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Abstract—The problem of signal direction-of-arrival (DOA) estimation
in partly calibrated arrays composed of multiple subarrays with unknown
intersubarray parameters and imperfectly known subarray orientations is
studied. The recently developed spectral and root versions of the rank re-
duction estimator (RARE) are applicable to scenarios where no intersub-
array calibration is available, but unfortunately, these algorithms are very
sensitive to subarray orientation errors. Therefore, the conventional RARE
algorithms can be applied to partly calibrated arrays with subarray orien-
tation errors only if these errors are negligibly small. In this correspon-
dence, a new robust modification of the RARE algorithm with a reduced
sensitivity to subarray misorientations is proposed, and expressions for the
corresponding stochastic Cramér–Rao bound (CRB) are derived. The per-
formance of our robust RARE algorithm is demonstrated to be close to this
bound in the case of moderate subarray orientation errors.

Index Terms—Direction-of-arrival (DOA) estimation, partly calibrated
arrays, rank reduction estimator (RARE).

I. INTRODUCTION

T THE problem of direction-of-arrival (DOA) estimation in large
sparse subarray-based sensor arrays has recently attracted a sig-

nificant interest because using such arrays, it is possible to enlarge the
array aperture without a corresponding increase in hardware/software
costs [1]–[8]. In such arrays, the aperture of each subarray is typi-
cally much smaller than the aperture of the whole array and, there-
fore, each subarray can be assumed to be well calibrated. The calibra-
tion of the whole array, on the other hand, may be poor due to com-
pletely unknown or imprecisely known (e.g., perturbed) intersubarray
displacements, imperfect time synchronization of different subarrays,
unknown channel mismatches between subarrays, or a combination of
the above-mentioned imperfections [6].

In the case when each particular subarray is calibrated but there is
no calibration between subarrays (i.e., all intersubarray parameters are
unknown), the recently developed rank reduction estimator (RARE)
can be efficiently used to estimate the signal DOAs. In the most general
case when all subarrays have arbitrary geometries, the spectral RARE
technique of [6] can be directly applied. In the particular case of linear
identically oriented subarrays whose interelement spacings are integer
multiples of the known shortest baseline, the root-RARE algorithm of
[7] can be used. The latter algorithm is search free and, therefore, its
computational cost is substantially lower than that of spectral RARE.
A serious shortcoming of both the spectral and root-RARE algorithms
is that they may be quite sensitive to subarray orientation errors, which
may easily occur in practice [9], [10].
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In this correspondence (see also [11]), we develop new spectral and
root modifications of the RARE algorithm that are robust against sub-
array orientation errors. We also derive the corresponding stochastic
Cramér–Rao bound (CRB) to which we compare the performance of
the proposed estimators. Our simulation results demonstrate a substan-
tially improved robustness of the proposed RARE techniques as com-
pared with the conventional RARE algorithms in scenarios in which
subarray misorientations occur. It is also shown that, in such scenarios,
the performance of the proposed robust RARE algorithms is substan-
tially closer to the CRB than that of the conventional RARE algorithms.

The rest of our correspondence is organized as follows. The con-
ventional RARE algorithms are revisited in Section II. In Section III,
new RARE algorithms are formulated that have an improved robust-
ness against subarray misorientations. In Section IV, a stochastic CRB
is derived that corresponds to the problem considered. Section V con-
tains simulation results. Conclusions are given in Section VI.

II. CONVENTIONAL RARE ALGORITHMS

Assume that an array of M omnidirectional sensors consists of K
arbitrary nonoverlapping subarrays, and the kth subarray has Mk �
1 sensors, so that the total number of sensors in the array is given by
M = K

k=1Mk . Assume also that the array receives L < M narrow-
band signals from multiple far-field sources. In this section, we con-
sider the case when each subarray is fully calibrated, i.e., there are no
subarray orientation errors, while the intersubarray parameters are un-
known or uncertain.

