
84 PERVASIVEcomputing Published by the IEEE CS and IEEE ComSoc ■ 1536-1268/05/$20.00 © 2005 IEEE

Editor: Sumi Helal ■ University of Florida ■ helal@cise.ufl.edu

Standards & Emerging Technologies

C amera phones have been in exis-
tence almost five years now, and as

their popularity increases, users are
demanding better image capturing capa-
bilities and more functionality. Fortu-
nately, the processing capabilities of cur-
rent smart phones can support new
applications such as image processing,
movement detection, pattern recogni-
tion, color detection for the visually
impaired, and augmented reality games.
To support these new applications, some
smart phones use the Mobile Media
API, which lets developers build multi-
media applications—including video
recording and image capture—into
phones from different manufacturers.

Here, we review MMAPI technology
and explore how people might use their
phones’ cameras as more than just con-
ventional cameras. We performed our
study on a typical European high-end
GSM smart phone, the Nokia 6600, and
compared some measures with the
Nokia 3650. Although our results apply
to these specific terminals, you could
generalize them for other smart phones.
Our goal was to understand this tech-
nology and its limitations and to clarify
what we can (and can’t) achieve with
smart camera phones.

THE MOBILE MEDIA API
J2ME grants access to a phone’s cam-

era through the optional library MMAPI,1

which is used mainly to retrieve, open,
and play multimedia contents from any
source—local or remote. The MMAPI
manages the camera just like any other

multimedia source, in a straightforward
manner. In mid 2003, only the Nokia
3650 supported MMAPI, but now at
least 30 models from different manufac-
turers support it, and we expect more
models will soon follow. (Manufacturers
supporting MMAPI include Alcatel, Mis-
ubishi Electric, Nokia, Siemens, and Sony
Ericsson; for specific model information,
see http://developers.sun.com/techtopics/
mobility/device/device). Unfortunately,

not all J2ME phones (nor the Mobile
Information Device Profile 1.0 or 2.0)
have this library, even when the terminal
includes a built-in camera.

The camera is considered a multime-
dia source, so the locator capture://video can
identify it. With the System.getProperty(String key)
call, we can determine whether the
phone supports video and audio record-
ing and in what formats. The video cap-
ture is equivalent to a reproduction (you
use the same API for both playing and
recording), and the programmer man-
ages it using a Player created with the
createPlayer(String locator) call in the Manager class.
We can access the camera’s images as a

video stream and then post them on the
screen. Using the VideoControl.getSnapshot(String
imageType) method, we can take a photo-
graph—in this case, an individual video
frame—and present it in a range of for-
mats, sizes, and bit depths.

To process data, we need to take the
RGB pixel values from the image in a
compressible standard image format. The
most straightforward way to accomplish
this is to use the Image.getRGB() method,
which stores the RGB values as an array
of integers. However, this method is only
available in MIDP 2.0. We can also use
the DirectGraphics.getPixels method in the Nokia
UI proprietary API,2 but not all Java-
enabled phones have this library. The
hardest way to achieve this would be to
parse the image file to access the pixels.
We adopted the straightforward solution,
because the Nokia 6600 phone is MIDP
2.0 enabled. We also processed data
using the Nokia 3650 (which supports
MIDP 1.0) by parsing a PNG file. This
was simple because the phone produced
uncompressed PNG files, so we just had
to remove the headers.

CAMERA ACCESS
PERFORMANCE IN J2ME

Phones like the Nokia 6600 usually
have a VGA camera chipset; in other
words, the phone captures photographs
of 640 � 480 pixels—the same as what
the phone’s native camera application
can achieve. We measured the acquisi-
tion time and file size for the three avail-
able formats in the Nokia 6600 phone:
PNG, BMP, and JPEG.

Smart Camera Phones:
Limits and Applications
Jonatan Tierno and Celeste Campo

The processing
capabilities of current

smart phones can support
new applications such as

image processing,
movement detection, and

pattern recognition.

APRIL–JUNE 2005 PERVASIVEcomputing 85

We use the getSnapshot() method as the
function’s parameters. The default for-
mat is a 160 � 120 PNG image. We
took three measures for each size and
format. Figure 1 presents the average
results. We also consider how image
complexity influences file size. We took
a photograph first of a white wall and
then of a scene with people and objects.
Table 1 presents the results.

