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ABSTRACT 

This paper introduces a novel method of spectrum sensing in communication systems that utilizes 

nonuniform sampling in conjunction with a suitable spectral analysis tool. It is referred to here as 

spectral analysis for randomized sampling (SARS). Owing to the deployment of nonuniform 

sampling, the proposed technique can accomplish the sensing task by using sampling rates well below 

the ones demanded by uniform-sampling-based digital signal processing (DSP). The effect of the 

cyclostationary nature of the incoming digital communication signal on the adequacy of the adopted 

periodogram-type estimator for the spectrum sensing operation is addressed. The statistical 

characteristics of the estimator are presented. General reliability conditions on the length of the 

required signal observation window, i.e. sensing time, for a chosen sampling rate or vice versa are 

provided amid a sought system performance. The impact of the presence of noise and processing 

transmissions with various power levels on the derived dependability recommendations is given. The 

analytical results are illustrated by numerical examples. This paper establishes a new framework for 

efficient spectrum sensing where considerable savings on the sampling rate and number of processed 

samples can be attained.    
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I. INTRODUCTION 

Spectrum sensing entails scanning parts of the radio spectrum in search for a meaningful activity, such 

as a transmission or the occurrence of an event. Its techniques have lately received notable attention due 

to their crucial role in the emerging cognitive radio (CR) technology, i.e. by unveiling spectral holes for 

opportunistic spectrum access. Several reviews on the topic exist, e.g. [1-4]. This adds to the plethora of 

spectrum sensing application areas such as surveillance/interception [5], astronomy [6, 7] and seismology 

[8]. Sensing methods that rely on nonparametric spectral analysis/estimation are regarded as efficient and 

adequate candidates for  monitoring a wide frequency range consisting of a number of predefined 

nonoverlapping spectral subbands, without a priori knowledge of the signal’s characteristics [1-3]. Such 

methods have clear advantages over single-band oriented ones, for instance those based on matched 

filtering or feature detecting that require the separation of the individual transmissions typically by tunable 

bandpass filtering [3]. In this paper, a multiband spectrum sensing technique that uses a periodogram-type 

spectral analysis tool to estimate the spectrum of the incoming signal from a finite set of its samples is 

adopted. This means has retained its popularity in several spectrum sensing studies, e.g. [9-12].   

When uniform-sampling-based DSP is deployed, the sampling rate of the sensing device should 

exceed at least twice the total bandwidth of the monitored frequency range regardless of the spectrum 

occupancy [13]. Failing to do so results in aliasing and irresolvable detection problems. In the event of 

examining wide bandwidths such a constraint can pose a challenge to the system designer where a high 

sampling rate, high speed signal processing and treating large quantities of data are required [2, 3]. Here, 

we demonstrate that we can detect the active spectral subbands by the suitable use of arbitrarily low rate 

nonuniform sampling and appropriate processing of the signal – a methodology referred to as digital 

alias-free signal processing (DASP). A few monographs, e.g. [14, 15], give an overview on the topic. 

Operating at low sampling rates can exploit the sensing device resources (such as power) more efficiently 

and/or avoid the possible need for a high-cost fast hardware. The main focus of this paper is to explore the 

possibility and benefits of employing the DASP methodology to conduct reliable detection in wideband 

communication systems.    
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A. Related Work 

Lomb-Scargle periodogram [6, 7] is one of the oldest and most popular tools for spectral analysis of 

nonuniformly sampled data. Nevertheless, new techniques keep unfolding such as [16] and a review is 

given in [17]. Whilst the aforementioned methods deal with arbitrary nonuniform sampling, the approach 

proposed here relies on the ability of the user to prescribe the positions of the sampling instants, i.e. 

randomized sampling and hence SARS. Spectral analysis of randomized sampling schemes for 

deterministic signals was studied in [18-20]. In this paper, the processed signal is assumed to be a random 

cyclostationary/nonstationary process. The earliest papers on DASP, e.g. [21, 22], tackled SARS with the 

aim of estimating the signal’s power spectral density (PSD) of wide sense stationary (WSS) signals; 

however the predicament of the estimators’ accuracies for a finite number of samples was not resolved. 

This issue was partially addressed by Masry in [23] where asymptotic accuracy measures were given, i.e. 

when the number of samples and signal observation window tended to infinity. In this study, the 

characteristics and spectrum sensing capabilities of a spectral analysis method that uses a finite set of 

samples captured at low rate are investigated. The emphasis of the paper is therefore on reliable spectrum 

sensing rather than on estimating the exact PSD of the processed signal. 

In [24], we investigated spectrum sensing of WSS signals using SARS where transmissions over the 

system subbands are presumed to be of equal power levels. Here, digital communication signals, which 

are modeled as cyclostationary processes, are analyzed and the scenario where the conveyed 

transmissions are of different power levels, e.g. due to the propagation channel gain, is considered. The 

reliability of detection is expressed in terms of the widely embraced receiver operating characteristics 

(ROC) in lieu of a general metric, i.e. Chebychev’s inequality parameter as in [24]. Circumventing the 

nonstationary nature of the communication signals either via phase randomization [25, 26] or assuming 

pseudostationarity within a short signal time window [4, 12] is the common approach adopted in the 

literature. In [27], Gardner exposed the defects of such practices in an attempt to correct any errors 

incurred. In this paper, the effect of the signal’s nonstationarity is acknowledged and its repercussions on 

the conducted spectral analysis are evaluated. Necessary steps are taken to appropriate the employed 
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spectrum estimator to the studied problem, i.e. spectrum sensing and not PSD estimation. This includes 

alias-free sampling, windowing and estimate averaging. 

B.  Contribution 

We introduce a noncooperative multiband spectrum sensing method based on the spectral analysis of 

the incoming signal from a finite set of its nonuniformly distributed noisy samples. Compared to the 

classical uniform-sampling-based DSP, the proposed approach can offer substantial savings on the 

sampling rates and number of processed samples. Within this framework, we present the statistical 

characteristics of a periodogram-type estimator that uses the total random sampling (TRS) scheme. The 

impact of the cyclostationary/nonstationary nature of the processed signal on SARS is studied. A spectral 

fragment within each transmission band, referred to as the “guarded region” where the estimator serves as 

a suitable sensing tool independent of the position of the time analysis window, is identified. 

Additionally, a phenomenon exhibited by abrupt increases in the estimator’s standard deviation at certain 

frequency points for some modulation schemes is unveiled.  

The sensing reliability is defined in terms of the probability of detection and false alarm for each of the 

monitored subbands. It is demonstrated that these probabilities are closely related to the average sampling 

rate, sensing time, spectrum utilization, relative powers of active subbands and signal to noise ratio. We 

provide a lower limit on the first two parameters from the latter list such that the reliability of spectrum 

sensing is guaranteed; it represents a means to assess the trade-off between the required sampling rate and 

the sensing time. The advantages of the introduced technique over the conventional uniform sampling 

ones are discussed. 