The array snapshots can be modeled as [6], [7]

x(t) = A(���; ���)s(t) + n(t); t = 1; . . . ; N

where A(���; ���) [a(�1; ���); a(�2; ���); . . . ; a(�L; ���)] is the
M � L direction matrix, a(�;���) is the array steering vector,
��� = [�1; �2; . . . ; �L]

T is the L� 1 vector of the source DOAs, ��� is
the K� 1 vector that contains all unknown manifold parameters (i.e.,
intersubarray displacements, timing errors, and channel mismatches
between subarrays, or some combination of these effects [6]), s(t)
is the L� 1 vector of signal waveforms, n(t) is the M� 1 vector of
white circular complex Gaussian noise, N is the number of snapshots,
and (�)T denotes the transpose. The basic idea of the RARE algorithm
is to model a(�;���) as the product of a known matrix V(�) and an
unknown vector h(�;���) associated with the unknown intersubarray
parameters [6], [8] such that

a(�;���) = V(�)h(�;���) (1)

where

V(�) =

v1(�) 0 � � � 0

0 v2(�) � � � 0

...
...

. . .
...

0 0 � � � vK(�)

and vk(�) is the Mk� 1 steering vector of the kth subarray. Therefore,
the M� 1 complex vector

v [vT1 (�);v
T
2 (�); . . . ;v

T
K(�)]T

characterizes the array response when the intersubarray imperfections
are completely ignored, while h(�;���) is the K� 1 complex vector
associated with such imperfections. The unknown vector h(�;���) can
take different forms, depending on the type of intersubarray imperfec-
tions considered (see [6] and [8] for details).

The eigendecomposition of the array covariance matrix

R = Efx(t)xH(t)g

is given by [12]

R = U���UH +G���GH (2)

where Ef�g and (�)H denote the statistical expectation and Hermitian
transpose, respectively. In (2), the L � L and (M � L) � (M � L)
diagonal matrices ��� and ��� contain, respectively, the L and M � L
signal- and noise-subspace eigenvalues of R, whereas the columns of
theM�L andM�(M�L) matricesU andG contain, respectively,
the corresponding signal- and noise-subspace eigenvectors ofR.

Substituting the steering vector model (1) to the MUSIC equation
[12]

a
H(�;���)GGH

a(�;���) = 0

we have [6]

h
H(�;���)C(�)h(�;���) = 0 (3)

where C(�) is a K �K matrix defined as

C(�) V
H(�)GGH

V(�):

Since h(�;���) 6= 0, (3) can be true only if C(�) drops rank (i.e.,
detfC(�)g = 0) and, hence, this property offers the basic rank-drop-
ping criterion used in RARE [6], [7]. It is worth noting thatC(�) does
not depend on any of the unknown intersubarray parameters ���. It has
been shown in [6] and [7] that under certain mild conditions on subar-
rays, the rank of C(�) drops (i.e., rankfC(�)g < K) if and only if �
coincides with one of the source DOAs f�igLi=1.

In practice, R is unknown and is usually replaced by its sample es-
timate

R̂ =
1

N

N

t=1

x(t)xH(t)

whose eigendecomposition can be written as [12]

R̂ = Û�̂��ÛH + Ĝ�̂��ĜH

where the L� L and (M � L)� (M � L) diagonal matrices �̂�� and
�̂�� contain, respectively, the L and M � L signal- and noise-subspace
eigenvalues of R̂, whereas the columns of theM�L andM�(M�L)
matrices Û and Ĝ contain, respectively, the corresponding signal- and
noise-subspace eigenvectors of R̂.

In this case, the DOAs can be estimated from the L highest peaks of
any of the following two alternative spectral RARE estimators [6], [8]:

f1(�) =
1

detfĈ(�)g
(4)

f2(�) =
1

LfĈ(�)g
(5)

where

Ĉ(�) = V
H(�)ĜĜH

V(�)

is the estimate of C(�), and Lf�g is the operator whose output is the
smallest eigenvalue of a Hermitian matrix.