When the file was too big for the
phone to process, the application either
blocked, so the camera wasn’t available
until we rebooted the phone, or it
(more frequently) aborted with an error
message. Also, the phone always used
the default image size (160 � 120) and
then rescaled the image if the width and
height parameters weren’t the default,
so the image quality didn’t improve.

For real-time applications, such as
those requiring movement detection, the
phone never achieved a high processing
speed—at best, it came close to two
images per second. JPEG was the fastest
format, but BMP was a close second.

Why are JPEGs faster, even though
they require a more complex process? A
typical camera chipset can work using
several formats: uncompressed (YCrCb)
or compressed (JPEG) images. Thus, the
Kilo Virtual Machine would need to

process PNG or BMP images, but hard-
ware creates JPEG images. We have per-
formed tests on the Nokia 3650, which
has reached approximately seven frames
per second.

JPEG images are the smallest, and the
file size is less dependent on image
dimensions, owing to the lossy com-
pression used. PNG image files are
larger but the image quality is better.
The BMP format is uncompressed, so
the file size is proportional to the image
width and length. The image quality is
quite low, though, because a 256-color
palette is used. A higher bit depth
would increase the file size too much.

Using Symbian native code instead of

J2ME (see www.symbian.com), native
applications can access the camera in
terms of independent images and not
video (as with MMAPI).3 The viewfinder
isn’t provided, so the application must
take photographs and show them to the
user periodically. The images are obtained
asynchronously using active object and
are offered in a Symbian-specific format,
which the application can later convert
to other formats. One of the parameters
is image quality, which can be high or low.

A low-quality image (called a snap-
shot) is quarter VGA—that is, 160 �
120 pixels, and 4,096 colors (12 bits). A
high-quality image is VGA (640 � 480)
and 16 million colors (24 bits). Typi-

0

2

4

6

8

10

12

14

16

18

160 × 120
(default)

200 × 150 320 × 240 400 × 300 640 × 480 800 × 600

Ac
qu

is
iti

on
 ti

m
e

(s
ec

.)

Image dimensions

PNG
BMP
JPEG

0

100

200

300

400

500

600

700

800

160 × 120
(default)

200 × 150 320 × 240 400 × 300 640 × 480 800 × 600

Fi
le

 s
iz

e
(K

b)

Image dimensions(a) (b)

PNG
BMP
JPEG

Figure 1. Comparison among PNG, BMP, and JPEG format images: (a) acquisition time and (b) file size.

TABLE 1
Comparing file size and acquisition time among formats based on image complexity.

Acquisition methods
Image File size getSnapshot createImage* getRBG

File format complexity (bytes) (ms) (ms) (ms)

PNG Simple 28,953 828 219 0

Complex 44,248 875 219 16

BMP Simple 20,278 532 141 16

Complex 20,278 500 156 16

JPEG Simple 1,223 610 203 15

Complex 3,469 641 219 16

*To manage an image, MIDP uses the class Image, created with the static method
Image.createImage().

cally, snapshots are used for video and
viewfinder, and high-quality images for
the actual photograph. It’s also possible
to switch between illumination profiles
(night and day), which modify image
brightness by adjusting the white bal-
ance.

MMAPI, on the other hand, creates a
video stream by putting together snap-
shots taken periodically from the cam-
era. An image obtained with getSnapshot() is
simply one of these snapshots, rescaled
and reformatted when necessary.

IMAGE PROCESSING
PERFORMANCE IN J2ME

If we want to implement applications
that process images, our device must be
able to run heavy algorithms very fast,
sometimes even in real time. We’ll also
probably need to use a lot of data at the
same time from one or more images. So,
two important features that we meas-
ured were operation speed and the
amount of dynamic memory available
for a MIDlet.

We measured the speed of the proces-
sor’s basic operations to determine the
overall speed and to identify the fastest
and slowest applications. We refer only
to low-level arithmetic operations,
because those are the only math opera-
tions available in the J2ME API.

