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since(m+ 1)Efu2(k)g > 0. UsingEfy2(k)g > �2v produces

Pr nEfy2(k)g � (Efy2(k)g� �
2

v)

n

i=1

ai � 0

= Pr
n

i=1

ai �
nEfy2(k)g

Efy2(k)g � �2v
: (7)

Then, it results that

Pr
n

i=1

ai �
nEfy2(k)g

Efy2(k)g � �2v
> Pr

n

i=1

ai < n : (8)

From (6)–(8), we get

Pr[trRz' � 0] > Pr
n

i=1

ai < n : (9)

Therefore, it follows that

Pr[trRz' < 0] < 1� Pr
n

i=1

ai < n : (10)

Now, we need to compute Pr n

i=1
ai < n . We can express the

denominator of the unknown system as

z
n + a1z

n�1 + � � �+ an =

n

i=1

(z � ci)

wherecis are real or complex number. Substitutingz = 1, we get

1 +

n

i=1

ai =

n

i=1

(1� ci):

Therefore, it follows that

Pr
n

i=1

ai < n = Pr
n

i=1

(1� ci) < n+ 1 : (11)

Let ci = �i + j�i, wherej2 = �1. Sinceci is inside the unit circle,
�2i +�2i < 1. Assume thatcis are mutually independent and uniformly
distributed inside the unit circle. Then, ifcis are real, (11) can be written
as

Pr
n

i=1

ai < n = Pr
n

i=1

(1� �i) < n+ 1 (12)

where j�ij < 1. In the case wherecis are complex andn is even
(n = 2p), (11) can be written as

Pr
n

i=1

ai < n = Pr
p

i=1

(1� �i)
2 + �

2

i < 2p+ 1 : (13)

Equations (12) and (13) can be computed using the Monte Carlo simu-
lation. For the simulation,105 samples are randomly chosen such that
�2i + �2i < 1, and each result is averaged over ten independent trials.

REFERENCES

[1] H.-N. Kim and W.-J. Song, “Unbiased equation-error adaptive IIR fil-
tering based on monic normalization,”IEEE Signal Processing Lett.,
vol. 6, pp. 35–37, Feb. 1999.

[2] , “Adaptive IIR filtering with monic normalization: reduced-order
approximation,”IEEE Signal Processing Lett., vol. 7, pp. 54–56, Mar.
2000.

[3] P. R. Regalia, “An unbiased equation error identifier and reduced-order
approximations,” IEEE Trans. Signal Processing, vol. 42, pp.
1397–1412, June 1994.

[4] T. Söderström, “Comments on adaptive IIR filtering with monic nor-
malization,”IEEE Trans. Signal Processing, vol. 48, pp. 892–894, Mar.
2000.

Erratum: Stochastic Resonance in Discrete Time Nonlinear
AR(1) Models1

Steeve Zozor and Pierre-Olivier Amblard

Index Terms—Nonlinear autoregressive model, stochastic resonance.

The model studied in the title paper is the following nonlinear AR(1)
scheme:

xn = �(xn�1) + en

yn = c sign(xn)
(1)

where the input is the sum of noise and a sineen = bn + "n. bn is as-
sumed to a be zero-mean white noise of variance�2 and of probability
density function (pdf)fb; function� is taken to be bistable and odd.
Furthermore, we assume that the signal-to-noise ratio (SNR) is very
small, or" � �.

Since signalbn is iid, signalxn is Markovian, but in the title paper,
we considered that as a consequence, signalyn is Markovian. This fact
is false in the general case (see [1]). Due to the Markovian property
of xn, the study of the title paper is right until formula (2.8) (resp.
Appendix A), but (2.9) and Appendix C are (slightly) erroneous.

In this erratum, we use simpler notations than that used in
the paper, The sine is written here"n = "<efe�{(2�n� +' )g.
This change implies that the pdf ofxn is expressed asfn(x) =
fwm(x) + <effmod(x)"e

�{(2�n� +' )g, and (2.6) is replaced by

fwm = K(fwm)

fmod = � I �Ke+2{��
�1
� L(fwm):

(2)

Furthermore, (2.7) can be written as�(�0) = 2c
+1

0
fmod(u)du,

and (2.8) is simply expressed asp(n) = 1=2 [1 1]t +

<ef(�(�0)=2c)"e
�{(2�n� +' )g [�1 1]t.