The estimators (4) and (5) are based on a one-dimensional search
over �. In the particular case of linear identically oriented sub-
arrays whose interelement spacings are integer multiples of the
known shortest baseline d, a search-free polynomial rooting-based
reformulation of the RARE estimator is possible [7], [8]. In the afore-
mentioned particular case, rewriting the matrix Ĉ(�) as a function of
z = ej(2�=�)d sin � gives

Ĉ(z) = V
T (1=z) ĜĜH

V(z) (6)
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where � is the wavelength. Using (6), it can be shown that the DOAs
can be obtained by rooting the following polynomial [8]:

f(z) = detfĈ(z)g: (7)

It should be emphasized here that the original root-RARE estimator
presented in [7] is written in a somewhat different (but equivalent) form
with respect to (7), because the approach of [7] uses the concept of
virtual array, which leads to another way of indexing the array sensors.

III. ROBUST RARE ALGORITHMS

In this section, we assume that, in addition to unknown intersubarray
parameters, the subarray orientations are not known precisely. In this
case, the direct application of the RARE algorithm is not possible, as
each subarray itself is no longer fully calibrated. In the presence of such
subarray orientation errors, the model in (1) can be transformed as

a(�; ���) = V(�; ������)h(�; ���) (8)

where ������ = [��1; . . . ; ��K ]T ; ��k is the orientation error of the kth
subarray; and ��� = [���T ; ���T��� ]

T is the vector containing all unknown
array parameters.

In this case, the M �K direction matrixV(�; ������) takes the form

V(�; ������)=

v1(�+��1) 0 � � � 0

0 v2(�+��2) � � � 0

...
...

. . .
...

0 0 � � � vK(�+��K)

:

Assuming that the orientation errors are small, each vector vk(�+��k)
can be expanded using the first two terms of the Taylor series as

vk(� + ��k) ' vk(�) + ��k
dvk(�)

d�
:

Using this approximation, (8) can be written as

a(�; ���) = V(�);
dV(�)

d�

h(�; ���)

Qh(�; ���)
= P(�)g(�; ���) (9)

where

Q diagf��1; . . . ; ��Kg

P(�) V(�);
dV(�)

d�

g(�; ���) [hT (�; ���);hT (�; ���)QT ]T :

Note that the model in (9) is similar to that in (1) in the sense that the
matrix P(�) depends only on �, while all the unknown parameters ���
are captured in the vector g(�; ���). However, an important difference
between the models (1) and (9) is that (9) describes a more general
case when both the intersubarray parameters and orientation errors are
unknown, whereas (1) corresponds to the case when there are no ori-
entation errors at all.

The aforementioned similarity between (9) and (1) allows us to apply
the idea of the conventional RARE algorithm to estimate the source
DOAs in the case of unknown subarray orientation errors. Substituting
(9) to the MUSIC equation aH(�; ���)GGHa(�; ���) = 0, we have

g
H(�; ���)B(�)g(�; ���) = 0 (10)

where the 2K � 2K matrix B(�) is defined as

B(�) P
H(�)GGH

P(�):

Since g(�; ���) 6= 0, (10) can hold true only if the matrix B(�) drops
rank. Therefore, to estimate the signal DOAs in the finite sample case,
the following spectral functions can be used:

~f1(�) =
1

detfB̂(�)g
(11)

~f2(�) =
1

LfB̂(�)g
(12)

where

B̂(�) = P
H(�)ĜĜH

P(�):

Note that (11) and (12) have a certain similarity to (4) and (5), respec-
tively. However, an important difference between these estimators is
that (11) and (12) can be applied to scenarios with unknown subarray
orientation errors, whereas (4) and (5) assume that there are no such
errors.

In the specific case of linear subarrays whose interelement spacings
are integer multiples of the shortest baseline d, let us reformulate robust
RARE in a search-free form using the aforementioned similarity and
the approach of [6]. Using (9), the steering vector can be rewritten as

a(�; ���) = V(z);
dV(z)

d�

h(�; ���)

Qh(�; ���)

= V(z);
dV(z)

dz

h(�; ���)

u(�)Qh(�; ���)

=F(z)p(�; ���) (13)

where

F(z) V(z);
dV(z)

dz

p(�; ���) [hT (�; ���); u(�)hT (�; ���)QT ]T

and u(�) = j(2�=�)d cos �. In (13), we have taken into account that
dvk(�)

d�
=

dvk(�)

dz

dz

d�
:

Note that the matrix F(z) is a function of z only. This allows us to
estimate the signal DOA’s by means of rooting the polynomial

~f(z) = detfÊ(z)g (14)

where

Ê(z) = F
T (1=z)ĜĜH

F(z):

IV. CRAMÉR–RAO BOUND

In this section, we derive the stochastic CRB1 for partly calibrated
arrays with imperfectly oriented subarrays by extending the results of
[6].