Operation speed
To measure time, we used the System.

currentTimeMillis() method, which has a preci-

sion of milliseconds. We repeated each
operation inside a loop a certain num-
ber of times and measured the duration
of the loop. Then we did the same with
an empty loop. The duration of a sin-
gle operation is that of the first loop,
minus the empty loop, over the number
of iterations. With this method, we
measured how long it took to

• extract a variable from an array,
• increment a variable,
• add two variables and store the result,
• multiply and divide in powers of 2

using bit shift,
• multiply and divide a variable and a

constant, and
• compare two variables (equal, less or

equal, less).

We implemented an application that
executes this method with each of these
operations. The results obtained were
distorted by other processes running
concurrently on the phone, such as
phone service management and other
operating system tasks. In fact, the
operations took much longer when we
pressed the keys or navigated the
menus. These tasks will be always pres-
ent in the terminal, so we used the aver-
age measure.

The results in Table 2 reveal which
operations we should avoid in heavy
computations to make our applications
more efficient. Division is the slowest
operation—almost two orders of mag-

nitude slower than an addition. Sur-
prisingly, compare operations are also
several times slower than others, includ-
ing multiplication. An array extraction
is slower than an addition or a shift
because it requires indirection.

Of course, the algorithms determine
which operations we need to use, but,
using this information, we can minimize
the number of divisions inside a loop to
make it faster or we can replace the divi-
sion with a shift. Note that the operations
should use integer numbers; if decimal
numbers are needed, the fixed-point
arithmetic technique allows decimal cal-
culations using integer types.

Because the Nokia 6600 uses a 104-
MHz processor, and a simple operation
typically takes two clock periods, it’s clear
that the fastest operations in our results
executed approximately at processor
speed. This might suggest that a MIDlet
is as fast as a Symbian application, but
this is only partially true. The Nokia 6600
uses a virtual machine called Monty 1.0
VM,4 which features a dynamic compi-
lation scheme, based on the Java Hotspot
Virtual Machine for J2SE. So the virtual
machine has both an interpreter, which
executes Java bytecodes at runtime, and
a compiler, which turns bytecodes into
native code at runtime. Native code is an
order of magnitude faster than interpreted
code but takes up additional memory
space. The Monty VM solves this using
the profiler, a third block of the virtual
machine. The profiler uses statistic tech-
niques to identify at runtime parts of the
code, called hotspots, that the MIDlet
runs repeatedly. Then the Monty VM
compiles the hotspots and interprets the
rest of the code, which it executes rarely
or only once.

This enhancement assumes that an
application spends most of its runtime
executing a small portion of the code.
The current test MIDlet made this
assumption, since all it does is repeat a
loop thousands of times. The profiler
identifies this loop as a hotspot and
compiles it, running at processor speed.
This assumption holds true for all the
applications we study here. Typically,

STANDARDS & EMERGING TECHNOLOGIES

S T A N D A R D S & E M E R G I N G T E C H N O L O G I E S

86 PERVASIVEcomputing www.computer.org/pervasive

TABLE 2
Duration of a 10,000,000 loop and of a single operation (average of 10 measures).

Operation Loop time (ms) Single operation (ns)

Empty loop 1,372.0 0.0

Array extraction 2,062.7 69.1

Increment 1,573.3 20.1

Sum 1,565.9 19.4

Shift 1,562.5 19.1

Multiply 1,862.6 49.1

Divide 12,396.7 1,102.5

Less or equal 2,375.1 100.3

Less 2,351.4 97.9

Equal 2,554.8 118.3

an image-processing algorithm will iter-
ate on an array containing pixels of an
image and repeat the process on subse-
quent images over time or on different
parts of an image. Thus we can expect
good behavior from our MIDlets.

Available dynamic memory
The volatile memory that a device uses

to execute Java applications is called
heap. According to the Nokia 6600
specifications, the heap is 3 Mbytes. To
check this, we used a Symbian applica-
tion FExplorer (http://users.skynet.be/
domi/download.html) and found that
the free dynamic memory, regardless of
the data in the memory card or the flash
memory, is about 10 Mbytes. However,
the heap could be smaller, since it’s the
memory available only to MIDlets.

