
A s mobile computing devices grow
smaller and as in-car computing

platforms become more common, we
must augment traditional methods of
human-computer interaction. Current
methods are impractical and unsafe in
the pervasive environment, so many
device makers are turning to speech as
an additional or preferred method of
user interaction.

Although speech interfaces have
existed for years, the constrained sys-
tem resources of pervasive devices, such
as limited memory and processing capa-
bilities, present new challenges. Also,
mobile environments are more de-
manding than traditional voice-re-
sponse environments, given the higher
background noise, poor microphone
quality, and user’s cognitive load while
operating a pervasive device. Further-
more, despite these constraints, per-
formance requirements call for systems
that can accurately recognize complex
dialogs and produce human-sounding,
understandable speech output.

Previous issues of IEEE Pervasive
Computing have addressed some of
these challenges, discussing cyber for-
aging and its ability to offload com-
puting resources from a constrained
device1 and presenting various tech-
niques for disambiguating speech from
ambient noise.2 Here, we provide an
overview of embedded automatic speech
recognition on the pervasive device and
discuss its ability to help us develop per-
vasive applications that meet today’s
marketplace needs.

AUTOMATIC SPEECH
RECOGNITION

ASR recognizes spoken words and
phrases. State-of-the-art ASR uses a
phoneme-based approach for speech
modeling: it gives each phoneme (or
elementary speech sound) in the lan-
guage under consideration a statistical
representation expressing its acoustic
properties. An ASR system’s acoustic
training consists of finely estimating
the parameters associated with these
phoneme-level representations using
hundreds of hours of speech uttered by
hundreds of speakers. These generic
phone models are then articulated into
word models to form the lexicon ap-
propriate for the desired application.
This approach offers the benefit of
speaker independence and application
flexibility. In ASR systems that are lan-
guage dependent, the ASR systems’
training process is largely automated
and the same basic process is executed
for each language.

Although phoneme-based ASR re-
quires more device resources than sim-
pler technologies, we can apply them
to more complex tasks. Furthermore,
because of the speaker independence,
such systems can work out of the box
for most applications. (The sidebar
presents other, associated ASR tech-
nologies that improve overall system
accuracy and provide additional func-
tional elements required to create dif-
ferent types of applications.)

The quality of speech an ASR system
receives depends largely on the micro-

phone’s type and location. Whenever
manufacturing limitations allow, device
makers prefer a directional, noise-
reducing microphone positioned as
close to the speaker as possible. ASR
consists of transforming the raw speech
input into a hypothesized sequence of
words. As Figure 1 shows, three pri-
mary modules perform this process: the
front-end, labeler, and decoder mod-
ules. Each contributes approximately
the same computational workload, and
they operate in succession.

In one instance of an ASR system, the
front-end module inputs 16 kHz speech
samples coded onto 16 bits. For every
15 ms of speech, it computes a 13-
dimensional mel-frequency cepstral
coefficient feature vector condensing
the spectral information from an over-
lapping window containing 25 ms of
speech. Unlike speech, noise sources
such as car noise have significant energy
in the low frequencies, so the system
can discard these low-frequency signal
components during MFCC computa-
tion. Finally, the front-end module per-
forms energy normalization and mean
normalization to reduce high variabil-
ity in the signal levels and the effects of
high variability of the audio input chan-
nel, respectively.