The paper is organised as follows. In Section II, the detection problem is formulated, the undertaken 

approach is detailed and the handled class of communication signals is outlined. The statistical 

characteristics of the deployed estimator are examined and ways to restrain its possible inaccuracies are 

highlighted in Section III. In Section IV, reliability recommendations are developed and the benefits of 

the employed detector over uniform-sampling-based ones are exposed. Numerical examples are shown in 

Section V to illustrate the proposed method. Finally, conclusions are drawn in Section VI. 
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II. WIDEBAND SPECTRUM SENSING 

A. Problem Formulation and Sensing Technique 

Consider a communication system operating over L  narrow nonoverlapping spectral subbands, each 

of them is of width CB . The total single-sided bandwidth that needs to be monitored by the system is 

CB LB= . The positions of all the subbands are known. The maximum number of simultaneously active 

subbands at any particular point in time is AL L≤ , i.e. the joint bandwidth of the active subbands never 

exceeds A A CB L B= . The incoming multiband signal consists of an unknown number of concurrently 

active subbands denoted by M  where AM L≤  and is given by  

,
1 1

( ) ( ) ( ) ( )
M M

m T m m
m m

x t x t x t h t
= =

= = ∗∑ ∑ .           (1) 

 The symbol ‘∗ ’ represents the convolution operation whereas , ( )T mx t  and  ( )mh t  are the transmitted 

signal over the -thm  active subband and the impulse response of its propagation channel respectively. 

The captured samples of ( )x t  are contaminated with additive white Gaussian noise (AWGN) with 

variance 2
nσ  and are defined by ( ) ( ) ( )n n ny t x t n t= + . Our objective is to devise a method that is capable of 

scanning the overseen bandwidth B  and identifying the active subbands. The algorithm should operate at 

sampling rates significantly lower than 2B  which is the minimum rate (not always achievable) that could 

be used when uniform sampling is deployed [13]. 

Unlike methods that employ spectral analysis to estimate the subbands energy/power, e.g. classical 

energy detectors [9-11], the sensing procedure for each spectral subband comprises two steps:                   

1) estimating the magnitude of the signal spectrum at selected frequency point(s) and 2) comparing the 

magnitude(s) with pre-calculated threshold(s). Having a spectrograph that is relatively smooth would 

permit assessing fewer frequency points per system subband to determine its status. Here, we seek to 

inspect one frequency point per subband, i.e. L  spectral points are calculated. The tackled sensing 

problem can be formulated as a conventional detection problem described by the following binary 

hypothesis testing 
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where ˆ ( )eX f  is the estimated magnitude spectrum and kγ  is the threshold. Whereas, 0,kH  hypothesis 

signifies the absence of an activity in -thk  subband and 1,kH  depicts the presence of an activity. The 

frequency points { } 1

L
k k

f
=

 are placed at the center of the subbands as shown in Section III. We emphasize 

that SARS aims at estimating a detectable frequency representation of the received signal and not its PSD. 

The latter is defined as the Fourier transform (FT) of the signal’s autocorrelation function [25]. 

B.  Signal Model  

Let , ( )T kx t  be the continuous-time signal transmitted over one of the system active subbands by a 

communication source that deploys a linear digital modulation scheme. It can be expressed by: 

, , ,( ) ( ) ( )T k i k q kx t x t x t= +  where , ,( ) ( )cos(2 )i k k C kx t i t πf t=  and , ,( ) ( )cos(2 0.5 )q k k C kx t q t πf t π= + . The in-phase 

( )ki t  and quadrature ( )kq t  components are baseband signals given by: , , ,( ) ( )k n k i k S kn
i t a p t nT+∞

=−∞
= +∑  and  

, , ,( ) ( )k n k q k S kn
q t b p t nT+∞

=−∞
= +∑  respectively where ,C kf  is the carrier frequency of the -thk  active subband 

and , ,1/S k S kf T=  is its baud rate. The coefficients { },n k n
a

∈]
 and { },n k n

b
∈]

 are the transmitted symbols; they 

are zero mean independent identically distributed (IID) random variables with variances of 2
,a kσ  and 2

,b kσ . 

The impulse response of the baseband shaping filters in the in-phase and quadrature branches are , ( )i kp t  

and , ( )q kp t  respectively. Hence the incoming signal can be modeled as 

             , , , ,( ) ( , ) ( , )k n k i k n k q k
n n

x t a s t n b s t n
+∞ +∞

=−∞ =−∞

= +∑ ∑                                   (3) 

where  , , , ,( , ) ( )cos(2 ) ( )i k i k S k C k ks t n p t nT πf t h t⎡ ⎤= + ∗⎣ ⎦  and , , , ,( , ) ( )cos(2 0.5 ) ( )q k q k S k C k ks t n p t nT πf t π h t⎡ ⎤= + + ∗⎣ ⎦ .  

It is in the interest of the forthcoming analysis to find certain first and second order moments of the 

processed signal. It can be easily checked that [ ]( ) 0kE x t = . Since ,n ka  and ,n kb  are independent, it is clear 

that , 1 , 2( ) ( ) 0i k q kE x t x t⎡ ⎤ =⎣ ⎦ . As a result, the autocorrelation function of (3) is 
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         2 2
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R t t τ σ s t n s t τ n σ s t n s t τ n
+∞ +∞

=−∞ =−∞

+ = + + +∑ ∑            (4) 

whereas ,1
( , ) ( , )M

X X mm
R t t τ R t t τ

=
+ = +∑  is for the M  independent simultaneously active transmissions. 

Noting that (4) is time-varying, such processes are commonly regarded as wide sense cyclostationary 

including the cases when the symbol period is not an integer multiple of the carrier period [27].  

III. STATISTICAL CHARACTERISTICS OF SARS  

The adopted total random sampling is an alias-free sampling scheme whose behavior was investigated 

in [18, 19]. Its sampling instants { }nt  are IID random variables with a probability distribution function 

(PDF) ( )p t . Here, we consider 0( ) 1/p t T=  for rt∈T  and zero elsewhere such that [ ]0,r r r T= +T t t  is the 

time analysis window. The deployed  estimator  of a  detectable frequency  representation of the incoming  

signal is given by  

     
2

20

1

( , ) ( ) ( )
( 1)

n

N
j πft

e r n n
n

TNX f y t w t e
N μ N

−

=

=
− ∑t                       (5) 

where { } 1

N
n n

t
=

 are the TRS sampling instants chosen inside rT , ( )w t  is the windowing function, N  is the 

number of the collected noisy signal samples { } 1
( ) N

n n
y t

=
 and 0 2 ( )r

r

T
μ w t dt

+
= ∫

t

t
. Typically, a K  number of 

( , )e rX ft  estimates are averaged to improve its performance, i.e. 1

0
( , ) /K

e rr
X f K−

=∑ t . This evokes shifting 

rT  and the aligning of ( )w t . We show in the following parts of the paper that ( , )e rX ft  is capable of 

delivering reliable spectrum sensing routine provided adequate set-up conditions. This involves selecting 

0T , the average sampling rate 0/α N T=  and K . 

A. Evaluation of the Estimator’s Adequacy  

In order to determine the appropriateness of (5) to the detection purpose, the expected value of the 

estimator is scrutinised. Since { } 1

N
n n

t
=

 in (5) are IID random variables, we can write 

          
{

}

2
2 20

2 2
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T
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μ
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t
        (6) 
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and then

                   0 22 2 2 1( , ) ( ) ( ) ( ) ( , )
( 1)

r

r

T

e r n W r
NE X f x t x t w t dt X f

N
μσ

μα μ
+⎡ ⎤⎡ ⎤ = + +⎣ ⎦ ⎢ ⎥⎣ ⎦− ∫

t

t
t t          (7) 

noting that the signal and AWGN are independent as well as 0( ) ( ) ( ) ( ) ( )
r

n nE x t w t x t x t w t dt T⎡ ⎤ =⎣ ⎦ ∫T .  

