
PERVASIVE COMPUTING FOR
ROAD TRIPS
Marc Böhlen, Jesse Fabian, Dirk Pfeifer,
and JT Rinker, The MediaRobotics Lab,
University at Buffalo

What happens when you mix site-
specific design paradigms from the in-
stallation arts with sensing technologies
common to pervasive computing? That’s
the problem students at the University at
Buffalo’s Department of Media Study
were confronted with when asked to
imagine new uses for distributed sensors
in automobiles.

Long gone are the days when driving
was only about efficient travel. Numer-

ous electronic gadgets are transforming
car culture. Although some electronic
devices such as CD players and DVD
viewers foster ambient entertainment,
the bulk of an automobile’s electronic
innards operate unnoticed for control
and security. This electronic underbelly

offers new opportunities to question the
automobile’s role in our modern lives.
Given our lab’s desire to expand tech-
nologies toward cultural objects, we
designed a semester-long workshop on
underrepresented aspects of pervasive
computing in automobiles.

Our focus wasn’t user interaction,
usability, or safety issues. Rather, we con-
centrated on second-order travel events
that typically occur on road trips. The
road trip—a strange attractor to many
North Americans from Lewis and Clark
to Jack Kerouac and beyond—is more
about experiencing the lay of the land
than goal-directed travel. As such, it
offers an entry point into car culture.

We supplied students with a proto-
typing kit that included temperature
sensors, 2D accelerometers, miniature
color cameras, an OBD-II diagnostic
interface, and a microprocessor-based
control environment. We invited them
to use these tools to react to the experi-
ence of being on the road.

One student project explored the pos-
sibility of using the changing scenery as
an input into a massage seat. The RGB
vibrator extracted a histogram of the

Prototypes in Pervasive
Computing

Editor: Anthony D. Joseph ■ UC Berkeley ■ adja@cs.berkeley.edu

Works in Progress

78 PERVASIVEcomputing Published by the IEEE CS and IEEE ComSoc ■ 1536-1268/05/$20.00 © 2005 IEEE

Figure 1. Soft toys collect image and vibrational travel data and relay it to a base station.

The four entries in this Works in Progress department span different aspects of prototype

building for pervasive computing. The first discusses ongoing student projects exploring perva-

sive computing in automotive environments. The second develops a rapid prototyping envi-

ronment that combines both form and function. The third explores the challenges of recogniz-

ing situations and recurring contextual information, and the fourth investigates approaches to

expressing high-level workflow paradigms for device interactions. —Anthony D. Joseph

EDITOR’S INTRODUCTION

miniature camera’s three main color
bands and mapped them to motor com-
mands for a massage seat, resulting in
situation-specific massages while driv-
ing. Blue colors will generate a lower-
body massage, red colors an upper-body
massage, and green colors a middle-
body massage.

The road trip isn’t only about going
away, but also returning. In a second proj-
ect, a student integrated the miniature
camera and a 2D accelerometer into two
stuffed toy animals (see figure 1). As the
car drove around, the camera-enabled toy
recorded the optical flow of the changing
scenery and the accelerometer-enabled
toy registered large bumps on the road.
As the vehicle approached home, the toys
sent their data via wireless link back to
the garage where a screen greeted the
returning passengers with a free-form
interpretation of the data acquired dur-
ing the trip.

Our projects are still a work in
progress. However, we think that ex-
panding pervasive computing to the
unstructured aspects of our lives will
result in richer information spaces over
time. For more information on our
work, see www.buffalo.edu/~mrbohlen/
automotive_electronics.html or contact
Marc Böhlen at marcbohlen@acm.org.

D.TOOLS: INTEGRATED
PROTOTYPING FOR PHYSICAL
INTERACTION DESIGN
Björn Hartmann, Scott R. Klemmer, and
Michael Bernstein, Stanford University
HCI Group

In product design, prototypes—
approximations of a product along some
dimensions—are the essential medium
for information, interaction, integration,
and collaboration. Information appli-
ances such as mobile phones, digital
cameras, and music players are a grow-
ing area of ubiquitous computing.
Designers currently create two separate
sets of prototypes: “looks-like” proto-
types that show only the device’s form
(the atoms) and “works-like” prototypes

that use a computer display to demon-
strate the interaction (the bits). Because
of the required skill and time investment,
designers don’t build comprehensive
prototypes that join form and function
until late in development.

At that time, monetary constraints
and resource commitments prohibit
fundamental design changes. To address
this problem, we’re creating d.tools. The
d.tools integrated design environment
lets designers rapidly create prototypes
of bits and atoms in concert early in
their process. It also fosters shared
design conversations and encourages
iterations of the design-test-analyze
cycle. d.tools is a rough-and-ready tool
for creating interactive prototypes as
rapidly as designers create paper and
foam core prototypes. Our research
explores a design tool that’s both low-
threshold (it’s easy to create the proto-
types) and high-ceiling (it’s possible to
prototype complex interfaces). It pro-
vides a library of plug-and-play hard-
ware components and a visual author-
ing environment for creating interaction
models (see figure 2). d.tools achieves
extensibility through a hardware and

software extension architecture based
on open standards so engineers and pro-
grammers can build upon high-level
design specifications.

For more information, see http://
hci.stanford.edu/dtools or email Björn
Hartmann at bjoern@cs.stanford.edu or
Scott Klemmer at srk@cs.stanford.edu.