The labeler module appends first and
second derivatives to the cepstral vec-
tors and scores each of the resulting 39-
dimensional vectors against the acoustic
model, which consists of single-state
Hidden-Markov Models. Each HMM
specializes in modeling a given phoneme

Pervasive Speech
Recognition
Neal Alewine, Harvey Ruback, and Sabine Deligne

78 PERVASIVEcomputing Published by the IEEE CS and IEEE ComSoc � 1536-1268/04/$20.00 © 2004 IEEE

Editor: Sumi Helal � University of Florida � helal@cise.ufl.edu

Standards&EmergingTechnologies

in a given phonetic context, called allo-
phone. An example allophone would
be the phoneme “a” occurring after a
plosive (consonant sound where the flow
of air is stopped and then released, such
as “p”) and before a nasal consonant
(such as “n”)—“pan.” Each HMM state
is associated with a Gaussian mixture
letting us measure the probability that
any given feature vector be an instance
of the allophone associated to the
HMM. When training the acoustic
model, the number of allophones and
the number of Gaussians allocated to
each state are optimized to reach a fair
tradeoff between memory and com-
putational resources, and modeling
accuracy.3,4 The labeler establishes for
each feature vector a ranked list of the
few hundred states with the highest
probabilities. A table lookup3 then
infers state likelihoods on the basis of
their rank in the list and forwards the
sequence of state likelihoods to the
decoder.

The decoder module relies on allo-
phone graphs that, given word transi-

tions that describe a grammar or lan-
guage model, specify the eligible se-
quences of allophones together with
their a priori likelihood. In grammar-
based applications or limited-domain
dictation, allophone graphs are usually
precompiled. The decoder reads the

state likelihoods and implements a syn-
chronous Viterbi search5 to retrieve the
most likely sequence of states among
those permitted by the active allophone
graph. A word identifier marking the
end of each sequence of allophones
modeling a word allows a fast mapping

OCTOBER–DECEMBER 2004 PERVASIVEcomputing 79

Supervised adaptation, or speaker enrollment, improves accuracy for

an individual speaker by having the user read a predetermined script.

The system analyzes this specific audio and adapts the acoustic model

to the user’s specific characteristics. Unsupervised adaptation improves

the accuracy for a specific user as well but doesn’t require reading a

predefined script. Instead, the system adapts during normal operation.

Name-tag or voice-tag support lets the user teach the system new

words. Phone-dialing applications often use this technology to learn

names in the address book. This feature is critical for applications requir-

ing voice access to data that it can’t predefine.

Dictation can recognize free-form commands. It lets the user speak in

a more free-form style using statistical models as opposed to the finite-

state grammars that most embedded systems currently use. The user is

still bounded by the words and types of phrases that the designer used

to train the system, but flexibility is allowed in the phrase structure, re-

sulting in an easier to use system.

Natural language understanding helps systems interpret the meaning

of free-form requests, because simple command-to-action mapping

isn’t sufficient. Approaches include keyword spotting, rule-based analy-

sis, and statistical NLU. Statistical NLU employs models generated from

domain-specific training sets representing how free-form phrases corre-

late to a predetermined set of actions and attribute-value pairs.

Dialog management builds on NLU by providing a method to inter-

pret a phrase’s meaning relative to the current user task and by con-

trolling interaction with the user. The dialog manager applies the

action and attribute-value pairs to a predefined set of user tasks and,

when required, prompts the user for additional information.

Barge-in, wake-up commands, and always listening refer to technolo-

gies associated with how a user interacts with the system. Each removes

the need for a user to press a button to speak. Barge-in refers to recog-

nizing speech while an audio prompt is playing. Wake-up commands

let the user speak a predefined phrase at any time, indicating that a

command follows. Always listening is the final evolutionary step, letting

the user speak any command at any time. Each approach requires echo

cancellation to remove known audio signals, such as prompts or radio

output, from the input signal. In one implementation, the speech re-

cognition front-end module receives a separate channel containing only

the known signal’s reference samples, which are corrupting the user’s

speech. It then adaptively filters out this signal from the stream-of-

speech samples.1

REFERENCE

1. E. Weinstein, M. Feder, and A.V. Oppenheim, “Multi-Channel Signal Separa-
tion by Decorrelation,” IEEE Trans. Speech and Audio Processing, vol. 1, no. 4,
1993, pp. 405–413.