Equation (7) emerges as 

[ ]
2

2( ) 1( , ) ( , ) ( , )
( 1)

S r n
r e r W r

N P
C f E X f E X f

N

σ

α μ

⎡ ⎤+⎣ ⎦ ⎡ ⎤= = + ⎣ ⎦−

t
t t t .              (8) 

The signal’s weighted power within rT  is 

       
0

2 21( ) ( ) ( )
r

r

T

S rP E x t w t dt
μ

+

⎡ ⎤= ⎣ ⎦∫
t

t

t                                   (9) 

and 0 2( , ) ( ) ( )r

r

T j πft
W rX f x t w t e dt

+ −= ∫
t

t
t  is the windowed Fourier transform of signal ( )x t  in (1).  

It can be noticed from (8) that ( , )rC ft  consists of a constant frequency-independent component and 

the expected value of a continuous-time periodogram, i.e. 2( , )W rE X f μ⎡ ⎤
⎣ ⎦t . The former is commonly 

referred to as smeared-aliasing and is owed to utilizing nonuniform sampling [14]. It is a white-noise-like 

component existing at all frequencies that would not overshadow any distinctive features of 

2( , )W rE X f μ⎡ ⎤
⎣ ⎦t  related to an active transmission. Below, we show that 2( , )W rE X f⎡ ⎤

⎣ ⎦t  serves as a 

detectable spectral component for the M  active subbands and is independent of rt  at certain frequencies. 

First, we can write   

         2 2
,

1
( , ) ( ) ( , ) ( )

M
j πfτ

W r X m
m

E X f w t R t t τ w t τ e dτdt
+∞ +∞

−

= −∞ −∞

⎡ ⎤ = + +⎣ ⎦ ∑ ∫ ∫t .          (10) 

Define: 2( ) ( ) j ft
m mH f h t e dtπ+∞ −

−∞
= ∫ , 2

, ,( ) ( ) j ft
i m i mP f p t e dtπ+∞ −

−∞
= ∫  and 2

, ,( ) ( ) j ft
q m q mP f p t e dtπ+∞ −

−∞
= ∫ . For the 

simplicity of the notation let: , , ,( ) ( ) ( )i m m C m i mP f H f f P f= +
�

 and  , , ,( ) ( ) ( )i m m C m i mP f H f f P f= −
�

 whereas 

, , ,( ) ( ) ( )q m m C m q mP f H f f P f= +
�

 and , , ,( ) ( ) ( )q m m C m q mP f H f f P f= −
�

. The FT of , ( , )X mR t t τ+  with respect to 

the time difference τ  in (10) can be shown to reduce to  
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n
f

+∞

=−∞
∑

(11)      

noting the bandpass nature of the propagation channel response over the -thm  active subband and 

assuming ,C m Cf B>>  ( *X  denotes the conjugate of a complex variable X ); (10) can be restated as 

{ }2 2
,

1
( , ) ( ) ( , ), ( )

M
j ft

W r X m
m

E X f w t R t t W f e dtπτ τ
+∞

= −∞

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ℑ + ∗ ⎣ ⎦⎣ ⎦⎣ ⎦ ∑ ∫t              (12) 

where 0 2( ) ( )r

r

T j πftW f w t e dt
+ −= ∫

t

t
. Substituting (11) into (12) leads to  

       2 2 2
, , , , , ,

1

( , ) 0.25 ( , ) ( , )
M
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m

E X f σ f F f σ f F f
=

⎡ ⎤ = +⎣ ⎦ ∑t t t          (13) 

where 
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n
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* * *
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n
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=−∞
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� � � �

.  (15) 

However, the baud rate is normally related to the bandwidth ,W mB  of the baseband shaping filters , ( )i mp t  

and , ( )q mp t . It is typically limited by  

                , , ,0.5 W m S m W mB f B< ≤            (16) 

where ,W m CB B≤  [26]. This implies that: , , ,( ) ( ) 0i m i m S mP f P f nf+ =  and  , , ,( ) ( ) 0q m q m S mP f P f nf+ =  if 

{ }1,0,1n∉ − . Employing (14) and (15), (13) simplifies to 
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∑t t

t

� �
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such that , ( , )i m rε ft  and , ( , )q m rε ft  are the components of the summation in (14) and (15) respectively 

when 1n = ± . Hence 2( , )W rE X f⎡ ⎤
⎣ ⎦t  embodies distinctive distinguishable features depicted by the 

tapered squared magnitude of the Fourier transform of the transmission filters shaped by the propagation 
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channel response. According to (14) and (15), , ( , )i m rε ft  and , ( , )q m rε ft  are of zero values at the center of 

the active system subband provided that (16) is satisfied. This affirms that 2( , )W rE X f⎡ ⎤
⎣ ⎦t  at the central 

part of an active transmission subband, referred to thereafter as the guarded region, is independent of the 

position of the time analysis window and poses as the detectable feature in ( , )rC ft .  

Therefore, the adopted estimator is an admissible tool to unveil the presence of an active transmission 

where the examined frequency points { } 1

L
k k

f
=

 in (2) are placed at/near the center of the system subbands, 

i.e. within the identified guarded regions. It is noted that for WSS signals, the used estimator is a suitable 

tool for detection where 2( , )W rE X f⎡ ⎤
⎣ ⎦t  is independent of rt  for all f  [24]. 

B. Estimator’s Accuracy  

The estimator ( , )e rX ft  can be reliably used for spectrum sensing only if the difference 

Λ( , ) ( , ) ( , )r r e rf C f X f= −t t t  is relatively small for a single realization of ( )x t , especially at the 

frequency points { } 1

L
k k

f
=

 in (2). Chebychev’s inequality states that Λ( , )r ft  is directly related to the 

standard deviation of the estimator, i.e. { } 2Pr 1/XX X κσ κ− ≥ ≤  where X  is a random variable, 

[ ]X E X= , 2
Xσ  is the variable’s variance and 0κ > [28] . The variance of ( , )e rX ft , i.e.,  
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22 0

1
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N
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e r n n
n

TNσ f y t w t e
N μ N

−

=

⎧ ⎫⎧ ⎫ ⎪ ⎪= ⎨ ⎬ ⎨ ⎬
−⎩ ⎭ ⎪ ⎪⎩ ⎭

∑t                                   (18) 

should be evaluated in order to ensure the dependability of the SARS method. First,  

2
2 2 2 20

1
( , ) ( ) ( ) ( , ) ( , )n

N
j πft

TRS r n n TRS r TRS r
n

T
X f y t w t e R f I f

N
−

=

= = +∑t t t                       (19) 

such that 

    ( )0

1
( , ) ( ) ( )cos 2 ( , )

N

TRS r n n n r
n

T
R f y t w t πft θ f

N =

= −∑t t                                   (20) 

         ( )0

1
( , ) ( ) ( )sin 2 ( , )

N

TRS r n n n r
n

TI f y t w t πft θ f
N =

= −∑t t .                      (21) 



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 

The phase-shift ( , )rθ ft  is chosen in a way that ( )0 1
( , ) ( ) ( )cos 2 /N

TRS r n n nn
R f T y t w t πft N

=
= ∑t�  and 

( )0 1
( , ) ( ) ( )sin 2 /N

TRS r n n nn
I f T y t w t πft N

=
= ∑t�  are uncorrelated, i.e. ( , ) ( , ) ( , ) 0r TRS r TRS rc f E R f I f⎡ ⎤= =⎣ ⎦t t t� � . 