The correlation function ofyn is

�(n; q) =E[ynyn+q] = c2(Pr[yn+q = +c; yn = +c]

+ Pr[yn+q = �c; yn = �c]

� Pr[yn+q = +c; yn = �c]

� Pr[yn+q = �c; yn = +c])
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but asyn is not Markovian, we cannot write, as in the paper, that the
q-step transition matrix is the product of the one-step transition ma-
trices. Nevertheless, we can write, as an example, that forq � 0

Pr[yn+q = +c; yn = +c]

= Pr[xn+q > 0; xn > 0]

=
+1

0

+1

0

f(xn+q; xn) dxn+q dxn

=
+1

0

+1

0

f(xn+q; . . . ; xn) dxn+q � � � dxn

and so on for the other probabilities. At this point, we can use the
Markov property of xn, f(xn+q; . . . ; xn) = f(xn+qjx )
� � � f(xn+1jx )f(xn). As in the title paper, since" � �, we use a
first-order Taylor expansion to write

f xn+k+1jx = fb (xn+k+1 � �(xn+k)� "n+k+1)

� fb (xn+k+1 � �(xn+k))� "n+k+1

� f 0b (xn+k+1 � �(xn+k)) :

Inserting this expansion in the last equation allows us to write

Pr[yn+q = +c; yn = +c]

= P
(1)
+;+(n+ q; n) + P

(2)
+;+(n+ q; n)

+ P
(3)
+;+(n+ q; n) + P

(4)
+;+(n+ q; n)

where

P
(1)
+;+(n+ q; n) =

+1

0

+1

0

q

j=1

fb(xn+j � �(xn+j�1))fwm(xn)

� dxn+q � � � dxn

P
(2)
+;+(n+ q; n) =

+1

0

+1

0

q

j=1

fb(xn+j � �(xn+j�1))

� <e fmod(xn)"e
�{(2�n� +' )

� dxn+q � � � dxn

P
(3)
+;+(n+ q; n) =�

q

k=1

"n+k
+1

0

+1

0

q

fb(xn+j � �(xn+j�1))

� f 0b(xn+k � �(xn+k�1))

� fwm(xn) dxn+q � � � dxn

P
(4)
+;+(n+ q; n) =�

q

k=1

"n+k
+1

0

+1

0

q

j=1

fb(xn+j � �(xn+j�1))

� <e fmod(xn)"e
�{(2�n� +' )

� dxn+q � � � dxn

and so on for the other probabilities. Then using recursion (A.4) on the
n-fold iterated kernel ofK, Nn(x; y), these four terms can be written

in simpler form. Using the symmetrical properties offwm, fmod (see
Appendix A of the paper) and the obvious centro-symmetry of the
n-fold iterated kernelsNn(x; y), it can easily be seen that

P
(2)
+;+(n+ q; n) + P

(2)
+;+(n+ q; n)

= P
(2)
+;+(n+ q; n) + P

(2)
+;+(n+ q; n)

= P
(3)
+;+(n+ q; n) + P

(3)
+;+(n+ q; n)

= P
(3)
+;+(n+ q; n) + P

(3)
+;+(n+ q; n) = 0:

Hence, the only terms to contribute to the correlation are the terms 1
and 4. Interested by the zero-cycle correlation�(q) = h�(n; q)in, we
finally obtain the correlation

�(q) = �wm(q) + �mod(q) (3)

where the terms are, respectively, the correlation of the output in the
absence of the sine and the contribution of the sine to this correlation

�wm(q) = 2c2
+1

0

+1

0

(Nq(u; v)�Nq(u; �v))

fwm(v)dudv

�mod(q)=
c2"2

2
<e

q

k=1

e2{�k�
+1

0

+1

0

(Nq�k(u; v)�Nq�k(u; �v))

(Nk(w; t) +Nk(w; �t))

f 0b(v��(w))fmod(t)dudv dw dt

(4)

for q � 0 (and the correlation is even). This result still looks like the
linear response theory (LRT) result (see [2] and [3]).

