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A Generalized Capon Estimator for Localization of
Multiple Spread Sources
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Abstract—In this correspondence, we develop a generalized Capon spa-
tial spectrum estimator for localization ofmultiple incoherently distributed
(spread) sources in sensor arrays. The proposed generalized Capon tech-
nique estimates the source central angles and angular spreads by means
of a two-dimensional (2-D) parameter search. Simulation results show that
the proposed method has a substantially improved performance compared
with several popular spread source localization methods.

Index Terms—Array processing, generalized Capon estimator, incoher-
ently distributed sources.

I. INTRODUCTION

Most conventional direction-finding techniques are based on the as-
sumption that the source energy is concentrated at discrete angles that
are referred to as the source directions-of-arrival (DOAs). However, in
several applications such as sonar, radar, and wireless communications,
such a point source assumption can be irrelevant because signal scat-
tering phenomena may result in angular spreading of the source energy
[1]–[15]. In such cases, a distributed source model is more realistic than
the point source one.

In wireless communication systems with antenna arrays at base sta-
tions, one of the central problems is the fast fading due to a local scat-
tering in the vicinity of the mobile [3]–[5]. In the presence of such a
fading, the source can no longer be modeled using the point assump-
tion. In particular, depending on the environment of the mobile, the
base-mobile distance and the base station height, angular spreads up to
10� can be commonly observed in practice [3], [4] . Depending on the
relationship between the channel coherency time and the observation
period, the sources can be viewed either as coherently distributed (CD)
or incoherently distributed (ID). A source is called CD if the signal
components arriving from different directions are replicas of the same
signal, whereas in the ID source case, all signals coming from different
directions are assumed to be uncorrelated [1], [14], [15]. Indeed, if the
channel coherency time is much smaller than the observation period,
then the ID model is relevant [14]. In the opposite case, the CD model
or a partially coherent model can be used [6].

Furthermore, source localization in presence of angular spreading
(or, equivalently, multiplicative noise) is one of the main problems in
synthetic aperture radar (SAR) interferometry (see [7]–[9] and refer-
ences therein).

Recently, ID source localization has been a focus of intensive re-
search. Many techniques have been developed for scenarios with a
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single source, e.g., [6]–[12]. Several other techniques have been pre-
sented to estimate the angular parameters of multiple ID sources [1],
[2], [13]–[16]. Unfortunately, all techniques developed for multiple
source localization are based on certain approximations of the array
covariance matrix, and hence, the resulting parameter estimates are bi-
ased.

In the present paper, we develop a new algorithm for ID source lo-
calization that does not use any approximation of the covariance ma-
trix. The popular Capon estimator [17]–[19] is generalized to the case
of multiple ID sources. The proposed technique is shown to substan-
tially outperform the popular DISPARE algorithm [2] as well as the
root-MUSIC based estimator for spread sources [13], [14].

II. PROBLEM FORMULATION

Assume that the signals of q narrowband stationary sources impinge
on an array of p sensors. The complex envelope of the array output can
be written as

x(t) =

q

i=1

si(t) + n(t) (1)

where x(t) is the p� 1 array snapshot vector, si(t) is the p� 1 vector
that describes the contribution of the ith signal source to the array
output, and n(t) is the p� 1 vector of sensor noise.

In point source modeling, the baseband signal of the ith source is
modeled as

si(t) = si(t)a(�i) (2)

where si(t) is the complex envelope of the ith source, �i is its DOA,
and a(�i) is the corresponding steering vector.

In distributed source modeling, the source energy is considered to be
spread over some angular volume. Hence, si(t) is written as [1], [14]

si(t) =
�2�

~si(�;   i
; t)a(�)d� (3)

where ~si(�;   i
; t) is the angular signal density of the ith source,    

i
is

the vector of its location parameters, and� is the angular field of view.
Examples of the parameter vector    

i
are the two angular bounds of a

uniformly distributed source or the mean and standard deviation of a
source with Gaussian angular distribution [14].

Throughout the paper, we will consider the ID source model.1 For
the ith ID source, we have [14]

Ef~si(�;   i
; t)~s�i (�

0

;    
i
; t)g = �

2

i �(�;   i
) �(� � �

0) (4)

where Ef�g denotes the statistical expectation, �(� � �0) is the Dirac
delta-function, �2i is the power of the ith source, and �(�;   

i
) is its nor-

malized angular power density �(�;   
i
)d� = 1 . We assume that

1The assumption of ID sources has been theoretically and experimentally
shown to be relevant in wireless communications in the case of rural and sub-
urban environments with a high base station [3]–[5].
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different sources have the same (known) shape of the angular power
density but different (unknown) vectors of location parameters.

