convolution property of the NMNT [5] or by con-
verting the SCC to CC as described in [16], producing

������ �
�����	�������������������������

�	��������
��	��		�����������

�

Finally, the linear convolution of the sequences ���� and ���� is cal-
culated from ������� and ������ as given in (42), hence the desired
convolution result is given as

���� �

�
��	�����
�������		������
���	
��	����������

	�	������
���
��	������	����������

	�
��
��	�	�������	����������

�

Therefore, it is clear that a �	�� point linear convolution is calculated
by circularly convolving two 	 length sequences, using an ONMNT
of length 	 .

VI. CONCLUSION

This paper has presented two new NTTs using the Mersenne num-
bers where arithmetic operations and residue reduction are known to be
simpler than other moduli (equivalent to 1’s complement). These new

types of generalized NMNT are named odd and odd-squared NMNTs
that can be added to the NTT family. These transforms have the skew
cyclic convolution property, long transform lengths powers of two, and
are amenable to fast algorithms. Hence, they are suitable for fast cal-
culation of error-free convolutions/correlations for signal and image
processing applications. Furthermore, the presented transforms can be
used to calculate the original NMNT with reduced arithmetic com-
plexity. Future work will focus on the applications of the GNMNTs
beyond the calculation of convolutions, the development of other fast
algorithms, implementation of new encryption systems, and extending
the development to multidimensional GNMNTs for image and three-
dimensional applications.
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