It does not alter the definition of the estimator in (5) since 
2 2( , )( , ) ( , )rjθ f

TRS r TRS rX f e X f=tt t . Each of 

( , )TRS rR ft  and ( , )TRS rI ft  is the sum of N  independent random variables, thus according to the central 

limit theorem they can be assumed to be approximately normally distributed for large N . In practice, 

moderate values of N  suffice for such an approximation [3]. As a result, 2( , )TRS rX ft  has approximately 

an unnormalised chi-squared distribution with two degrees of freedom [28] and the estimator ( , )e rX ft  

variance is defined by  

          
2

2 4 4( , ) 2 ( , ) ( , )
( 1) TRS TRSe r R r I r

Nσ f σ f σ f
N μ

⎧ ⎫ ⎡ ⎤= +⎨ ⎬ ⎣ ⎦−⎩ ⎭
t t t                   (22) 

where 

                 2 2( , ) 1( , ) ( , )
TRS

C r
R r W r

λ f Nσ f E R f
α N

− ⎡ ⎤= + ⎣ ⎦
tt t                           (23) 

      2 2( , ) 1( , ) ( , )
TRS

S r
I r W r

λ f Nσ f E I f
α N

− ⎡ ⎤= + ⎣ ⎦
tt t                         (24)     

              { } ( )
0

2 2 2 2( , ) ( ) ( )cos 2 ( , )
r

r

T

C r n rλ f E x t σ w t πft θ f dt
+

⎡ ⎤= + −⎣ ⎦∫
t

t

t t             (25) 

                 ( ) ( )
0 0

2
1 2 1 2 1 2 1 2( , ) ( , ) ( ) ( )cos 2 ( , ) cos 2 ( , )

r r

r r

T T

W r X r rE R f R t t w t w t πft θ f πft θ f dt dt
+ +

⎡ ⎤ = − −⎣ ⎦ ∫ ∫
t t

t t

t t t       (26) 

       { } ( )
0

2 2 2 2( , ) ( ) ( )sin 2 ( , )
r

r

T

S r n rλ f E x t σ w t πft θ f dt
+

⎡ ⎤= + −⎣ ⎦∫
t

t

t t         (27) 

       ( ) ( )
0 0

2
1 2 1 2 1 2 1 2( , ) ( , ) ( ) ( )sin 2 ( , ) sin 2 ( , )

r r

r r

T T

W r X r rE I f R t t w t w t πft θ f πft θ f dt dt
+ +

⎡ ⎤ = − −⎣ ⎦ ∫ ∫
t t

t t

t t t .    (28) 

The phase-shift in (20)-(28), whose role is to simplify the estimator’s variance expression, is given by 

                        
2 2( , ) ( , )

( , ) 0.5arccot
2 ( , )

TRS r TRS r
r

r

E R f E I f
θ f

c f

⎛ ⎞⎡ ⎤ ⎡ ⎤−⎣ ⎦ ⎣ ⎦⎜ ⎟=
⎜ ⎟
⎝ ⎠

t t
t

t

� �
                            (29) 
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where 2 ( , )TRS rE R f⎡ ⎤⎣ ⎦t�  and 2 ( , )TRS rE I f⎡ ⎤⎣ ⎦t�  are identical to (23) and (24) respectively such that ( , )rθ ft  is 

discarded from all the terms in (25)-(28). Whereas, 

       [ ]( , ) 1( , ) ( , ) ( , )CS r
r W r W r

λ f Nc f E R f I f
α N

−
= +

tt t t                  (30) 

such that 

                    { }
0

2 2 2( , ) ( ) ( )cos(2 )sin(2 )
r

r

T

CS r nλ f E x t σ w t πft πft dt
+

⎡ ⎤= +⎣ ⎦∫
t

t

t                          (31) 

                          [ ]
0 0

1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( ) ( )cos(2 )sin(2 )
r r

r r

T T

W r W r XE R f I f R t t w t w t πft πft dt dt
+ +

= ∫ ∫
t t

t t

t t .           (32) 

Equations (23)-(32) were derived in a similar manner to that of the WSS signals in [24]. 

The above variance analysis is solely manipulated in establishing reliable spectrum sensing where the 

proposed SARS method only involves calculating ( , )e rX ft . Here, we derive a simplified approximation 

of the variance’s expression in (22)-(32) for the set of assessed frequency points [ ]1 2, ,k Lf f f f∈ …  

according to the detection criterion in (2), i.e. one per monitored subband. From (25), 

                 { } ( ){ }
0

2 2 2( , ) 0.5 ( ) ( ) 1 cos 4 2 ( , )
r

r

T

C r k n k r kλ f E x t σ w t πf t θ f dt
+

⎡ ⎤= + + −⎣ ⎦∫
t

t

t t              (33) 

where the term that includes the sinusoid represents a windowed Cosine transform of the signal's second 

moment plus a constant at frequency point 2 kf  which is a high frequency outside the overseen frequency 

range. This is expected to be of a negligible value in comparison to { }0 2 2 2( ) ( )r

r

T

nE x t σ w t dt
+

⎡ ⎤ +⎣ ⎦∫
t

t
 and 

similar argument applies to ( , )S rλ ft  in (27). Thus 2( , ) ( , ) ( ) / 2C r k S r k S r nλ f λ f μ P σ⎡ ⎤≈ ≈ +⎣ ⎦t t t . Based on the 

fact that 22 2( , ) ( , ) ( , )W r W r W rE R f E I f E X f⎡ ⎤⎡ ⎤ ⎡ ⎤+ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦t t t , we can write 

       { } { } { } { }2 22 22 22 20.5 ( , ) ( , ) ( , ) ( , )W r W r W r W rE X f E R f E I f E X f⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤≤ + ≤⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦t t t t .         (34) 

From (22)-(24) noting (34), the variance can be approximated by                 

( ) 22 2 222
22

2 2

2 1 ( ) ( , )( ) 1( , ) 2 ( , ) ( , )
( 1)

S r n W r kS r n
e r k r k W r k

N P σ E X fP σN Nσ f η f E X f
N α Nαμ Nμ

⎧ ⎫⎡ ⎤⎡ ⎤− +⎡ ⎤+ ⎛ ⎞−⎣ ⎦⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎡ ⎤≈ + +⎨ ⎬⎜ ⎟⎣ ⎦− ⎝ ⎠⎪ ⎪⎩ ⎭

t tt
t t t (35) 
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where 0.5 ( , ) 1r kη f≤ ≤t  since { } { } { }22 2 22 2( , ) ( , ) ( , ) ( , )W r k W r k r k W rE R f E I f η f E X f⎡ ⎤⎡ ⎤ ⎡ ⎤+ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦t t t t , e.g.  