ASSOCIATED AUTOMATIC-SPEECH-RECOGNITION TECHNOLOGIES

Front-end
module

Mel-frequency cepstral
coefficient vectors

Labeler
module

Decoder
module WordsState

likelihoods
 Speech
samples

Graph
compiler

Allophone
graph

Grammar,
language

model

Components
of the system

Graph preparation

Acoustic
model of

allophones

Figure 1. The main operations of speech recognition.

from the best sequence of states to the
recognized words upon search com-
pletion. The result is a text-based best
hypothesis that matches the initial raw-
speech input.

SPEECH PROGRAMMING
A speech-programming interface’s

design and architecture is just as impor-
tant to the application as the speech
recognition engine’s accuracy and qual-
ity. For a pervasive environment, inter-
faces must provide a portable, scalable,
and highly flexible solution.

Portability lets application designers
select a platform that meets their appli-
cation’s hardware and software re-
quirements. Scalability lets them in-
clude in the final implementation only
the required speech technology com-
ponents. Data-driven speech compo-
nents are also highly desirable, because
they let designers modify the applica-
tion behavior relative to the speech

components through data-file updates
rather than through code changes. The
result is a more stable product that’s
readily customized and easily updated.

Speech user interface design and val-
idation is a critical step during applica-
tion development. Because people are
accustomed to speaking to other peo-
ple, designers must account for this pre-
conditioned input method. Commands
should be natural and intuitive, result-
ing in less memorization for new users.
Also, acoustically distinct alternative
commands for the same task ensure
high accuracy for users with different
speaking styles.

Speech user interface design is an
iterative process, like most other de-
sign tasks, intended to account for the
variability in user responses to system
prompts. Speech recognition adds an
additional complexity to user interface
design because the interface’s quality
depends on the commands’ accuracy

in addition to their intuitiveness. The
confusability of words is a major con-
tributor to poor speech recognition.
Acoustic confusability encompasses
the phonetic similarities of pronuncia-
tions in the vocabulary, including how
the background-noise environment
amplifies the confusability of like-
sounding words. So, an iterative design
process that includes these real-world
influences becomes even more valuable
because it can demonstrate such
usability issues early during design and
development.

A PHONE-DIALER APPLICATION
IBM Embedded ViaVoice is a Soft-

ware Developer’s Kit that supports
speech recognition, speech synthesis,
and associated technologies. More im-
portant, it’s an example of ASR tech-
nology that addresses many of the
issues we’ve discussed. The SDK con-
tains a set of scalable components that
developers can use to meet specific
application and platform requirements.
EVV consists of the tools, data, and run-
time components required to develop
full-function speech recognition and
text-to-speech applications in a variety
of languages. Figure 2 shows a typical
application, a hands-free phone-dialer
that dials numbers based on speech com-
mands. This application uses these EVV
components:

• Embedded Speech Recognition. ESR
is a speech recognition component
that provides finite-state grammar
support, voice-tag (word or phrase
trained at runtime) processing, and
all other recognition functionality.

• Text-to-Speech. The component that
provides formant and concatenative
synthesis.

• Embedded Audio Layer. EAL is an
audio abstraction layer that provides
applications with a platform-inde-
pendent interface to basic audio func-
tionality.

• Audio Optimizer. AOP provides
automatic gain control and audio sig-
nal characteristic feedback features

STANDARDS & EMERGING TECHNOLOGIES

S T A N D A R D S & E M E R G I N G T E C H N O L O G I E S

80 PERVASIVEcomputing www.computer.org/pervasive

Speech input

AOP
CTTS
EAL
TTS

Audio Optimizer
Concatentative Text to Speech
Embedded Audio Layer
Text to Speech

ESR
UVOC

Embedded Speech Recognition
Unlimited Vocabulary Component

Audio prompts

Names

Voice tagVoice tag

Phone interfaces

Acoustic
models

Address
book

Phone-dialer
 application

Application logic

CTTS
voice

TTSESR AOPUVOC

Vocabularies
with

voice tags

Vocabulary

EAL

Figure 2. A phone-dialer application using IBM Embedded ViaVoice.

designed for speech recognition in
dynamic noise environments.