To progress in this sense, consider the very particular case� =
c sign. In this case, it can easily be shown that

�wm(q) = c2 �q

�mod(q) =
"2 j�(�0)j

2

2
(cos(2�q�0)� �q)

�
"2 j�(�0)j

2

2
cos(2�q�0)

(5)

where� = Fb(c)�Fb(�c), and�(�0) = (2c fb(c))=(1��e+2{�� )
(the term in�q of the modulation part is rejected in the “noise only” part
and then neglected as it is of order"2). These expressions are exactly
that given in the paper; this is due to the fact that in this particular case,
yn is Markovian(yn = c sign(yn�1 + en)). Let us insist on the fact
that in the particular case where� = c sign, all the results of the paper
are right; hence, part IV is entirely right.

Let us come back to the general case. Using the LRT, comforted by
the last result, the validity domain of the LRT (since" is small enough
compared with�; see [2] and [3]); also comforted by many simulated
results, we obtain�(q) � �wm(q) + hE[yn+q]E[yn]in, that is

�(q) � �wm(q) +
"2 j�(�0)j

2

2
cos(2�q�0) (6)
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where

�wm(q) = 2c2
+1

0

+1

0

(Nq(u; v)�Nq(u; �v))

fwm(v)dudv

�(�) = �2c
+1

0

I � Ke+2{��
�1

� L(fwm)(u)du

(7)

[wherefwm = K(fwm) is unique] that correct (2.11)–(2.13). In the
SETAR case, these expressions degenerate

�wm(q) = 2c2 (12 � 11)
t
Kq�2

�(�) = �2c12 I �Ke2{��
�1

L�:
(8)

This result corrects part III and Appendix E.
Unsurprisingly, with these correct expressions, doing the same work

that is done in Appendix D leads to exactly the same conclusions. The
local SNR tends toward 0 when the noise amplitude� tends to 0 or to
infinity. The conclusion that SR exists in discrete time holds.

Furthermore, these results comfort us about the fact that to find an
optimal system� for a given noise pdf is very complicated. We hope
to use SR for detection purposes, and our current investigations have
led us to use the system� = c sign. This choice is reinforced.
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Comment: On the Unnecessary Assumption of Statistical
Independence Between Reference Signal and Filter Weights

in Feedforward Adaptive Systems

J. Minkoff

In [1], I presented a formulation in which the time-evolving weight-
iteration equation for random signals is derived without the necessity of
invoking the usual unsatisfactory assumption that is customarily made,
namely, that the weightsW and the reference signalX in the weight-it-
eration equation are statistically independent. I neglected, however, to
give a physical argument for it. This is, that in this derivation [see
(16)–(18) in the paper], it is not necessary forW to be independent
ofX but only ofXXy, which does not contain the phase information
of X. That is, the off-diagonal terms ofXXy contain only phase dif-
ferences, which could be produced by an infinite number of different,
arbitraryXs. Thus, considering, for example, an echo-canceler appli-
cation, the all-important information concerning echo delay, which is
essential for proper convergence ofW, is arrived at in the convergence
process by iteratively cross-correlating the reference signalX—not
XX

y—with the iterated error signal. The iterated phase differences
betweenX and the error signals serve to drive the phase ofW to its
ultimate converged value. For this purpose,XXy is of no use, and
declaringW to be independent of the phase ofXXy is therefore not
equivalent to declaring it to be independent of the phase ofX. The term
XX

y does contain information about the magnitude ofX, which must
be considered in setting the value of the step-size parameter�, but the
adaptive-filter operation is statistically independent of the magnitude
of X; if the strength of the echo is proportional tojXj, so is the filter
input, and the corresponding output that cancels it. In fact, as is well
known, in order to avoid excessive fluctuations during and after con-
vergence, it is customary to normalize the step-size parameter� with
respect to input reference-signal power, which removes all information
aboutjXj. And again, sinceXXy does not contain the phase informa-
tion necessary for proper convergence, it is therefore possible to write

WXX
y =W XX

y:

By means of the same arguments, one can of course write an equivalent
expression for time functions.
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