DESIGN PATTERNS FOR
RECOGNIZING SITUATIONS
Seng Loke, Caulfield School
of Information Technology,
Monash University

Pervasive computing applications,
from aged care to fire safety, often need
to recognize the physical situations of
people, devices, and everyday objects.
Various sensor hardware and reasoning
programs have been employed, from
judging human interruptibility1 to
determining an individual’s activity or
a device’s situation.2 Such work might
develop context-aware mobile phones,
make appliances safe, disseminate wire-
less advertisements, or optimize inter-
action. As such applications proliferate

OCTOBER–DECEMBER 2005 PERVASIVEcomputing 79

Figure 2. The d.tools visual authoring environment lets designers rapidly create interaction
models; the hardware components let them build tangible interfaces for these models.

and sensing technology advances, the
approaches become more diverse. An
application might recognize the same or
similar situations in different settings or
from different perspectives, acquiring
the same context information (for
example, location) in different ways.
Application developers might tackle
recurring problems in recognizing situ-
ations using a library of solutions (that
is, situation patterns) codified in a pat-
tern language. According to the Hillside
Group (see http://hillside.net/patterns),
patterns “help software developers
resolve recurring problems encountered.
Patterns help create a shared language
for communicating insight and experi-
ence about these problems and their
solutions.”

Our first situation pattern language
uses logic programming (which is ab-
stract and enables relationships between
sensors), sensor-acquired context, and
high-level reasoning.3 We’re also work-
ing on creating more general templates
for situation patterns akin to design pat-
terns.4 Such a situation pattern includes
the pattern name, the situation to be rec-
ognized, the applicability and assump-
tions concerning the solution, the solu-
tion (that is, the sensors and reasoning
techniques used), the rationale, known
uses and problems, and related situation
patterns (for example, a pattern for unin-
terruptible situations1).

For more information, contact Seng
Loke at swloke@csse.monash.edu.au.

REFERENCES

1. J. Fogarty et al., “Predicting Human Inter-
ruptibility with Sensors,” ACM Trans.
Computer-Human Interaction (TOCHI),
vol. 12, no.1, 2005, pp. 119–146.

2. H. Gellersen et al., “Physical Prototyping
with Smart-Its,” IEEE Pervasive Comput-
ing, vol. 3, no. 3, 2004, pp.12–18.

3. S.W. Loke, “Representing and Reasoning
with Situations for Context-Aware Perva-
sive Computing: A Logic Programming Per-
spective,” Knowledge Eng. Review, vol. 19,
no. 3, 2005, pp. 213–233.

4. E. Gamma et al., Design Patterns, Addison-
Wesley, 1995.

RAPIDLY PROTOTYPING
DEVICE ECOLOGY
INTERACTIONS
Seng Loke and Sea Ling, Caulfield
School of Information Technology,
Monash University

The American Heritage Dictionary
defines ecology as the relationship
between organisms and their environ-
ment. We envision the computing plat-
form of the 21st century:

• taking the form of device ecologies,
• automating life tasks and work, and
• comprising collections of devices (in the

environment and on users) that inter-
act synergistically with one another,
with users, and with Internet resources,
supported by appropriate software and
communication infrastructures rang-
ing from Internet-scale to very-short-
range wireless networks.

We’re developing a high-level model
for describing interactions among
devices based on the workflow para-
digm,1 akin to Michael Dertouzos’
automation scripts.2 Users can translate
scripts in our high-level language, eco,
into a specialized Business Process Exe-
cution Language for Web Services spec-
ification. They can then execute the
scripts via a device ecology workflow,
or decoflow, engine. For example, we
can translate the script

turn on room lights;
close drapes;
show news on television

into a decoflow among three devices (the
room lights, drapes, and television) and
use the decoflow engine to execute it, as
figure 3 shows. Each decoflow task might
involve a conversation with devices or
Internet resources. Web services provide
a uniform approach to accessing devices
(interfaced as a Web services collection)
and Internet resources.

Our system also lets you translate such
scripts into Petri net models for analysis
to predict their effects on the environ-

ment (such as noise level, temperature,
and brightness) before execution.3

For more information on the model
and engine, including further publica-
tions, log on to www.csse.monash.
edu.au/~swloke/DECO.html or email
Seng Loke at swloke@csse.monash.
edu.au or Sea Ling at sling@csse.
monash.edu.au.

REFERENCES

1. S.W. Loke, “Service-Oriented Device Ecol-
ogy Workflows,” Proc. 1st Int’l Conf. Ser-
vice-Oriented Computing, Springer, 2003,
pp. 559–574.

2. M. Dertouzos, The Unfinished Revolution:
How to Make Technology Work for Us—
Instead of the Other Way Around, Collins,
2002.

3. S. Smanchat et al., “Asynchronous and Syn-
chronous Communications in Petri Nets for
Run-Time Analysis of a Device Ecology,”
to be published in Proc. 7th Int’l Conf.
Information Integration and Web-based
Applications and Services, 2005.

WORKS IN PROGRESS

W O R K S I N P R O G R E S S

80 PERVASIVEcomputing www.computer.org/pervasive

User inputs

User interface level

High-level workflow to
low-level workflow translator

Low-level device ecology
workflow engine

Device conversations
execution and management

High-level workflow

Low-level workflow

Conversations

Service calls

Device ecology and Web resources

Figure 3. The decoflow engine
architecture.

