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Abstract—In order to support the design and research of sophis-
ticated large-scale transition-edge sensor (TES) circuits, we use
basic SPICE elements to develop device models for TESs based on
the superfluid–normal fluid theory. In contrast to previous studies,
our device model is not limited to small-signal simulation, and it
relies only on device parameters that have clear physical meaning
and can be easily measured. We integrate the device models
in design kits based on powerful electronic design automation
tools such as CADENCE and OrCAD and use them for versatile
simulations of TES circuits. Comparing our simulation results
with published experimental data, we find good agreement which
suggests that device models based on the two-fluid theory can be
used to predict the behavior of TES circuits reliably. Hence, they
are valuable for assisting the design of sophisticated TES circuits.

Index Terms—Device model, SPICE, superfluid–normal fluid,
transition-edge sensor (TES).

I. INTRODUCTION

THE PAST two decades have witnessed the rapid develop-
ment of the superconductor transition-edge sensor (TES)

technology [1] and its successful application in a wide range
of scientific and instrumental fields [2]–[6]. Most impressively,
mid-scale TES detector arrays with tens to hundreds of pixels
have been fabricated and deployed in Astronomy telescopes [7],
[8]. In the near future, it is expected that much larger scale TES
detector arrays, potentially with thousands to tens of thousands
of pixels, will become available [9].

A fully functional TES detector array is a complex super-
conductor circuit system because all TES sensors at the pixel
level need auxiliary supporting circuits for device biasing and
signal readout. As the scale of the detector array grows, more
system-level circuits such as multiplexers [10]–[12] become
indispensable too. It quickly becomes overwhelming to design
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and integrate all the necessary devices and circuits when the
system size becomes large, and this challenge can only be
met by elaborate electronic design automation (EDA) tools
specifically developed for TES circuits.

Unfortunately, sophisticated tools that can support the sim-
ulation and design of large-scale TES circuits are presently
unavailable. An important reason for this deficiency is the lack
of reliable TES device models that can be integrated in existing
EDA tools to predict the behavior of TES circuits accurately.
Since TESs are highly nonlinear electrothermal devices, their
behavior is complicated, and their modeling is difficult. Most
previous research is limited to small-signal models [1] that
cannot be used for important tasks such as determining the
required dc biases and deriving the temperature sensitivity from
easily measurable device parameters. Some studies try to model
the temperature dependence of TES resistance using fitting
functions such as the hyperbolic function [13], the error func-
tion [14], the Fermi function [15], and other expressions [16],
[17]. Although convenient in producing resistance–temperature
(R−T ) curves matching experimental data measured under
certain conditions that are often very different than the actual
working conditions for the TES devices (see Section IV-A),
these models are not based on sound physical conside-
rations, and their applicability is difficult to justify. More se-
riously, since TESs are highly nonlinear devices, their R−T
dependence and electrical and thermal behavior are very sen-
sitive to how the circuits are designed and biased, as well
as how the system is operated and how the R−T curves are
measured (see Section IV-A). The fitting function approach that
models the TES resistance as a sole function of the device
temperature cannot capture this critical dependence on TES
device’s working conditions, and hence, it is fundamentally
flawed.

With the long-term goal of making highly capable and inte-
grated EDA tools that can support the design and simulation
of large-scale TES circuits, in this paper, we develop device
models for TESs based on the superfluid–normal fluid theory.
We choose SPICE as the modeling tool and use only the most
basic SPICE circuit elements in order to be able to integrate
our device model in the widest possible variety of circuit
simulators. With the two-fluid theory as the underlying physical
mechanism, the device model has the advantage that it only
relies on device parameters that have clear physical meaning
and can be easily measured. After integrating the device models
in design kits based on powerful EDA tools such as CADENCE
[18] and OrCAD [19], we then use them to perform a variety
of simulations of TES circuits and compare the results to
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published experimental data to test the validity and accuracy
of the device models.

II. DEVICE PHYSICS

In this section, we study the device physics that our TES
model is based on. Since the TES sensor is an electrothermal
device, we divide our discussion into the electric and thermal
properties of the TES device.

A. Electric Behavior

The functioning of a TES sensor relies on the sharp
transition between the device’s superconducting and nor-
mal states, which is a very complex process. There are
two well-known theories to describe the transition physics,
namely, the Skocpol–Beasley–Tinkham (SBT) model [20]
based on the phase-slip events in type-I superconductors and
the Kosterlitz–Thouless–Berezinsky (KTB) model [21], [22]
based on flux vortex creation and interaction in type-II su-
perconductors. Although all superconductors used to fabricate
TES devices are of type I, some authors argue that in 2-D
thin films, the vortex model is applicable [23]. There is also
experimental evidence that the longitudinal proximity effect
may play an important role in the TES physics [24]. The
question as to which theory should be used to build electronic
models that can describe TES device’s behavior accurately, or
whether any model will be suitable for this purpose at all, can
only be answered by comparing the predicted behavior with
experimentally measured data.