III. CONVENTIONAL CAPON DOA ESTIMATOR

In application to point source modeling, the Capon spatial spectrum
estimator has been developed in [17]. This estimator can be considered
as a spatial filter (beamformer) that passes the signal of a hypothetical
point source arriving from the direction �whilemaximally rejecting the
signals coming from other directions. The p�1 beamformer coefficient
vector wopt is obtained as the solution to the following optimization
problem [18], [19]:

min
w

w
H
Rxw subject towH

a(�) = 1 (5)

whereRx Efx(n)xH(n)g is the array covariance matrix. In adap-
tive beamforming, (5) is commonly referred to as the minimum vari-
ance distortionless response (MVDR) beamforming problem; see [19].
The solution to (5) is given by

wopt(�) =
R
�1
x a(�)

aH(�)R�1x a(�)
: (6)

For any direction �, the Capon pseudo-spectrum is defined through the
output power of the MVDR beamformer as [18], [19]

PC(�) w
H

opt(�)Rxwopt(�) =
1

aH(�)R�1x a(�)
: (7)

It is clear that if the energy of the ith point source impinges from a
direction �i, then PC(�) is expected to have a separate peak at � = �i.
Hence, the point source DOAs can be estimated from the q highest
maxima of (7), which can be obtained by means of a one-dimensional
spectral search.

IV. GENERALIZED CAPON PARAMETER ESTIMATOR

To estimate the parameters of ID sources, (5) can be generalized as

min
w

w
H
Rxw subject towH

Rs(   )w = 1 (8)

where

Rs(   ) =
�2�

�(�;   )a(�)aH(�)d� (9)

is the normalized covariancematrix of the ID source with the parameter
vector    [14]. According to (8), the generalized Capon spatial filter
maintains distortionless spatial response to a hypothetical source with
the vector parameter    while maximally rejecting the contribution of
any other sources. Such a response is now represented by means of the
covariance matrixRs(   ) (which can be full rank in the general case)
rather than the steering vector a(�). In other words, in contrast to (5),
the distortionless response is maintained in (8) in the mean power sense
rather than in the deterministic sense. The solution to (8) can be found
by means of minimization of the Lagrangian function

L(w; �) = w
H
Rxw + �(1�wH

Rs(   )w) (10)

where � is the Lagrange multiplier. Taking the gradient of (10) and
equating it to zero, we obtain that the solution to (8) is given by the
following generalized eigenvalue problem:

Rxw = �Rs(   )w (11)

where the Lagrange multiplier � plays the role of the corresponding
generalized eigenvalue of the matrix pencil fRx;Rs(   )g. Note that
the matricesRx andRs(   ) are both positive semidefinite, and there-
fore, all generalized eigenvalues of the matrix pencil fRx;Rs(   )g are
non-negative real numbers.

Multiplying (11) by w
H from right and using the constraint

w
H
Rs(   )w = 1, we obtain that � = w

H
Rxw. Therefore,

the minimal value of the objective function wH
Rxw is equal to

smallest generalized eigenvalue of the matrix pencil fRx;Rs(   )g.
Mathematically, this means that if wH

Rs(   )w = 1, then

min
w

w
H
Rxw = �minfRx;Rs(   )g (12)

where �minf�; �g denotes the minimal generalized eigenvalue of a ma-
trix pencil.

Similar to the point source case, we define the generalized Capon
pseudo-spectrum as the beamformer output power when the beam-
former is “steered” to an ID source with the parameter vector   . Hence,
using (12), the generalized Capon (GC) estimator can be written as

PGC(   ) = � minfRx;Rs(   )g: (13)

Using (11), it is easy to show that (13) can be rewritten as

PGC(   ) =
1

�maxfR
�1
x Rs(   )g

(14)

where �maxf�g stands for the maximal eigenvalue of a matrix. The pa-
rameter vector estimates  ̂  

i
(i = 1; 2; . . . ; q) can be obtained from the

q main maxima of (14). Generally, a d-dimensional search, where d is
the length of the vector   , is required. However, it is common to charac-
terize spread sources by two parameters only (the central angle and the
angular spread; see [1], [2], and [14]). In this case, a two-dimensional
(2-D) search is required in (14) to estimate the source parameters.

It is worth noting that the conventional Capon estimator (7) is non-
parametric, whereas the generalized Capon technique (14) is a para-
metric (model-based) estimator.

In a point source case, the vector   reduces to the scalar � andRs(   )
transforms to a(�)aH(�). In this case, it can be readily verified that

�maxfR
�1
x a(�)a(�)Hg = a(�)HR�1x a(�): (15)

Therefore, in the point source case, (14) simplifies to the conventional
Capon estimator (7).

