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Guest Editorial: Special Cluster on Microwave
Medical Imaging

HE CONCEPT of using of nonionizing microwave-fre-

quency electromagnetic waves to image the human body
has intrigued engineers and clinicians alike for several decades.
Low-power microwaves can be used to sense the dielectric
properties of human tissue in a low-cost manner that does not
pose health risks to the patient. Yet numerous challenges need
to be overcome in order to achieve the promise of microwave
imaging in a clinical setting. The letters in this Special Cluster
explore solutions to a variety of these challenges.

Throughout this editorial, our use of the term “microwave
imaging” denotes an active approach wherein microwave
energy is transmitted into tissue. This is in contrast to passive
microwave imaging, known as radiometry or thermography
(e.g., [1]), wherein microwave emissions due to blackbody
radiation are detected and used to measure temperature differ-
ences in tissue.

A. Physical Basis for Microwave Medical Imaging: Tissue
Dielectric Properties

Dielectric properties of human tissues have been assessed to
further our basic understanding of the interactions between elec-
tromagnetic fields and tissues and to provide a foundation for
applications ranging from dosimetry to diagnosis and treatment.
Foster and Schwan provide a historical perspective on work in
this field [2], while Gabriel ef al. provide both a summary of
reported measurements for a variety of tissues [3], as well as
extensive measurement data for numerous healthy tissues [4].

At microwave frequencies, the reported properties of tissues
suggest the feasibility of imaging, as well as challenges related
to this task. First, different tissues have different properties that
are typically related to the water content. While this suggests
that tissues may be differentiated with microwaves, detection
of disease or anomalies relies on differences between properties
of healthy and diseased tissues or biological materials. These
differences may be small, resulting in significant dynamic
range requirements for practical systems. Detection may be
further complicated by the presence of multiple tissues with
different properties, resulting in complex scattering scenarios.
Second, the properties of tissues change with frequency. Thus,
while spectroscopy may have a role to play in imaging and
sensing, frequency variation introduces additional unknown
parameters, as well as distortion of wideband signals during
propagation through tissues. Third, conductivity of tissues typ-
ically increases with frequency, resulting in a tradeoff between
resolution and depth of penetration, as well as adding to the
aforementioned dynamic range challenges. This complex set
of challenges implies that microwave imaging and sensing
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may find greater success with particular tissues or biological
materials where significant differences in healthy and diseased
states exist. In addition, tissues that are more readily accessible
by sensors reduce both dynamic range requirements and the
complexity of the imaging problem. To this end, researchers
have investigated the properties of healthy and diseased tissues,
including liver [5], skin [6], bone [7], and heart [8].

Of particular interest to this Special Cluster are reports of the
properties of healthy and malignant breast tissues. Microwave
imaging of the breast is a promising application due to the low
attenuation expected in fatty tissues, as well as the accessibility
of the breast for imaging. The dielectric properties of breast
tissue were first investigated over 60 years ago [9]. A relatively
recent large-scale study of excised tissues reported the proper-
ties of healthy breast tissues with particular attention paid to
the composition of the samples (i.e., percentage of fat, glan-
dular, connective tissues) [10]. A companion study revealed that
the properties of malignant tissue differ substantially from fatty
tissue, but exhibit reduced contrast when compared to healthy
glandular tissue [11]. These studies demonstrate both the poten-
tial for microwave breast imaging, as well as the challenge of
detecting and localizing small changes in complex tissue struc-
tures. To enhance contrast between healthy and diseased tissues,
recent work has suggested altering the microwave frequency
properties of breast tumors via contrast agents [12]-[14].

B. Microwave Medical Imaging: Past and Present

Microwave medical imaging has been the focus of significant
research effort in the electromagnetics community in the 21st
century. However, it is not a new research topic. While the field
of active microwave imaging is by no means as old as that of
radiography, for which the first “medical” X-ray dates back to
1895 [15], it does have a rich history of pioneering research in
the later half of the 20th century.

In the 1980’s, algorithm development for microwave tomog-
raphy resulted in advances in both qualitative and quantitative
reconstructions. Qualitative imaging algorithms (e.g., [20])
made use of the linear relationship between induced currents
and measured scattered fields to permit retrieval of the current
profile with a computational efficiency that was sufficient
for quasi-real-time imaging. An early prototype used to test
these algorithms was the 2.45-GHz microwave “camera” [21].
Quantitative imaging algorithms (e.g., [22]) made use of
linear scattering approximations to permit dielectric properties
retrieval. However, for high-contrast scenarios relevant to
medical imaging, the accuracy of these algorithms was severely
degraded.