In our work, we are interested in building a simple model that
captures the most important elements of the device physics and,
thus, can be easily used to simulate the behavior of the TES
device with reasonably good accuracy. For this purpose, we
consider a simplified two-fluid model [25], which has its root
in the SBT theory. In this model, the sensor current is separated
into a supercurrent Is and a normal current In. The total current
is then

I = Is + In (1)

and a voltage V can appear across the TES device because of
the normal current. According to the SBT theory, the supercur-
rent Is = CIIc(T ), where Ic(T ) is the temperature-dependent
critical current of the TES film, and CI is the ratio of the time-
averaged critical current in the phase slip lines to Ic. The normal
current In can be associated with the voltage across the device
by In = V/(CnRn), where Rn is the normal state resistance of
the TES device, and Cn (usually approximately equal to 1) is
the ratio of the total resistance of the phase slip lines in the TES
film to Rn.

In the two-fluid theory, the temperature dependence of the
device’s critical current Ic plays an essential role. In our
simplified device model, it is the underlying mechanism for
the temperature dependence of the TES resistance. For simple
Bardeen-Cooper-Schrieffer (BCS) superconductors that behave
in accordance with the Ginzburg–Landau theory, we have

Is = Is0(1 − t)3/2 (2)

where Is0 is the supercurrent of the TES device at 0 tem-
perature, and t = T/Tc is the temperature normalized to the
device’s critical temperature. For a single-layer uniform film,
the critical current can be expressed as a function of the
sample’s other parameters such as the heat capacity and normal
resistance [25]. Since most TES devices consist of multilayer
films made of different metals, we do not expect this relation
to hold, and the supercurrent Is0 is an independent parameter
in our device model. Nonetheless, the supercurrent and its
temperature dependence can be easily measured.

Summarizing the main elements in the simplified two-
fluid model, we can express the TES device’s equivalent
resistance as

R =
V

Is0

(
1 − T

Tc

)3/2

+ V/(CRRn)
(3)

where V is the voltage across the device. The nonlinear re-
sistance described in (3) is implemented in our device model
with the critical temperature Tc, supercurrent Is0, and normal
resistance Rn being independent device parameters. Although
highly simplified, it focuses on the most important mechanism
underlying the TES device, and simulation results based on
it are consistent with many qualitative conclusions derived
from experimental data (see Section IV). Notice that we have
assumed 0 applied magnetic field. In addition, for simplicity,
we have used CR = 1 in our device model,1 although it has
been shown that its value can be different than 1 by fitting
experimental data [26]. In general, CR can be a function of
temperature and other variables; however, there are no known
reliable methods to calculate and measure its temperature
dependence. The effect of magnetic fields, the temperature
dependence of CR, as well as other factors that can affect TES
device’s behavior, will be considered in improved versions of
the device model.

B. Thermodynamics

The thermal behavior of the TES device is dictated by the
interplay of the Joule heating due to the device current and
the heat conduction to the substrate. To describe the involved
physics, we use a thermal model as shown in Fig. 1, which
consists of an absorber, the TES device, and the substrate.
This model includes the thermal complexity that is sufficient
to describe most TES devices. Notice that, if we assign a very
large value to the absorber-TES heat conduction coefficient K2,
the heat conduction between them is very efficient, and they
will remain at the same temperature. Therefore, the thermal
model in Fig. 1 applies to devices without a dedicated absorber
too.

We assume that heat conduction between the absorber, the
TES, and the substrate are governed by the power law, i.e.,

P = K (Tn
a − Tn

b ) (4)

1A nonunity but constant CR only complicates the details of our device
model slightly. Although we could easily revise our device model to allow
the value of CR to be specified by the model user, CR does not satisfy the
requirement of being a parameter that has clear physical meaning and can be
easily measured.
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Fig. 1. Heat generation and conduction in the absorber-TES-substrate
structure.

where P is the power flow between two elements a and b, Ta

and Tb are their temperatures, K is the conduction coefficient,
and n is the exponent. Assuming the substrate temperature is
fixed at Tbath, we can then write the thermal equation for the
TES as

C1
dT1

dt
= IV − K1 (Tn1

1 − Tn1
bath) + K2 (Tn2

2 − Tn2
1 ) (5)

where T1 and T2 are the temperatures of the TES and absorber;
C1 is the heat capacity of the TES; I is the current through
the TES; V is the voltage across the TES; and K1, K2, n1,
and n2 characterize the TES-substrate and absorber-TES heat
conduction. In (5), the terms on the right-hand side correspond
to Joule heating and heat conduction to the substrate and
from the absorber. Similar consideration leads to the thermal
equation for the absorber, i.e.,

C2
dT2

dt
= Ps − K2 (Tn2

2 − Tn2
1 ) (6)

where C2 is the heat capacity of the absorber, and Ps is the
signal power.