( , ) 0.5r kη f ≈t  if 2 2( , ) ( , )W r k W r kE R f E I f⎡ ⎤ ⎡ ⎤≈⎣ ⎦ ⎣ ⎦t t . Deciding the value of ( , )r kη ft  is important as it forms a 

substantial part of the estimator’s variance. We have: 2
1 2( , ) ( , ) ( , )W r r rE R f ψ f ψ f⎡ ⎤ = +⎣ ⎦t t t  and 

2
1 2( , ) ( , ) ( , )W r r rE I f ψ f ψ f⎡ ⎤ = −⎣ ⎦t t t  such that 

          ( )
0 0

1 , 1 2 1 2 1 2 1 2
1

( , ) 0.5 ( , ) ( ) ( )cos 2 ( )
r r

r r

T TM

r X m
m

ψ f R t t w t w t πf t t dt dt
+ +

=

= −∑ ∫ ∫
t t

t t

t            (36) 

              2 ( , ) 2 ( , ) *
2

1

( , ) 0.25 ( , ) ( , )r r

M
j θ f j θ f

r m r m r
m

ψ f e G f e G f−

=

= +∑ t tt t t           (37) 

where 2 2
, , , ,( , ) ( , ) ( , )m r a m i m r b m q m rG f σ G f σ G f= +t t t . Whereas, 

    
0 0

1 22 ( )
, , 1 , 2 1 2 1 2( , ) ( , ) ( , ) ( ) ( )

r r

r r

T T
j πf t t

i m r i m i m
n

G f s t n s t n w t w t e dt dt
+ ++∞

− +

=−∞

= ∑ ∫ ∫
t t

t t

t        (38) 

                
0 0

1 22 ( )
, , 1 , 2 1 2 1 2( , ) ( , ) ( , ) ( ) ( )

r r

r r

T T
j πf t t

q m r q m q m
n

G f s t n s t n w t w t e dt dt
+ ++∞

− +

=−∞

= ∑ ∫ ∫
t t

t t

t .       (39) 

Hence 2 ( , )rψ ft  sets the equivalent ( , )rη ft  value in (35) given (34) where 

2 2
2( , ) ( , ) 2 ( , )W r W r rE R f E I f ψ f⎡ ⎤ ⎡ ⎤− =⎣ ⎦ ⎣ ⎦t t t ; ( , ) 0.5rη f ≈t  only if 2 ( , ) 0rψ f ≈t  which is the case for WSS 

signals [24]. To depict the impact of cyclostationarity on (35), we assume that the FT of the ( )w t  reduces 

to a Dirac delta ( )δ f , i.e. very long time analysis window. Each of (38) and (39) emerges as  

 [ ] , , , ,
2 22 4 ( ) 4 ( )

, , , , ,( , ) 0.25 ( ) ( ) ( )C m S m C m S mj π f f nT j π f f nT
i m r m i m C m i m C m

n

G f H f P f f e P f f e
+∞

− +

=−∞

⎡ ⎤ ⎡ ⎤= − + +⎣ ⎦ ⎣ ⎦∑t       (40)   

    [ ] , , , ,
2 22 4 ( ) 4 ( )

, , , , ,( , ) 0.25 ( ) ( ) ( )C m S m C m S mj π f f nT j π f f nT
q m r m q m C m q m C m

n

G f H f P f f e P f f e
+∞

− +

=−∞

⎡ ⎤ ⎡ ⎤= − − + +⎣ ⎦ ⎣ ⎦∑t        (41) 

upon taking the Fourier transforms in (38) and (39) with respect to 1t  and 2t  separately. Thus we obtain 

 
[ ] { }
[ ] { }

222 2 2
, , , , , , , , ,

222 2 2
, , , , , , , , ,
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m r S m m a m i m C m b m q m C m C m S m
n
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n

G f f H f σ P f f σ P f f δ f f nf
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=−∞
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t
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by utilizing Fourier expansion. Equation (42) shows that 2 ( , )rψ ft  in (37) can have nonzero values 

concentrated at frequencies equal to shifted multiples of half of the symbol rate, i.e. , ,0.5C m S mf nf± −  

( n∈] ), and belong to the -thm  active subband provided that 2 2
, , , ,( ) ( )a m i m b m q mσ P f σ P f≠ . For a range of 

modulations schemes, e.g. quadrature amplitude modulation (QAM) and quadrature phase shift keying 

(QPSK), this condition is not satisfied since 2 2
, ,a m b mσ σ=  and identical shaping filters are commonly used in 

the in-phase and quadrature branches, i.e. 
22

, ,( ) ( ) 0i m q mP f P f⎡ ⎤⎡ ⎤ − =⎣ ⎦ ⎣ ⎦ . Clearly, in this case 2 ( , ) 0rψ f ≈t  

and ( , ) 0.5rη f =t  is commensurate within the -thm  active subband. Any mismatch between these two 

branches, i.e. 2 2
, , , ,( ) ( ) 0a m i m b m q mσ P f σ P f− ≠ , can lead to discrepancies between 2 ( , )W rE R f⎡ ⎤⎣ ⎦t  and 

2 ( , )W rE I f⎡ ⎤⎣ ⎦t  within the corresponding transmission subband. This can result in surges in the variance 

values at selected frequency points according to (34), (37) and (42). For a binary phase shift keying 

(BPSK) signal where only an in-phase component is present, equation (42) becomes 

[ ] 2 222
, , , , , , , , , ,( , ) 0.125 ( ) ( ) ( 0.5 ) ( ) ( 0.5 )m r S m a m m i m C m C m S m i m C m C m S m

n
G f f σ H f P f f δ f f nf P f f δ f f nf

+∞

=−∞

⎡ ⎤ ⎡ ⎤= − − − + + + −⎣ ⎦ ⎣ ⎦∑t . 

This indicates that 2 ( , )rψ ft  and consequently ( , )rη ft  can tend to their maximum values producing a 

notable deterioration in the estimator’s accuracy at frequencies , ,0.5n C m S mf f nf= ± − , n∈] , such that nf 's 

belong to the subband’s frequency range ,W mB . This is the case for any other linear modulation scheme 

that has only one branch, i.e. either in-phase or quadrature. Therefore, the accuracy of the spectrum 

estimator can be affected by the signal’s cyclostationarity and any processing task that relies on the 

spectral analysis, e.g. spectrum sensing, should consider the possible presence of such phenomenon. In 

the following subsection, we give a numerical example to illustrate the estimator’s response to processing 

two types of cyclostationary signals. 
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C. Numerical Example of the Estimator’s Variance 

Consider a multiband communication system comprising 10 subbands occupying the frequency range 

[ ]1.45,1.55 GHz, i.e. 10CB = MHz. A Blackman window of width 0 10 sT μ=  and an average sampling rate 

of 90α = MHz are used. Two of the system subbands are active with similar power levels and the SNR is 

1.5− dB. Two examples are shown here; in the first one BPSK signals are transmitted whereas in the 

second example 16QAM modulated signals are conveyed over the active system subbands. In both cases, 

the symbol rate of the active subband with the central frequency 
3

1.475Cf = GHz is 
3

6Sf = MSym/s and 

the one centered at 
7

1.515Cf = GHz has a baud rate of 
7

9Sf = MSym/s. Figs. 1a and 1b show the variance 

given by (35) and the mean squared error (MSE) obtained from 10000 independent experiments for the 

BPSK and 16QAM cases respectively. The corresponding ( , )rη ft  is calculated from (26), (28) and (34). 

 
Fig. 1. Estimator’s variance from equations (solid line) and MSE (dotted line). (a) For BPSK modulation. (b) 

For 16QAM modulation. 
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It can be seen from Fig. 1a that the estimator’s variance for the BPSK signals grows noticeably at 

certain frequencies within each of the two active subbands. Those sudden increases take place at/near 

frequencies 
3 ,3 ,30.5n C Sf f nf= −  and 

7 ,7 ,70.5n C Sf f nf= − where { }1,0,1n = −  for the subbands centered at 

3Cf  and 
7Cf  respectively. Whereas, in Fig. 1b the estimator retains its consistency within the active 

subbands where ( , ) 0.5rη f ≈t . The close match between the analytical and simulation results in both 

plots in Fig. 1 confirms the accuracy of the conducted calculations. The possible use of a modulation 

scheme that can lead to degradation in the estimator’s performance (e.g. BPSK) by any of the system 

transmitters should be taken into account when utilizing SARS. 