Advances in computing power in the 1990’s made nonlinear
optimization techniques feasible and led to the emergence of
iterative techniques such as the Born iterative method and
distorted Born iterative method for quantitative imaging [23].
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The latter is equivalent to Gauss—Newton or Newton—Kan-
torovich methods of nonlinear optimization [24]. These
iterative techniques are computationally expensive and require
regularization to overcome the ill-posedness, but they offer
improved accuracy for high-contrast scenarios. During this
time period, a variety of laboratory prototypes were devel-
oped, and microwave imaging experiments were reported for
tissue-equivalent phantoms as well as actual tissue samples,
such as a perfused canine heart [25]. By the end of the 20th
century, a clinical prototype for 2-D microwave breast to-
mography had been demonstrated [26]. Further advances over
the past decade have included a large-scale clinical study of
2-D microwave breast imaging [27], [28], microwave breast
imaging studies using “virtual patients” (MRI-derived numer-
ical phantoms) in 2-D (e.g., [29]-[32]) and 3-D (e.g., [33] and
[34]), and preliminary clinical images obtained with a 3-D
microwave breast imaging system [35].

The late 1990s also brought about the proposal of an en-
tirely different class of techniques, namely radar-based imaging
methods, for microwave detection of breast tumors [36]-[38].
Such techniques seek to spatially focus the received scattered
signals to locate strong scatterers. After the publication of ini-
tial studies of pulsed “confocal microwave imaging” in 2001
and 2002 [39], [40], interest in radar-based methods grew sub-
stantially through the first decade of the 21st century, fueled in
part by an incomplete understanding of the dielectric proper-
ties of breast tissue, which led to the assumption that tumors are
strong scattering objects in a background environment that gen-
erates a relatively weak level of clutter. Imaging algorithms for
this class of techniques include various flavors of beamforming
(e.g., [41]-[45]) as well as time-reversal techniques (e.g., [46]).
Since these radar techniques require the transmission and re-
ception of ultrawideband (UWB) signals, significant effort over
the past decade has also been devoted to the design of suitable
UWRB antennas and arrays (e.g., [47]-[50]). Preliminary clinical
data has also been obtained with radar-based systems designed
for breast cancer detection [51], [52].

In all of the inverse scattering (tomographic) and radar-based
methods described above, microwave energy is transmitted into
the tissue, and the scattered microwave signals are measured.
Over the past 15 years, an alternative hybrid approach known as
microwave-induced thermoacoustic tomography (MI-TAT) has
been explored (e.g., [S3]-[55]). In MI-TAT, externally applied
microwaves induce selective heating of higher conductivity tis-
sues, such as tumors. The resulting thermoelastic expansion of
tumors generates acoustic signals that are measured and pro-
cessed to form an image with ultrasound resolution but based
on dielectric contrast.

C. Open Challenges and Future Trends

Notwithstanding the advancements witnessed over the
last four decades, the application of microwaves in medical
imaging remains a challenging field with several open issues
related to hardware development and prototyping, methods of
testing and validation, and development of algorithms able to
reliably and efficiently deal with the complexity of inversion
problems. Indeed, the use of microwave techniques to image
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isolated regions (e.g., brain, bones, and breast) as well as full
human bodies poses unique methodological and technological
challenges, which are expected to spur significant research
efforts over the next years.

1) Experimental/System Level: From the experimental view-
point, the capability to efficiently couple the microwave power
into biological tissues still represents an important issue in prac-
tical imaging systems. To overcome the limitations of losses in-
troduced by traditional coupling liquids as well as their associ-
ated logistical challenges, innovative antennas to be placed in
close proximity or in contact with the tissues to be imaged are
being investigated (e.g., [56]). Toward this end, the main design
constraints reside in the size, the shape, the efficiency, and the
bandwidth of the antenna, which are particularly challenging
because of the inherent variability of the dielectric properties
of biological tissues. As a consequence, future efforts devoted
to the design of compact, high-performance antennas for mi-
crowave imaging systems are envisaged.

Another current significant challenge in full-scale microwave
imaging system deployment arises from the necessity to achieve
a very large dynamic range (DR) in order to reliably acquire
the weak scattered field caused by the dielectric discontinuities
(e.g., pathologies) to be imaged. Indeed, DR requirements
as high as 100 dB are not unusual for microwave imaging
purposes, but they are often not achieved by commercial
network analyzers in practical settings [57]. Technological
solutions to enhance the retrieval performance are expected to
include low noise amplifiers, custom-built receivers, suitable
channel-to-channel isolation strategies, and clutter suppression
techniques. More accurate calibration procedures will also
contribute to enhancing the sensitivity of microwave imaging
systems (thus reducing the DR requirements), and they will
likely continue to garner attention in the future (e.g., [58]).
Suitable approaches to compensate for the variability in the
dielectric properties of the biological tissues and in the antenna
gain and coupling (which depend on the target, when near-field
sensors are considered) are also expected.