Equations (5) and (6) are the basis of the thermal part of
our device model, which has C1, C2, K1, K2, n1, and n2

as its independent parameters. These device parameters have
clear physical meaning. Their values depend on the materials
and geometries of the device and can be measured by estab-
lished experimental techniques. For simplicity, we have ne-
glected the temperature dependence of these device parameters,
which should be weak in the temperature ranges that we are
interested in.

III. MODELING TECHNIQUES

The two options available for TES device modeling are
SPICE and analog hardware description language (HDL). In
simulating and debugging TES circuits, we often need to exam-
ine signals on the internal nodes of the TES device. Behavior
models built with analog HDL are less convenient for this
purpose. In addition, these models tend to be less efficient in
circuit simulation, and their integration in SPICE and SPICE-
like circuit simulators requires some effort. Because of these
considerations, we choose SPICE as our modeling tool.

Although we have simplified the device physics as much
as possible in Section II, building SPICE models for the

TES device is still quite involved. The main challenge lies
in constructing equivalent electric circuit for the thermal part
of the device model and modeling the nonlinear elements
and processes in the device. Many latest circuit simulators
have built-in nonlinear dependent source support. However,
the syntax is simulator specific, and the implementation de-
tails also vary. In order to be able to integrate our device
model in the widest possible variety of circuit simulators,
we choose to model the TES device using the polynomial-
controlled source, which is supported in almost all circuit
simulators.

The polynomial-controlled source [27] is a circuit element
between two nodes whose voltage or current is dependent on
one or more controlling signals. In the element description,
the number of controlled signals, the nodes for the control
signals, the polynomial coefficients, and the initial conditions
for the controlling signals can be specified. For instance,
a voltage-controlled voltage source Exx between the
positive node N+ and negative node N− can be described as
Exx N + N− POLY(ND)(NC1 + NC1−) . . . P0P1 . . . IC = . . .,
where ND is the number of dimensions (i.e., the number of
controlling signals), NC1+, NC1− . . . are the positive and
negative nodes of the controlling signals, P0, P1 . . . are the
polynomial coefficients, and the optional values following
IC = specify the initial conditions for the controlling signals.
Take as an example a 2-D voltage source with controlling
signals Va and Vb, the controlled voltage Vc is

Vc = P0 + P1Va + P2Vb + P3V
2
a + P4VaVb + P5V

2
b + . . . .

(7)

Seemingly simplistic, the polynomial-controlled source is
extremely powerful and can be used to realize many operations
on multiple electric signals [28]. For example, the circuit in
Fig. 2(a) realizes the addition between two voltages V12 and
V34 with a polynomial-controlled source

E1 5 6 POLY(2) (1 2) (3 4) 0 1 1.

To realize the multiplication between them, use the polynomial-
controlled source

E1 5 6 POLY(2) (1 2) (3 4) 0 0 0 0 1

instead, as shown in Fig. 2(b). For division between two volt-
ages V12 and V34, we use the circuit in Fig. 2(c) where the two
voltage-controlled current sources

G1 0 10 POLY(1) (1 2) 0 1

and

G2 10 0 POLY(2) (3 4) (10 0) 0 0 0 0 1

play the central role. Since the currents in the two sources are
IG1 = V12 and IG2 = V34V10 in value, we have V10 = (IG1 −
IG2)R10 = (V12 − V34V10)R10. From this, we can solve for the
voltage across nodes 10 and 0, which is

V10 =
V12

V34 + 1/R10
≈ V12

V34
(8)
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Fig. 2. Polynomial-controlled-source-based circuits to add, multiply, and
divide two voltage signals. (a) Adder circuit between two voltages V12 and V34.
E1 is the polynomial-controlled source. The output signal V56 = V12 + V34.
The resistances R12, R34, and R56 are chosen very large (e.g., 1G Ω) to ensure
that the input and output resistances are large. (b) Multiplier circuit between two
voltages V12 and V34. The output signal V56 = V12V34. R12, R34, and R56

are chosen to be very large. (c) Divider circuit for V12 and V34. All resistances
are large. The output signal V56 = V12/V34.

as long as the resistance R10 is large. The voltage-controlled
voltage source

E1 5 6 POLY(1) (10 0) 0 1

in parallel with the large resistance R56 simply mirrors the
voltage V10 so that the output voltage V56 is the division
between the input voltages V12 and V34.