D. Signal Analysis Window and Estimate Averages  

Achieving the minimum sensing time is a highly desirable feature for any spectrum sensing technique, 

particularly if sensing is a continuous real-time operation that has to fulfill specific time constraints. 

Hence we aim to use a short time analysis window. Additionally, attaining low resolution spectrographs 

via a short rT  facilitates minimizing the number of needed frequency points per system subband to 

establish any activity within, i.e. save on computations noting that one frequency point per subband is 

examined in (2). However, 0T  should be long enough so that the spectrum tapering does not overshadow 

the distinctive feature of ( , )rC ft . Taking a number of multiples of the recommendation in [24] where 

0 / CT n B≥  such that 0n >  serves as a reasonable guideline on choosing the width of the signal time 

analysis window.  

Inspecting 2 ( , )e rσ ft , we notice that it is nearly constant at frequencies where there is no spectral 

activity and its values decrease upon increasing the average sampling rate α . The variance has its highest 

values at frequencies where the signal is present and a substantial part of this inaccuracy is unaffected by 

α . A classical tactic to minimize the latter error is to resort to averaging a number of ( , )e rX ft  estimates 

from K  signal windows. The adopted detector involves averaging K  number of the ( , )e rX ft  estimates 

from nonoverlapping signal windows of length 0T  such that  
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1

0
0

1ˆ ( ) ( , )
K

e e
r

X f X rT f
K

−

=

= ∑ .                      (43) 

The nonoverlapping signal segments are assumed to be uncorrelated in this study. Finding the value of K  

in (43) is essential to realize a dependable sensing strategy and quantify its constraints as well as 

complexity. 

IV. MULTIBAND RELIABLE SPECTRUM SENSING  

The reliability and robustness of the SARS technique is reflected by its ability to meet a sought system 

behaviour that is commonly expressed by the receiver operating characteristics. The ROC of each of the 

system subbands captures the relation between the probability of false alarm, i.e. { }, 1, 0,Prf k k kP H H= , and 

the probability of detection, i.e. { }, 1, 1,Prd k k kP H H= . Those probabilities are interrelated via the decision 

threshold, i.e. kγ  in (2). The proposed method ought to fulfil set sensing requirements using the rule in (2) 

for the suitable kγ  values. This can be achieved by restricting the possible perturbations/anomalies in the 

estimated spectrum ˆ ( )eX f  through the available means, i.e. the average sampling rate 0/α N T=  and the 

number of the estimate averages K . In the following subsection, we formulate the dependability 

conditions of SARS where the multiband signal consists of the maximum expected number of 

concurrently active transmissions. 

A. Reliability Conditions 

Distinctive ROC plots, i.e. ,d kP  versus ,f kP  for a kγ  sweep where 1,2k L= … , are attained for every 

combined α  and K  values as the latter two dictate the statistical characteristics of ˆ ( )eX f  in consonance 

with (8), (22)-(28) and (43). We have two vectors ,1 ,2 ,, ,
T

f f f LP P P⎡ ⎤= ⎣ ⎦fP …  and ,1 ,2 ,, ,
T

d d d LP P P⎡ ⎤= ⎣ ⎦dP …  

describing the desired multiband detection performance. Due to nonuniform sampling, the estimated 

spectrum suffers from smeared-aliasing defect present at all frequencies and embodies a form of the 

signal and noise powers as indicated by (8) and (35). Evidently, the subband with the weakest power level 

or spectral peak ˆ ( )e kX f  is most susceptible to the estimator’s possible erroneousness as it can be 
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overshadowed by the inaccuracies caused by other active subbands. A practical approach to this problem, 

which is adopted here, is to target a priority subband and guarantee satisfying its ROC characteristics by 

choosing the adequate average sampling rate and the number of estimate averages. Aiming to detect a 

weak or high performance subband would demand more estimate averages and/or higher sampling rate 

compared to a stronger or lower performance one.  

The estimator ( , )e rX ft  is approximately of a chi-squared distribution with two degrees of freedom 

and subsequently ˆ ( )eX f  is of similar distribution but with 2K  degrees of freedom. We note that the 

cumulative distribution function (CDF) of an unnormalised chi-squared random variable with Z  degrees 

of freedom can be closely approximated by a normal CDF for moderately large Z , especially at values 

equal to the mean of the random variable plus/minus a number of its standard deviations [28]. Hence the 

CDF of ˆ ( )e kX f  can be assumed to be approximately equal to that of a normal distribution with the same 

mean and variance. This can be further justified by central limit theorem [28] and its accuracy is verified 

by the simulations in Section V. Accordingly, the CDF complement function mandates the ROC 

probabilities for a given threshold such that   

( ) 0,
, 0,

0,

ˆPr ( ) k k
f k e k k k

k

γ m
P X f γ H Q

σ
⎛ ⎞−

= ≥ = ⎜ ⎟⎜ ⎟
⎝ ⎠

         (44) 

and  

 ( ) 1,
, 1,

1,

ˆPr ( ) k k
d k e k k k

k

γ m
P X f γ H Q

σ
⎛ ⎞−

= ≥ = ⎜ ⎟⎜ ⎟
⎝ ⎠

         (45) 

where ( )Q z  is the tail probability of a zero mean unit-variance normal random variable and is a 

monotonically nonincreasing function. Each of 0,
ˆ ( )k e km E X f⎡ ⎤= ⎣ ⎦  and 0,

ˆvar ( )k e kσ X f⎡ ⎤= ⎣ ⎦  are for 0,kH , 

i.e. when subband k  is inactive whereas 1,
ˆ ( )k e km E X f⎡ ⎤= ⎣ ⎦  and 1,

ˆvar ( )k e kσ X f⎡ ⎤= ⎣ ⎦  are for 1,kH , i.e. 

when subband k  is active.  

The objective is to achieve: , Δf k kP ≤  and ,d k kP ≥ A  for a targeted system subband referred to in the 

sequel by subscript k . As a result, the corresponding threshold values are 
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( )1
0, 0,k k k kγ m Q σ−≥ + Δ            (46) 

for 0,kH  where , Δf k kP ≤  and  

 ( )1
1, 1,k k k kγ m Q σ−≤ + A            (47) 

for 1,kH  where ,d k kP ≥ A . Following (46) and (47), we can write  

( ) ( )1 1
1, 0, 0, 1,k k k k k km m Q σ Q σ− −− ≥ Δ − A .                (48) 