To take actual measures, we imple-
mented a simple MIDlet that tries to allo-
cate a byte array of a given size. We per-
formed several tests with different array
lengths. We learned that the memory
available for a MIDlet isn’t limited by the
heap (3 Mbytes) but by the volatile mem-
ory (10 Mbytes). We also learned that
the memory that the KVM can assign to
a MIDlet is dynamic; initially, it allows
a small amount, but when the memory
actually used nears its limit, it assigns
more memory to the MIDlet.

WHAT CAN SMART CAMERA
PHONES ACHIEVE?

Our experiments reveal that when
implementing image processing MIDlets
on mobile devices, we must first identify
which device resources are available
from J2ME. Then we can determine
whether these resources offer the same
characteristics to a MIDlet as to a native
application. This might not be obvious
and often can be answered only by per-
forming tests or through trial and error
on an actual device.

We also learned that the main restric-
tions are those imposed by the camera
or, more precisely, by the access to the
camera that J2ME grants. The size of the
available images, which is much smaller
than what the camera can reach, and the

need for a minimum distance between
camera and object, makes implementing
applications such as barcode readers or
text recognition difficult. Symbian pro-
vides the camera’s full resolution but
doesn’t address the focal distance prob-
lem. We might address this issue using an
add-on lens for close photographs, such
as the lens for the Nokia 3650 terminal
(Nokia CC-49, www.nokia.com/nokia/
0,4879,5813,00.html).

If our application requires real-time
processing, then frame speed, which is
often quite slow, is the most important
feature. Symbian looks like a good alter-
native, but we have yet to measure this.

Applications that require pattern recog-
nition, such as face recognition, will find

their bottleneck in the phone’s processing
speed and in the reduced API that MIDP
offers for math operations. In Symbian,
the API is far more complete, but the best
way to deal with heavy algorithms in a
limited device is to use basic arithmetic
operations with integer data, using tech-
niques such as fixed-point arithmetic and
lookup tables. We shouldn’t expect a dra-
matic increase in application speed if we
move to native Symbian, because the
most critical parts of our MIDlet will
already run on native code.

Applications obtaining information
from the image’s color or brightness will

be limited mainly by the camera’s auto-
matic white balance, which the pro-
grammer can’t control. The same process
occurs in Symbian, although it might help
to adjust the camera’s lighting profile.

To test the possibilities of J2ME image
processing on a mobile phone, we imple-
mented two applications. The first is a
color reader designed to help blind peo-
ple. It detects the colors present on the
image and announces them. The second
is a simple surveillance application that
reviews time images taken by a camera
in real time and sounds an alarm when
movement is detected.

E ventually, new terminals with bet-
ter cameras should overcome most

of the limitations we’ve discussed here.
The cameras will have not only higher
resolution but also better optical zoom
and auto focus. More importantly,
improved MMAPI implementation will
let the terminals exploit the full poten-
tial of smart camera phones and their
high-speed processors. However, even
current terminals can implement inter-
esting and useful applications with
imagination and careful design.

REFERENCES

1. Mobile Media API, tech. report JSR 135,
Java Community Process, http://jcp.org/
en/jsr/detail?id=135.

2. “Nokia UI API Programmer’s Guide
v1.1,” Forum Nokia, Version 1.1. 2002,
http://forum.nokia.com/main/0,6566,040,
00.html?fsrParam=1-3-&fileID=6836.

3. L. Edwards and R. Barker, Developing
Series 60 Applications: A Guide for Sym-
bian OS C++ Developers, Addison-Wesley,
2004.

4. The Project Monty Virtual Machine, white
paper, Sun Microsystems, 2002.

STANDARDS & EMERGING TECHNOLOGIES

APRIL–JUNE 2005 PERVASIVEcomputing 87

Jonatan Tierno is a research

assistant in the Department

of Telematics Engineering at

University Carlos III of Madrid.

Contact him at jonatan@it.

uc3m.es.

Celeste Campo is an associ-

ate professor in the Depart-

ment of Telematics Engi-

neering at University Carlos

III of Madrid. Contact her at

celeste@it.uc3m.es.

Our experiments reveal
that when implementing

image processing MIDlets
on mobile devices, we

must first identify which
device resources are
available from J2ME.