In the following, we explain how the electric and ther-
mal part of the TES physics and the coupling and feedback
between them are modeled. We also present relevant circuit
diagrams.

A. Electric Behavior Modeling

In order to model the voltage- and temperature-dependent
TES resistance in (3), we use the circuits shown in Fig. 3.
At the heart of the circuit is the effective voltage-controlled
resistance in Fig. 3(a) realized by the following polynomial
voltage-controlled current source

FIN 2 10 POLY(2) VIN VI 0 0 0 0 1.

The current in this controlled current source FIN is

IFIN = IVINIVI (9)

where IVIN and IVI are currents in the auxiliary 0 voltage
sources VIN and VI. IVI can be calculated from the voltage of
the voltage-controlled voltage source

E1 20 0 POLY(1) (3 4) − 1 1

and its value is (R1 = 1 Ω)

IVI = VE1/R1 = V34 − 1 (10)

Fig. 3. Circuit model for the TES resistance. (a) Voltage-controlled resistance
between nodes 1 and 2. Rx and R1 are 1 Ω. The input resistance Rin is
large. (b) Circuit to supply the input control voltage to the voltage-controlled
resistance circuit in (a). R12 and R10 are large. V12 is the voltage across the
TES device. The adder circuit is that in Fig. 2(a). The divider circuit (N and
D refer to terminals for the numerator and denominator signals) is shown in
Fig. 2(c). The input signal Is is a voltage with a value equal to the supercurrent
of the TES. It is supplied by the circuit in Fig. 5(a).

where V34 is the voltage across nodes 3 and 4. Since the total
current through the resistor Rx is

IRx = IVIN + IFIN = IVINV34 (11)

the voltage across nodes 1 and 2 is V12 = RxIRx = IVINRxV34.
The effective resistance between nodes 1 and 2 can then be
calculated to be (Rx = 1 Ω)

R12 =
V12

IVIN
= V34. (12)

Notice that the effective resistance across terminals 1 and
2 is controlled by the voltage V34. If we design the circuit
appropriately so that V34 is related to the voltage across nodes
1 and 2 by the expression on the right-hand side of (3), we
can then effectively realize a TES resistance across these two
nodes. This can be done by using the circuit in Fig. 3(b).
This circuit has two inputs, i.e., the TES voltage V12 and
another voltage equal to the TES supercurrent Is in value.
The TES voltage is scaled by the voltage-controlled voltage
source

E1 10 0 POLY(1) (1 2) 0 1/Rn

and fed into the adder circuit that has Is as its other input. The
input signals to the divider circuit are the TES voltage and the
output from the adder circuit. The effective resistance across
nodes 1 and 2 in Fig. 3(a) is then

R12 =
V12

Is + V12
Rn

(13)
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where Is is the supercurrent, and Rn is the normal resistance of
the TES device. The two-fluid-theory-based electric behavior
of the TES device is then successfully modeled by our circuit.

B. Thermodynamics Modeling

SPICE is not designed to simulate thermodynamics. Al-
though users can specify a temperature in circuit simulation,
it is a constant ambient temperature used by device models
to determine the electric characteristics of circuit elements
(e.g., the diode current depends on not only its voltage bias
but also the operation temperature). In order to study how
the temperature of the TES device depends on its working
condition, as well as how it changes in time, we must build an
equivalent electric circuit to simulate its thermodynamics.

As shown in Fig. 4(a), the thermal equation (5) for the TES
film can be mapped to the electric equation of a capacitor being
charged by current sources whose values are given by the terms
on the right-hand side of the equation. The voltage across the
capacitor corresponds to the temperature of the TES device,
and the value of the capacitance is the heat capacity of the
device. The current terms are dependent on the electric signals
and temperature of the TES; thus, they can be modeled by
controlled polynomial sources.

The circuit to model the Joule heating in (5) is shown in
Fig. 4(b). In this circuit, the voltage-controlled voltage source

E1 20 0 POLY(1) (10 2) 0 1

simply duplicates the voltage VRx across the resistor Rx so that
VE1 = VRx. The resistor R1 = 1 Ω converts VE1 to a current IV1
that is equal to VRx in value, i.e.,

IV1 = VE1/R1 = VRx. (14)

Current in the current-controlled polynomial current source

F1 3 4 POLY(2) V0 V1 0 0 0 0 1

is then

IF1 = IV0IV1 = IRxVRx (15)

which is equal to the Joule heat in the resistor Rx. Using the TES
device in place of Rx, we can then wire the controlled current
source F1 in Fig. 4(a) for IPJ

to model the Joule heat dissipated
by the TES device.