• Unlimited Vocabulary. UVOC pro-
vides runtime grammar compilation
and can generate pronunciations
from spellings.

The phone-dialer application uses
ESR for speech recognition and voice-
tag support, ECI for prompts and com-
mand verification, AOP and EAL for
audio management, and UVOC to gen-
erate pronunciation for names already
existing in the address book. The EVV
SDK also includes all the data compo-
nents (acoustic models, text-to-speech
voices, and dictionaries) and tools to
manage this data. The EVV runtime
components use the data blocks that
the tools create to define application-
specific behaviors such as the sup-
ported language, voice characteristics,
and application vocabularies. The
application in turn provides the inter-
face logic tying these data blocks and
runtime components together to pro-
duce the final application package and
behavior. Using this data-driven model,
an application can support multiple
languages with the same implementa-
tion by providing the appropriate
acoustic model, CTTS (Concatentative
Text to Speech) voices, and vocabulary
data files.

F uture research and application of
ASR in pervasive devices will focus

on improved performance in high noise
conditions, more natural and conver-
sational speech interfaces, and im-
proved personalization to better match
specific user needs. Researchers are
pursuing a range of technologies and
techniques to address these needs in-
cluding combined audio-visual pro-
cessing, distributed speech recognition,
and natural-language-understanding
dialog-management systems. The suc-
cessful application of these technolo-
gies in the pervasive environment will
require a continued focus on system

resource requirements, efficient speech
programming techniques, and good
speech user interface design.

REFERENCES

1. R.K. Balan, “Powerful Change Part 2:
Reducing the Power Demands of Mobile
Devices,” IEEE Pervasive Computing, vol.
3, no. 2, 2004, pp. 71–73.

2. T.E. Starner, “The Role of Speech Input in
Wearable Computing,” IEEE Pervasive
Computing, vol. 1, no. 3, 2002, pp. 89–93.

3. L.R. Bahl et al., “Performance of the IBM
Large Vocabulary Continuous Speech
Recognition System on the ARPA Wall
Street Journal Task,” Proc. Int’l Conf.
Acoustics, Speech, and Signal Processing
(ICASSP 95), IEEE Press vol. 1, 1995, pp.
41–44.

4. S.S. Chen and P.S. Gopalakrishnan, “Clus-
tering via the Bayesian Information Crite-
rion with Applications in Speech Recogni-
tion,” Proc. Int’l Conf. Acoustics, Speech,
and Signal Processing (ICASSP 98), vol. 2,
IEEE Press, 1998, pp. 645–648.

5. L. Rabiner and B.H. Juang, Fundamentals
of Speech Recognition, Prentice Hall, 1993,
chap. 6.

STANDARDS & EMERGING TECHNOLOGIES

OCTOBER–DECEMBER 2004 PERVASIVEcomputing 81

Neal Alewine is a senior

technical staff member at

IBM Pervasive Computing.

Contact him at alewine@

us.ibm.com.

Harvey Ruback is a senior

software engineer at IBM

Pervasive Computing. Con-

tact him at hruback@us.

ibm.com.

Sabine Deligne is a research

staff member at IBM Watson

Research. Contact her at

deligne@us.ibm.com.

Tomorrow's
PCs, handhelds,
and Internet will
use technology
that exploits current research
in artificial intelligence.
Breakthroughs in areas such
as intelligent agents, the
Semantic Web, data mining,
and natural language
processing will revolutionize
your work and leisure
activities. Read about this
research as it happens in
IEEE Intelligent Systems.

w
w

w
.c

o
m

p
u

te
r.

o
rg

/i
n

te
ll

ig
en

t/
su

b
sc

ri
b

e.
h

tm

SEE THE
FUTURE OF
COMPUTING

NOW
in IEEEIntelligent Systems