Let us introduce the following (2KL� L+K)� 1 vector:

��� [���T ; ���T
2
; . . . ; ���TK ; 

T
2
; . . . ; TK ; ���

T
��� ]

T

where

���k [Refh1;kg; . . . ;RefhL;kg]
T

k [Imfh1;kg; . . . ; ImfhL;kg]
T

and, for notational brevity, the arguments in h(�l; ���) are omitted and
it is hereafter written as hl = [hl;1; . . . ; hl;K ]T . Also, following [6],
we assume that the first element of each vector hl is fixed to avoid the
scaling ambiguity in the computation of the CRB.

The snapshots are assumed to satisfy the stochastic model

x(t) � Nf0;Rg

where Nf�; �g is the complex Gaussian distribution

R = A(�; ���)SAH(�; ���) + �2I

is the data covariance matrix, S = Efs(t)sH(t)g is the source covari-
ance matrix, �2 is the noise variance, and I is the identity matrix. The
unknown parameters of the problem include the elements of the vector
���, the noise variance �2, and the parameters of the source covariance
matrix fSllgLl=1 and fRefSlkg; ImfSlkg; k > lgLl;k=1.

After concentrating the problem with respect to the parameters of
the source covariance matrix and the noise variance, the (2KL�L+
K) � (2KL � L + K) Fisher information matrix can be written as
[6], [15]

[ CRB�1(���)]kl =
2N

�2
Re trace W

@AH

@�l
P
?

A

@A

@�k
(15)

1Note that the stochastic CRB is more preferable than the deterministic one
because the latter bound is unattainable [14].
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where P?A I � A(AH
A)�1AH and the L � L matrix W =

S(AH
AS + �2I)�1AH

AS.
After tedious albeit straightforward manipulations involving com-

puting all the derivatives in (15) and combining them in a proper matrix
form, the CRB matrix can be expressed as

CRB(���)=
�2

2N
Re T

T [(11T 
W)� (DH
P
?

AD)T ]T
�1

(16)
where 
 and � denote the Kronecker and Schur–Hadamard matrix
products, respectively. Here, 1 is the (3K � 1)� 1 vector of ones, T
is the (3KL� L)� (2KL� L+K) matrix given by

T =

I 0 0 � � � 0

0 ~1 0 � � � 0

0 0 ~1 � � � 0

...
...

...
. . .

...
0 0 0 � � � ~1

:

~1 is the L� 1 vector of ones, and D is the M � (3KL � L) matrix
given by

D [D���;D��� ; . . . ;D��� ;D ; . . . ;D ;D�� ; . . . ;D�� ]

where

D���

@V(�1; ������)h1
@�1

; . . . ;
@V(�L; ������)hL

@�L

D��� [V(�1; ������)ek; . . . ;V(�L; ������)ek]

D jD���

D��

@V(�1; ������)h1
@��k

; . . . ;
@V(�L; ������)hL

@��k

and ek is the K � 1 vector with one in the kth position and zeros
elsewhere.

V. SIMULATION RESULTS

Throughout our simulations, an array composed of two subarrays
and two uncorrelated sources with the DOAs �1 = 10� and �2 =
20� are assumed. The unknown intersubarray displacement vector is
[1:3�; 1:2�]T . The first subarray is assumed to be free of orientation
errors, while the second subarray is assumed to suffer from an orienta-
tion error. This error is either fixed (in the first and third examples) or
random (in the second and fourth examples). The number of snapshots
is N = 100, and all results are averaged over a total of 200 simulation
runs. In each figure, the conventional and robust RARE estimators are
compared,2 and the CRB of (16) is also displayed.