The heat conduction terms on the right-hand side of (5)
can be directly modeled by controlled polynomial sources. In
Fig. 4(c), the voltage-controlled polynomial voltage sources

E1 10 0 POLY(1) (1 2) 0 0 0 0 0 1

and

E1 20 0 POLY(1) (3 4) 0 0 0 0 0 1

produce two voltages V10 = V 5
12 and V20 = V 5

34, where V12

and V34 represent temperatures of structures in the TES. The

Fig. 4. Equivalent electric circuit for the thermal process in the TES film. (a)
Equivalent electric circuit for the thermodynamics of the TES. C1 and C2 are
the heat capacities of the TES and absorber. The voltage VTbath represents
the environment temperature. Voltages on C1 and C2 represent the TES and
absorber temperatures. IPJ

and IPS
are the Joule heat of the TES and the

signal power. Ibath and I21 are the heat conduction to the substrate and from
the absorber. (b) Circuit to model the Joule heat in resistor Rx. The resistance
R1 = 1 Ω. (c) Circuit to model the heat flow in the TES that obeys the power
law. R12, R34, R10, and R20 are large.

polynomial-controlled current source

G1 5 6 POLY(2) (10 0) (20 0) 0 K − K

then realizes a heat flow of K(V 5
12 − V 5

34). The heat conduction
exponents n1 and n2 in (5) are material dependent, and a value
of 4 or 5 is often used. If n happens to be a noninteger (but ratio-
nal) number, it can be written as a fraction. From the numerator
and denominator of the fraction, we can construct appropriate
power and root circuits using polynomial-controlled sources
and realize the corresponding heat flow.

Once we have mapped the temperature of the TES to the
voltage of a capacitor and modeled the Joule heat of the TES
and its heat flow to other parts of the system using polynomial-
controlled sources, we can then use the circuit in Fig. 4(a)
to describe the thermal processes in the TES. The thermody-
namics of the absorber in (6) can be modeled using the same
techniques.
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Fig. 5. Circuit to model the temperature dependence of the supercurrent. (a)
Circuit to model the temperature-dependent supercurrent of the TES. R12,
R10, R20, and R34 are large. (b) Square root circuit. The divider circuit is
shown in Fig. 2(c).

C. Electrothermal Coupling and Feedback

The key to the operation of the TES device is the negative
electrothermal feedback. When the temperature of the TES
rises due to the absorption of signal power, the resistance of
the device changes. This has the effect of changing the current
and Joule power of the device and its heat flow to the substrate,
which, in turn, regulates the temperature of the device.

The effect of the TES resistance on the Joule power is already
modeled in the thermal circuit in Fig. 4(b) where the equivalent
current source for the Joule heat is realized by a polynomial
current source controlled by the voltage and current of the TES.
When the nonlinear resistance of the TES device changes, so
does its Joule power.

The effect of the TES temperature on the device’s electric
behavior is manifested in the TES resistance in (3) where the
supercurrent changes with temperature. In order to model this
dependence, we use the circuit in Fig. 5(a). In this circuit, the
input voltage V12 corresponds to the device temperature T , and
the voltage-controlled voltage sources

E1 10 0 POLY(1) (1 2) 1 − 1/Tc

E2 20 0 POLY(1) (10 0) 0 0 0 I2
s0

in combination with the square root circuit

X1 20 0 3 4 sqrt

produce an output signal

Is0

(
1 − T

Tc

)3/2

. (16)

This is the temperature-dependent supercurrent Is of the TES
device, and it is fed into the circuit in Fig. 3(b) to model the
TES resistance. The square root circuit is based on the divider
circuit as shown in Fig. 5(b), where one of the input voltages to

the divider circuit is set to the output. Since Vout = Vin/Vout,
we have Vout =

√
Vin.

Once we have designed circuits to model the electric and
thermal behavior and the electrothermal feedback, we can
construct a complete device model for the TES based on them.
Notice that our TES device model is general purpose and can
be used for important studies not supported by the small-signal
models developed in previous work.