V. SIMULATION RESULTS

In our simulation examples, we consider a uniform linear array
(ULA) of ten sensors with the half-wavelength interelement spacing.
We used 500 snapshots to estimate the array covariance matrix Rx.
Each simulated point is obtained as an average of 100 independent
simulation runs. Furthermore, each simulated point is averaged over
the sources. The performance of the proposed method is compared
with that of the DISPARE method [2] and the root-MUSIC-based
technique [13] with additional improvements introduced in [14].
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Fig. 1. RMSEs versus SNR for the central angle estimates; first example.
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Fig. 2. RMSEs versus SNR for the angular spread estimates; first example.

In the first example, we consider two equipower uniform ID sources
with the central angles 0� and 10� and the corresponding angular
spreads 4� and 5�, respectively. The angular spread of a uniform source
is defined as the total width (support interval) of its angular power
density. The root-mean-square errors (RMSEs) of the central angle
estimates are shown versus the source signal-to-noise ratio (SNR)
in Fig. 1. Fig. 2 shows the RMSEs of the angular spread estimates
versus the SNR. As it can be seen from these figures, the proposed
generalized Capon estimator has a substantially better estimation
performance as compared with the other two methods tested.

In our second example, we assume two equipower Gaussian ID
sources with central angles 0� and 15� and the angular spreads
(standard deviations) 2� and 3�, respectively. Figs. 3 and 4 show the
RMSEs of the central angle and angular spread estimates, respectively,
versus the SNR. Similar to the previous example, the proposed
generalized Capon estimator can be seen to outperform substantially
the other two techniques tested.

VI. CONCLUSIONS

In this correspondence, we have developed a new method for esti-
mating the angular parameters of ID sources. The proposed technique
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Fig. 3. RMSEs versus SNR for the central angle estimates; second example.
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Fig. 4. RMSEs versus SNR for the angular spread estimates; second example.

is based on the generalization of the well-known Capon estimator. Our
method involves a 2-D search over the parameter space and shows a
substantially improved performance relative to several popular spread
source localization techniques.
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Direction Finding for an Extended Target With Possibly
Non-Symmetric Spatial Spectrum

Andrei Monakov and Olivier Besson

Abstract—We consider the problem of estimating the direction of ar-
rival (DOA) of an extended target in radar array processing. Two algo-
rithms are proposed that do not assume that the power azimuthal distri-
bution of the scatterers is symmetric with respect to the mass center of the
target. The first one is based on spectral moments which are easily related
to the target’s DOA. The second method stems from a previous paper by
the present authors and consists of a least-squares fit on the elements of
the covariance matrix. Both methods are simple and are shown to provide
accurate estimates. Furthermore, they extend the range of unambiguous
DOAs that can be estimated, compared with the same previous paper.

Index Terms—Covariance matrix, direction-of-arrival estimation,
extended target, spectral moments.

I. INTRODUCTION AND MOTIVATION OF THE WORK

The problem of estimating the direction of arrival (DOA) of an ex-
tended target is an important issue in radar array processing. Briefly
speaking, a target can be considered as “extended” as soon as its phys-
ical dimensions are of the same order as the array beamwidth (although
the signal to noise ratio has also to be accounted for in order to define
an extended target). In such a case, the energy backscattered by the
target seems to no longer emanate from a point source but from mul-
tiple, closely spaced scatterers [2]. This in turn implies that the signal
received on the array does not result in a rank-one correlation matrix.
In fact, the distribution of the eigenvalues correlation matrix (and in
particular the value of the second eigenvalue of the correlation matrix
compared to the noise floor) serves as an indicator for defining a target
as extended; see, e.g., [3] for a related discussion. Interestingly enough,
a similar problem has been recently evidenced in the area of wireless
communications. Some campaigns of measurements [4] have shown
that local scattering in the vicinity of a mobile is a non-negligible phe-
nomenon. Owing to the presence of local scatterers around the mobile,
the source appears to be spatially dispersed, as seen from a base sta-
tion antenna array. This has a potential impact on the performance of
any array processing algorithm and, thus, should be taken into account.
Finally, note that in underwater acoustics, a nonhomogeneous propa-
gation medium gives rise to coherence loss along the array [5], [6] and,
therefore, to a full-rank correlation matrix.

Briefly stated, the signal received on an array of sensors from a
spread source can be described by the following model:

yyy(t) = xxx(t)� aaa(�0)s(t) (1)

where xxx(t) describes the randommultiplicative effect due to local scat-
tering, s(t) is the emitted signal that is independent of xxx(t), and aaa(�0)
is the so-called steering vector. In the previous equation, � denotes
the Schur–Hadamard (i.e. element-wise) product. In the case of a point
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