In our first example, we assume that the first subarray consists of six
sensors at the locations

f(0; 0); (0:4�; 0:2�); (0:9�; 0:4�);

(1:4�; 0:7�); (1:7�; 1:1�); (2:1�; 1:3�)g

relative to the first sensor of this subarray, while the second subarray
has six sensors at the locations

f(0; 0); (0:4�; 0:3�); (0:8�; 0:5�);

(1:3�; 0:7�); (1:9�; �); (2:3�; 1:3�)g

also relative to the first sensor. The second subarray is modeled to have
an orientation error of 2�. Fig. 1 compares the conventional and ro-
bust spectral RARE algorithms where the DOA estimation root-mean-

2As the intersubarray displacements are assumed to be completely unknown,
it is not possible to compare with MUSIC that requires at least approximate
knowledge of these displacements.

Fig. 1. RMSEs and CRB versus SNR. First example.

Fig. 2. RMSEs and CRB versus . Second example.

square errors (RMSEs) versus the signal-to-noise ratio (SNR) are dis-
played.

In the second example, it is assumed that the first subarray consists
of four sensors with the locations

f(0; 0); (0:3�; 0:4�); (0:7�; 0:8�); (1:2�; 1:1�)g

relative to the first sensor, while the second subarray has six sensors
with the locations

f(0;0); (0:4�; 0:6�); (0:91�; �);

(1:3�; 1:3�); (1:6�; 1:7�); (1:9�; 2�)g

relative to the first sensor. The second subarray is assumed to suffer
from a random orientation error which changes from run to run and
has Gaussian distribution with zero mean and the variance �2v . In Fig. 2,
we display the DOA estimation RMSEs of the conventional and robust
spectral RARE algorithms versus standard deviation �v for SNR =
20 dB. All the curves in this figure are averaged over random orienta-
tion error.

In the third example, the first subarray is a uniform linear array
(ULA) of four sensors with the interelement spacing of 0.5�, and the



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 5, MAY 2006 1955

Fig. 3. RMSEs and CRB versus SNR. Third example.

Fig. 4. RMSEs and CRB versus . Fourth example.

second subarray is a ULA of six sensors with the interelement spacing
of 0.4�. The first subarray is assumed to have no orientation error, while
the second subarray has a fixed orientation error of 2�. The conven-
tional and robust root-RARE algorithms are compared in Fig. 3, where
the DOA estimation RMSEs are displayed versus the SNR.

In our last example, both subarrays are assumed to have the same
configuration as in the previous example. The second subarray has a
random Gaussian orientation error with zero mean and the variance
�
2

v
. Fig. 4 shows the DOA estimation RMSEs of the conventional and

robust root-RARE algorithms versus standard deviation �v at SNR =
20 dB. All the curves in this figure are averaged over random orienta-
tion error.

All examples clearly demonstrate that in the presence of subarray
orientation errors, the robust RARE algorithms have substantially
better performance than the conventional RARE techniques, both
in the case of spectral and root-RARE estimators. Interestingly, the
RMSE of the robust RARE approach remains close enough to the cor-
responding CRB, whereas the RMSE of conventional RARE may be
far away from this bound because the performance of the conventional
RARE technique is corrupted by the orientation errors. It can be seen
from Figs. 2 and 4 that performance improvements of robust RARE

with respect to conventional RARE in the case of subarray misorienta-
tions are achieved at the price of a moderate performance degradation
in the ideal case (where no misorientations occur). It is also worth
noting that in the latter case, the conventional RARE estimator can be
shown to outperform the CRB (16). A simple explanation of this fact
is that, if there is no subarray orientation errors, then the CRB in (16)
uses redundant (nonparsimonious) parameterization. In this case, the
model becomes overparameterized and, obviously, the corresponding
CRB may be outperformed by methods that avoid such redundant
parameterization.

VI. CONCLUSION

The problem of DOA estimation in partly calibrated arrays com-
posed of multiple subarrays with unknown intersubarray parameters
and imperfectly known subarray orientations has been addressed.
Robust modifications of the RARE algorithm have been found that
substantially improve its DOA estimation performance in the case of
subarray orientation errors, and an appropriate Cramér–Rao bound has
been derived. Simulation results demonstrate substantial performance
improvements achieved by the new robust RARE DOA estimation
technique relative to the conventional RARE algorithm.
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