IV. SIMULATION BASED ON THE DEVICE MODEL

Now that we have built the TES device model, we are inter-
ested in using it for simulation of TES circuits to test its validity.
Considering the simplicity of the model and the large number of
poorly understood and controlled factors in TES device fabri-
cation, it is unrealistic to expect that simulation results based
on our model will numerically agree with experimental data
to exceedingly high precision for every fabricated TES device.
However, a correct device model should give results that are
consistent with important qualitative conclusions drawn from
experimental data. By doing circuit simulation, we can also
perform critical research on TES circuit design and operation.
This includes important studies not possible before when only
small-signal models were available, such as determining the
optimal bath temperature and electrical bias points for TES
circuit operation and finding the allowed parameter space for
TES device fabrication.

For the purpose of circuit simulation, we integrate the device
model in popular EDA tools and leverage the power of these
tools to carry out our studies. We use CADENCE and OrCAD,
which are based on UNIX and WINDOWS platforms, respec-
tively. The integration process mainly involves constructing
subcircuits used in the device model, creating symbol views
for them, and building a component library that contains the
necessary subcircuits and the TES device model circuit itself.
Once all subcircuits and components are created and tested,
we can then use the graphic user interface provided by the
EDA tools to draw TES circuits, specify device parameters,
and run simulations. TES devices can be dragged into a circuit
schematic and wired up to the rest of the circuit just like any
other circuit elements, and the EDA tools will automatically
generate the circuit netlists, add the stimulus and device models,
and run the simulation using a simulator specified by the user.
This greatly improves the efficiency of our research and reduces
human error.

In the following, we describe some interesting TES cir-
cuit simulations we performed. We also analyze the results
and compare them with published experimental data when
possible.

A. R−T Dependence

The width of the superconducting-to-normal transition is an
important characteristic of the TES because the sharpness of the
transition determines its temperature sensitivity. Some authors
have tried to model the TES resistance R using fitting functions
that give the measured transition width ΔT and normal state
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Fig. 6. Voltage-biased TES device. Rs is a small shunt resistance, Rp is the
parasitic resistance in series with the TES device, and Ib is the bias current.

resistance Rn. Examples include the hyperbolic function (with
the empirical parameter b) [13], i.e.,

R(T ) =
Rn

2

{
tanh

(
T − Tc

ΔT/b

)
+ 1

}
(17)

the error function [14]

R(T ) =
Rn

2

{
erf

(
T − Tc

2ΔT

)
+ 1

}
(18)

as well as other mathematical expressions [15]–[17]. One no-
table problem with the fitting function approach is that the
temperature sensitivity calculated from the derivative of the
measured R−T curve is often much larger than that inferred
from the device’s temporal response to a signal pulse. This
is because the fitting function approach completely ignores
the dependence of the R−T curve on the device’s working
conditions, which is often critical; we can study this issue using
our device model.

The circuit for a voltage-biased TES device is shown in
Fig. 6. The R−T curves are usually measured by biasing the
TES sample with a constant near 0 current and sweeping the
sample temperature. The reason to use a very small bias current
is to minimize the Joule heat so that the TES sample remains
at the same temperature with the substrate and environment.
This temperature can be set and changed by the temperature
controller of the refrigerator system, thus making it possible
to measure the sample resistance at different temperatures. Not
limited to small-signal simulation, our device model applies
even in the crossover regime where the TES resistance is
not much larger than the shunt resistance. We can use it to
simulate this measurement process by a dc analysis in which
the environment temperature Tbath is the sweeping parameter.
For this simulation, we need an exhaustive set of TES device
parameters that are, unfortunately, not given in most published
works. We use the data from [16], which is relatively complete.
The result of the simulation is shown in Fig. 7(a). In order to
check that the TES sample remains at the same temperature
with the environment, the TES temperature is plotted against
the environment temperature in Fig. 7(b). As shown in the
figures, although in the transition region the current biases
are small enough to produce negligible Joule heat so that
the TES sample remains at the same temperature with the
environment, the transition width under each bias current can

Fig. 7. Simulation of the R−T curve for TES under different bias currents.
The device parameters are taken from [16]. The critical temperature of the TES
is Tc = 105 mK. The TES heat capacity C = 3.3 fJ/K. The shunt resistance
Rs = 9.5 mΩ. The normal state resistance Rn = 1.6 Ω. The heat conduction
coefficient K = 16.5 nW/K5. The 0 temperature supercurrent Is0 is estimated
to be 35 µA [see Fig. 10(b)]. (a) Simulated R−T curve for different bias current
of the TES device. (b) The TES sample temperature curve.

be quite different. Generally speaking, the smaller the bias
current, the sharper the transition. This result clearly indicates
that it is fundamentally flawed to model the TES resistance
using fitting functions such as those in (17) and (18) without
specifying the bias current under which the R−T curve is
measured.