In order to use (48), we have to calculate ˆ( ) ( )k e kC f E X f⎡ ⎤= ⎣ ⎦
�  and 2 ˆ( ) var ( )e k e kσ f X f⎡ ⎤= ⎣ ⎦� . Given (8), it can 

be shown that  

       [ ] 21( ) ( , )
( 1)k SA N W r k

NC f P P E X f
N α μ

⎡ ⎤= + + ⎣ ⎦−
t�                 (49) 

noting that 2( , )W r kE X f⎡ ⎤
⎣ ⎦t  is independent of rt  when the kf  point is in the recognized guarded region 

in Section III. The noise power is denoted by 2
N nP σ=  and 

           
1

0
0

1 ( )
K

SA S
r

P P rT
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−

=

= ∑ .           (50) 

where ( )S rP t  is defined in (9). To compute 

       
1

2 2
02

0

1( ) ( , )
K

e k e k
r

σ f σ rT f
K

−

=

= ∑�            (51) 

we utilize the simplified variance expression in (35). Deciding ( , )r kη ft  is of paramount importance as it 

stipulates a substantial part of the variance. If no previous knowledge is available on the employed 

modulation schemes and the symbol rates of the transmitted messages, a conservative approach to this 

predicament is to take into account the worst case scenario, i.e. ˆ ( , ) 1r kη η f= =t . Nonetheless, any prior 

information about the incoming signal can be used to set η̂  or possibly choose the position of the 

frequency points { } 1

L
k k

f
=

 in (2) to avoid  any undesired frequencies where the accuracy of the estimation 

process deteriorates noticeably with the aid of (22)-(28). Substituting the individual 2 ( , )e r kσ ft  into (51), 

we arrive at 
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              ( )( ) 222
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where 2( , ) /k W r kD E X f μ⎡ ⎤= ⎣ ⎦t  and   
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The signal powers in (50) and (53) varies depending on the activity of the targeted subband k . The 

reliability limits in practice should cater for severe system conditions. Those include: the AL  strongest 

system subbands are simultaneously active when the -thk  subband  is idle, i.e. ,0AL  for 0,kH , and the 

1AL −  strongest subbands are concurrently active when the -thk  subband is engaged, i.e. ,1AL  for 1,kH . 

We indicate each of those powers by “(0)” and “(1)” superscripts to signify 0,kH  and 1,kH  respectively. 

Thus in summary 
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and 
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According to Parseval’s theorem: 0 22 2( ) ( ) ( , )r

r

T

W rE x t w t dt E X f df
+ +∞
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 hence  
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≤∑  and 
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(1) 2
A
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∈
≤∑  approximates the area underneath the integral. 

Adopting a conservative approach and substituting (54) as well as (55) values into (48), we obtain 
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where 
,0

0,
A

k n kn L
φ D D

∈
=∑  and 

,1
1,

A
k n kn L

φ D D
∈

=∑  are the  ratios of the sum of 2( , ) /W r nE X f μ⎡ ⎤
⎣ ⎦t  to 

that of the targeted subband, i.e. kD . They can be learnt a priori when transmissions are known to be 

present [2, 3, 10]. Whereas, (1)SNR /SA NP P=  is the signal to noise ratio. Following straightforward 

rendering, (56) emerges as 
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Equation (57) gives a conservative lower limit on the number of windows that need to be averaged as 

a function of the spectrum occupancy, average sampling rate, signal to noise ratio and the sought system 

performance. This recommendation can be used to decide the required average sampling rate for a 

number of estimate averages possibly imposed by practical constraints (e.g. latency) in a continuous 

processing environment. It is a clear indication of the trade-off between the sampling rate and the number 

of averages requested in relation to achieving reliable sensing. Equation (57) affirms that the sensing task 

can be reliably accomplished with arbitrarily low sampling rates at the expense of an infinitely long signal 

observation window. This confirms early results on DASP, e.g. [21, 22], which were rather limited to 

PSD estimation for WSS signals.  

The sensing process includes specifying the thresholds in (2), i.e. [ ]1 2, , T
Lγ γ γ=γ … . By conforming to 

(46) and (47), we have 

         ( ) ( ) ( )(min) 1 1 1
0,1 ,1 0,1 0,2 ,2 0,2 0, , 0,, ,

T

f f L f L Lm Q P σ m Q P σ m Q P σ− − −⎡ ⎤= + + +⎣ ⎦0γ …         (58) 

and  
                                      ( ) ( ) ( )(max) 1 1 1

1 1,1 ,1 1,1 1,2 ,2 1,2 1, , 1,, ,
T

d d L d L Lm Q P σ m Q P σ m Q P σ− − −⎡ ⎤= + + +⎣ ⎦γ …              (59) 

such that  
(min) (max)

1≤ ≤0γ γ γ           (60) 

where the components of (58) and (59) can be computed according to (54) and (55) for 1,2,k L= … . It is 

noted that correlated or overlapping signal windows scenario can be easily introduced into the SARS 
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technique whenever the effect of correlation/overlapping on the variance reduction following averaging is 

known, e.g. Welch periodograms [29, 30]. 

B. Randomised Versus Uniform Sampling  

Spectrum sensing methods that employ periodogram-type estimators with uniform sampling to detect 

active transmissions via assessing spectral peak, e.g. [12], typically demand less estimate averaging 

compared to SARS which suffers from the smeared-aliasing defect. Following similar 

analysis/methodology to that of the TRS scheme, it can be shown that the number of estimate averages for 

the uniform-sampling-based algorithm is given by  

        ( ) ( ){ }1,

2
1 1 1 2 2 2 2 1

1, 1, ˆ2 4 4 2
kUS C US C k US C k USK B φ SNR Q f Q B φ SNR f B φ SNR f η− − − − −≥ Δ − + +A        (61) 

where USf  is the uniform sampling rate and is proportional to the monitored bandwidth B  to avoid the 

aliasing effects. Comparing the efficiency of both approaches based only on the sampling rates can be 

regarded as partial. The detection decision in both cases relies on calculating a form of discrete-time 

Fourier transform from a finite set of the signal samples, e.g. DFT or an optimized version whenever 

applicable. Therefore, the number of processed samples is a critical factor in deciding the efficiency of the 

SARS technique and its benefits over the conventional uniform-sampling-based ones. From (57) and (61), 

the corresponding numbers of processed samples for randomized and uniform sampling approaches are  

              0TRSN T αK≥                 (62) 
and 

                0US US USN T f K≥                  (63) 

respectively. Generally, the proposed method provides tangible savings not only on the used sampling 

rate but also on the overall number of processed samples in low spectrum utilization environments, i.e. 

/ 1AB B << . In fact, extending the monitored bandwidth assuming a constant SNR (e.g. the sampling is 

preceded by a filter to limit the noise bandwidth/power) a fixed number of concurrently active subbands 

AB  and same system behavior does not impose any additional cost on the sample numbers for SARS as 

indicated by (62). On the other hand, the number of requested uniformly distributed samples in such cases 
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grows at a rate equivalent to USf  where 2USf B≥ . This shows that as the spectrum occupancy decreases, 

the benefits of exploiting nonuniform sampling become more visible. Low spectrum utilization is faced in 

various applications, e.g. in CR networks it can be 15% or lower in certain bands [11]. 

V. NUMERICAL EXAMPLES  

Consider a communication system operating over the frequency range [ ]1.35,1.45 GHz which is 

divided into 20 nonoverlapping frequency subbands, 5 MHz each (i.e. 100B = MHz and 5CB = MHz). 

The spectrum occupancy is expected to be 10% at most, i.e. 2AL =  and / 0.1AL L = . The SNR is 0.5− dB. 

A Hanning window of length 1.25 sμ  and an average sampling rate of 90 MHz are used. Whereas, a valid 

low bandpass uniform sampling rate that would avoid aliasing in the system frequency range is 

224USf = MHz. In the following two subsections, we demonstrate the SARS method with the aid of 

numerical examples. All the plots in Figs. 2, 5 and 6 were obtained from 10000 independent experiments. 