Alternatively, enhancing the contrast between the tissues to
be imaged represents an interesting research path to reduce the
need for large DR. In this framework, multiphysics techniques,
such as those based on the coupling of microwave and acoustic/
mechanic excitations [59], represent an endogenous contrast-
enhancement approach to improve the sensitivity of microwave
imaging systems. Work on achieving contrast enhancement ex-
ogenously through the use of innovative selective targeting ap-
proaches with nanoparticles (e.g., carbon nanotubes, or ferro-
electric or magnetic nanoparticles [13], [14]) is also expected
to continue. Several critical issues that remain to be addressed
include increasing the achievable concentration levels within
the pathological tissues, increasing the microwave response of
nanoparticles through improved fabrication procedures, and es-
tablishing their biocompatibility (which is currently guaranteed
only for some specific agents).

A well-known limitation of microwave imaging systems
is also represented by the tradeoff between ‘“achievable
resolution” and “penetration depth.” In this framework, multi-
frequency/UWB imaging systems as well as super-resolution
reconstruction strategies (e.g., [60] and [61]) are expected to
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be further developed over the next years to address such a
fundamental issue.

2) Modeling/Methodological Level: Accurate numerical
modeling of biological structures and acquisition systems
represents another key challenge in the microwave medical
imaging research. While anatomically realistic numerical breast
phantoms for 3-D modeling are readily available [62], [63],
their exploitation in conjunction with full 3-D system models,
including the actual antennas, measurement tank, and feeding
network, still presents challenges from a computational view-
point. The development of innovative numerical modeling
strategies is expected to play a key role in the development of
microwave medical imaging technologies.

Several challenges will also have to be overcome from the
methodological point of view. The difficulties of the inverse
problems associated with microwave medical imaging, namely
their nonlinearity and ill-posedness/ill-conditioning [64], as
well as the required size/resolution have made the development
of robust, accurate, and fast imaging algorithms an extremely
challenging task. The introduction of a priori information
concerning the type, shape, and/or dielectric properties of the
biological tissues under investigation (e.g., [33], [65], and [66])
currently seems to be one of the most promising research areas
to increase the reliability, speed, and robustness of inversion
methodologies. The development of algorithms able to effec-
tively exploit parallel computing architectures or GPUs within
the inversion process (e.g., [33]), as well as to adaptively
allocate the problem unknowns within the investigation domain
(e.g., through enhanced multiresolution/multigrid strategies) is
also envisaged.

D. Scanning the Issue

The Special Cluster includes 10 letters representing the
state-of-the-art work being carried out in more than 14 in-
stitutes around the world in six countries. This collection
provides a comprehensive overview of some the most inter-
esting advancements in microwave medical imaging from the
algorithmic, modeling, and experimental viewpoint, and it
highlights the potential and some of the future trends of these
methods and technologies. The letters address a wide variety of
problems including well-established issues, such as modeling
and fabrication of 2-D/3-D microwave imaging systems, as
well as more recent application domains, such as contrast
enhancement techniques.

The dielectric characterization of saline-based solutions
relevant to medical treatment is the topic addressed in the
letter by Jensen et al., while the letters by Laurin ef al. and by
LoVetri et al. are devoted to the development and experimental
testing of new microwave imaging algorithms using realistic
phantoms and/or patients. In the same framework, the first letter
by Burfeindt et al. proposes 3-D-printed breast phantoms for
preclinical experiments, while the development, fabrication,
and measurement of innovative UWB sensors for microwave
imaging is addressed in the letter by Bourqui ef al.

Innovative numerical approaches to reliably simulate com-
plex imaging systems are proposed in the letter by Attardo et al.,
while the letter by Guardiola et al. and the second letter by
Burfeindt et al. address the development of new imaging
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approaches and their wvalidation against simulated array
measurements obtained from realistic numerical phantoms.
Finally, innovative imaging modalities that enhance the sensi-
tivity of breast cancer detection (through magnetic nanoparticle
contrast agents) and imaging resolution (through a thermoa-
coustic approach) are discussed in the letter by Bucci ef al. and
by Wang et al., respectively

To conclude this guest editorial, we would like to thank the
Editor-in-Chief, Prof. Gianluca Lazzi, for the opportunity to
serve as Guest Editors of this Special Cluster, as well as for his
continuous support and tremendous help, which made our ef-
forts easier. This Special Cluster could not have been possible
without the generous support of over 40 reviewers. We would
like express our sincere gratitude to all of the authors for their
patience with us and with the review process. Both those au-
thors whose letters appear here and those whose contributions
did not make it through the revision process by the deadline
spent considerable efforts on their manuscripts and should be
congratulated.

We hope that you will find this Special Cluster interesting
and thought-provoking on the subject of microwave imaging.
The work in these letters is proof that this topic continues to
thrive as a vital interdisciplinary research field with significant
scientific and industrial opportunities.
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