The working condition of the TES device is different than
that for the R−T curve measurement. The environment tem-
perature is set below the device’s critical temperature, and a
nonzero bias current is applied to bring the device’s temperature
to within the transition region. To determine the device’s R−T
dependence under this working condition, we perform a dc
analysis in which Tbath is fixed and the circuit’s bias current
Ib in Fig. 6 is swept. The TES resistance is plotted against the
device temperature in Fig. 8.

Comparing the results in Figs. 7 and 8, we notice that
the transition width of a working TES device is much wider
than that measured with near 0 bias current. While the tran-
sition width measured with near 0 current can be as low
as sub-millikelvin, the value for a working TES device is a
few millikelvins. The transition width can give us an idea
of how sensitive the device is to temperature changes under
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Fig. 8. The resistance–temperature curve of the TES in Fig. 6 produced by
sweeping the bias current Ib. The environment temperature is fixed at Tbath =
55 mK. The device parameters are the same as those in Fig. 7. Notice that
when Ib is swept, there can be gaps in the TES temperature because it can
make sharp transitions between the substrate temperature and values close to
the critical temperature [see Fig. 9(a)]. This fact is manifested in the straight
lines in the figure, which indicate the lack of values (between their end points).
Arrows are used to indicate whether the jumps in TES temperature occur when
the temperature is increased or decreased.

corresponding working conditions. In small-signal analysis, the
temperature sensitivity of the TES is defined by

α =
T

R

∂R

∂T
(19)

evaluated at fixed TES current (T is the operation temperature
of the TES and R the resistance at T ). Although the derivative
in (19) is not taken along the R−T curve in Fig. 8, we can
use its slope for a rough estimate of α. The wide transition
width in Fig. 8 then explains why the TES device’s tempera-
ture sensitivity calculated from the derivative of the measured
R−T curve is usually much greater than that inferred from
the device’s transient response to an input signal. Notice that
the R−T dependence in Fig. 8 cannot be easily measured
experimentally since the temperature of a working TES device
cannot be directly measured. Nevertheless, we can now study
it in detail by simulations based on our device model. The
benefit of such simulations goes much further. For instance,
in setting the working condition for the TES device, it is
nontrivial to determine values for the substrate temperature and
bias current to optimize the device’s temperature sensitivity
and other critical characteristics. Circuit simulations can greatly
help in finding appropriate bias points and working conditions
for the TES device. Otherwise, large number of measurements
of the circuit’s IV characteristics must be performed.

B. Hysteresis in the Temperature–Bias Current Curve

Another interesting phenomenon of the TES device is that
it can display hysteresis when its temperature is adjusted with
a bias current. In Fig. 6, when the bias current is increased,
the temperature of the TES devices rises above the substrate
temperature (i.e., the environment temperature) because of
the Joule heating of the TES. Although the temperature–bias
current curve cannot be directly measured (due to the difficulty
in measuring the temperature of the TES), the characteristics
of this curve have profound impact on the operation of the

Fig. 9. Simulated temperature–bias current curve for the TES for different
device parameters. (a) Hysteretic temperature–bias current curve for the TES
device. The parasitic resistance is Rp = 8 mΩ [see Fig. 10(b)]. The 0 tem-
perature supercurrent Is0 = 35 µA. The environment temperature is 55 mK.
Other device parameters are the same as those in Fig. 7. In order to obtain the
hysteretic curve, we use a special bias circuit to control the bias current Ib

for the TES circuit in Fig. 6. When the sweeping current in the dc analysis is
changed from the minimum to the maximum value, Ib in Fig. 6 changes from 0
to some maximum value and then back to 0. (b) Nonhysteretic temperature–bias
current curve. Is0 = 3.9 µA; other parameters are the same as in (a).

TES device and are, therefore, worth careful investigation. A dc
analysis based on our device model can be used for this study.