A. Example 1: Active Subbands with Equal Power Levels 

Here, we examine spectrum sensing with (2) where the present transmissions are BPSK and are of 

equal power levels. Thus ˆ 1η =  is considered in order to countermeasure for any possible decline in the 

estimator’s consistency as discussed in Section III. If we presume that the user demands a probability of 

false alarm 0.07fP ≤  and that of detection 0.95dP ≥  for all the system subbands, the required number of 

estimate averages utilizing (57) is 14K ≥ , i.e. min 14K = . Those probabilities are arbitrarily chosen as an 

example to depict the behavior of the SARS technique and other probabilities can be selected. Fig. 2a 

shows the ROC plots in one of the system subbands for various K  values sweeping across a range of 

possible threshold values; the asterisk indicates the minimum sought dP  and maximum permitted fP . In 

Fig. 2b, dP  and fP  are displayed for the threshold values determined by (46) and (47) where minK K= .  

It can be seen in Fig. 2 that the desired system performance was delivered with a sampling rate of     

90MHz. Hence savings of around 60% on the sampling rate and more than 20% on the number of 

processed samples according to (62) and (63) were attained by using the proposed approach in this paper. 
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At minK K= , the acquired probabilities match to a great extend the minimum specified ones. This 

confirms the reasonable conservativeness of the provided recommendations and that the assumptions 

undertaken in the conducted analysis did not have noticeable effects on the accuracy of the obtained 

results. Fig. 2b vindicates the effectiveness of the thresholding regime described by (60). If ˆ 0.5η =  was 

chosen, i.e. the impact of signal's cyclostationarity was not recognised, the minimum number of estimate 

averages would be min
ˆ 10K =  which would jeopardize the system response. 

 
Fig. 2. Performance of a system subband. (a) ROC for 13K = (dotted line), min 14K K= = (solid line), 

15K = (dashed line), 16K = (dashdot line); asterisk is ( )0.07,0.95 . (b) dP  (squares) and fP  (circles) for 

min maxγ γ γ≤ ≤  and minK K= . 
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      Fig. 3. Total number of processed samples for TRS (solid line) and uniform sampling (dotted line). 

For illustration purposes, Fig. 3 exhibits the minimum total number of processed samples for uniform 

sampling and TRS techniques given by (62) and (63) for various spectrum utilizations (assuming constant 

SNR ), 0.07fP =  and 0.95dP = . It is clear that as the spectrum occupancy decreases, i.e. either by fewer 

subbands being active or extending the monitored bandwidth, the gains of the SARS method become 

more evident in terms of the total number of processed samples. 

B. Example 2: Active Subbands with Various Power Levels 

The transmissions in this example are affected by the propagation channel whose squared magnitude is 

displayed in Fig. 4. The incoming signal is expected to be a combination of 16QAM, 256QAM and 

QPSK transmissions. Thus ˆ 0.5η =  is chosen and substituted into (57). The aim is to meet the detection 

requirements of the targeted subband with the central frequency 12f  where ,12 0.07fP ≤  (i.e. 12 0.07Δ = )  

and ,12 0.98dP ≥  (i.e. 12 0.98=A ). The minimum number of estimate averages for the targeted subband is 

16K ≥ , i.e. min 16K = , as given by (57). At the same time, another subband with the central frequency 5f  

has ,5 0.06fP ≤  (i.e. 5 0.06Δ = ) and ,5 0.972dP ≥  (i.e. 5 0.972=A ). The experimental ROC plots along with 

both sides of the reliability criterion defined by (48) using 12Δ , 12A , 5Δ  and 5A  for each of the two 

aforementioned subbands is depicted in Figs. 5 and 6 for various estimate averages. The asterisks in    

Figs. 5 and 6 are ( )12 12,Δ A  and ( )5 5,Δ A  respectively. 
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Fig. 4. Propagation channel squared magnitude frequency response 2( )kH f ; the asterisks mark 2( )kH f  at the 

central frequencies of the two examined subbands in Figs. 5 and 6. 

 
Fig. 5. Performance of the targeted subband. (a) ROC for 14K = (dotted line), 16K = (solid line), 

18K = (dashed line) and 20K = (dashdot line); asterisk is ( )12 12,Δ A . (b) 1,12 0,12m m−  (circles) and 

( ) ( )1 1
12 0,12 12 1,12Q Qσ σ− −Δ − A  (stars). 

 
Fig. 6. Performance of the subband centered at 5f . (a) ROC for 14K = (dotted line), 16K = (solid line), 

18K = (dashed line) and 20K = (dashdot line); asterisk is ( )5 5,Δ A . (b) 1,5 0,5m m−  (circles) and 

( ) ( )1 1
5 0,5 5 1,5Q Qσ σ− −Δ − A  (stars). 
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It is clear from Fig. 5 that the pursued probabilities of the targeted subband were acquired by 

following the derived reliability recommendations. Besides, Fig. 5b shows that the condition in (48) is 

fulfilled for 16K ≥ . However, this is not the case for the subband centered at 5f ; shown in Fig. 6; that 

demands min
ˆ 21K K≥ ≥  given its ROC probabilities and power level according to (57). This illustrates the 

compromising involved when a priority subband is specified by the user. To circumvent such cases, the 

user should survey the requisites for all system subbands and subsequently choose the combined K  and 

α  values that would meet all the desired ,f kP  and ,d kP  in fP  and dP  vectors. Figs. 5 and 6 affirm the 

accuracy and moderation of the derived reliability conditions. 

In general, the above numerical examples demonstrate that SARS can notably reduce the required 

sampling rates to perform wideband spectrum sensing and yet meet the predefined probabilities of 

detection and false alarm.  

VI. CONCLUSIONS  

In this paper, a multiband spectrum sensing method that is based on DASP methodology is proposed. 

It uses a particular randomized sampling scheme along with appropriate processing to conduct reliable 

detection. This approach eliminates the adverse effect of aliasing that is inherently present when similar 

signal processing problems are solved with uniform-sampling-based techniques. The sampling rate is no 

longer related to the total bandwidth of the monitored subbands. In fact, it is shown in the paper that the 

sampling rate of the introduced spectrum sensing approach can be arbitrarily low. Taking into account the 

cyclostationary nature of communication signals, the reliability of the sensing procedure is formulated in 

terms of the average sampling rate, signal observation window 0KT , signal to noise ratio, power levels of 

the active overseen subbands and the sought system performance. The provided dependability guideline 

can be employed as a tool to quantify the trade-off between the required sensing time (i.e. signal 

observation window) and sampling rate in a given scenario.  

Comparing to methods based on uniform sampling, the proposed sensing technique offers substantial 

savings not only on the sampling rate but also on the total number of processed samples. The latter is 
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particularly visible when dealing with scenarios where the occupancy of the monitored subbands is low. 

The introduced approach has been verified using numerical examples and simulations. 

In order to be able to reconstruct the detected signal from the collected samples, it is necessary that the 

sampling rates do exceed the Landau rate [31], i.e. they should exceed at least twice the total bandwidth 

of the concurrently active subbands AB . This condition does not have to be met if spectrum sensing is the 

only goal. Even if signal reconstruction is to be performed, the SARS technique still offers an important 

advantage over the uniform-sampling-based detectors. In the case of SARS, the sampling rate has to be 

proportional to the number of the simultaneously active subbands. Whereas, with uniform sampling the 

sampling rate has to be proportional to the total monitored bandwidth. This observation prompts 

researching into algorithms for effective and accurate signal reconstruction from nonuniformly sampled 

data. This paper serves as an impetus to further research into DASP-based spectrum sensing approaches 

that deploy randomized sampling schemes other than total random sampling. 
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