In Fig. 9, the simulated temperature–bias current curve of
voltage-biased TES device with different parameters are plot-
ted. It is shown that when the bias current is increased, the
temperature of the TES does not increase with the bias current
linearly. Instead, at some bias point, it makes a sharp transition
from a value close to the substrate temperature to a value close
to the critical temperature of the device. More interestingly, for
many device parameters, this sudden transition between near
substrate temperature and near critical temperature can exhibit
a hysteresis. After the TES temperature has made a sudden
transition to close to the critical temperature at some bias
current Ib1, if we subsequently decrease the bias current, we
can bring the device temperature back to close to the substrate
temperature. This later temperature transition occurs suddenly
too at some bias current Ib2, and Ib2 can be different than Ib1

giving rise to the hysteresis shown in Fig. 9(a).
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Fig. 10. Measured and simulated TES current against total bias current for
voltage-biased TES device. (a) Experimentally measured current in the TES
against the total bias current in Fig. 6. The curve is taken from [16]. (b)
Simulated Ites−Ibias curve. Device parameters given in [16] are used (see
Figs. 7 and 8). The parasitic resistance for the TES is estimated to be 8 mΩ
according to the slope of the superconducting branch in (a) and the value of the
shunt resistance Rs. Is0 is estimated to be 35 µA. It can be deduced from the
BCS temperature dependence for the supercurrent Is, the fact that the device’s
temperature jumps from the substrate temperature to a value close to the critical
temperature during the superconducting phase transition [see Fig. 9(a)] and the
value of the supercurrent when the phase transition occurs [see Fig. 10(a)].

The hysteresis in Fig. 9(a) is a consequence of the nonlinear
nature of the TES device. Simulations show that, for certain
device parameter ranges, the sudden temperature transition
points can be very close to the critical temperature of the device,
and this can disrupt the normal operation of the TES and reduce
its saturation input energy. In order to avoid such a scenario,
care must be taken in the design phase to choose the device
parameters correctly before it is fabricated. Such design work
relies on large number of simulations of the circuit behavior,
and appropriate TES device models are indispensable.

Although the temperature–bias current curve cannot be di-
rectly measured to observe the hysteresis in the device temper-
ature, indirect experimental evidence is available. Some authors
have measured the current in the TES branch against the total
bias current in Fig. 6. The data can consist of a superconducting
branch and a resistive branch, as shown in Fig. 10(a). When

Fig. 11. Parametric simulation of the temporal response of the TES circuit in
Fig. 6. The input signal is a short pulse. The temperature change of the TES is
plotted as a function of time, for different inductance values. Bias current of the
circuit is 30 µA. All other parameters and biases are the same as in previous
simulations (see Figs. 7, 8, and 10).

the bias current is decreased from the resistive branch, the TES
eventually returns to the superconducting state; however, the
bias current at the transition point is different than that for
the superconducting to resistive transition, which leads to a
hysteresis structure in Fig. 10(a). This is a manifestation of
the hysteresis in the TES resistance, which, in turn, is due
to the temperature hysteresis in Fig. 9(a). The current curve
in Fig. 10(a) can be simulated using our device model, and
the result is plotted in Fig. 10(b). The result agrees well with
experimental data indicating the effectiveness of the device
model.

C. Transient Response to Signal Pulses

Our device model can be directly used in transient and ac
analysis to simulate temporal and frequency responses of the
TES circuits to input signals. The simulator will automatically
linearize the circuit when necessary (e.g., in performing ac
analysis), saving the trouble of manually deriving small-signal
models.

As an example, we simulate the transient response of the
TES circuit in Fig. 6 to an input signal pulse under different
circuit parameters. The TES temperature change as a function
of time is plotted in Fig. 11. Using the EDA tool’s parametric
analysis functions, we can perform the same simulation for a
range of circuit parameters in just one run and plot the results
in the same figure. This makes it convenient to compare the
results and observe how the response of the circuit changes with
circuit parameters. In Fig. 11, we see that the circuit response
becomes unstable when the inductance L increases. This simple
parametric simulation then allows us to determine the range of
acceptable values of the inductance to ensure the stability of the
response (when other circuit parameters are fixed). Although
the circuit stability requirement for the inductance is reasonably
well described by the small-signal model (if the temperature
sensitivity is known) [1], using our device model and similar
simulation techniques, we can study how the circuit behavior
changes with any device and circuit parameter. This allows us
to achieve desirable characteristics for the TES circuit (e.g.,
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Fig. 12. Comparison between transient simulation results based on our device
model and small-signal model for input pulse signals of different energies in
Fig. 6. Simulation results corresponding to the same input signal energy are
plotted in the same color. Simulation results based on our device model and
small-signal model are differentiated by different line styles. The inductance
L = 1 µH. All other parameters are the same as in Fig. 11. (a) TES temperature
changes as a function of time. (b) TES current change as a function of time.

by maximizing the temperature sensitivity or optimizing the
frequency response), and it is beyond the capabilities of small-
signal models. Such search for appropriate circuit parameter
values is an important task in circuit design and optimization,
and it is much more challenging when multiple parameters need
to be simultaneously considered. By developing sophisticated
software that intelligently uses parametric simulations based
on our device model in a multidimensional parameter space,
it is possible to automate the critical task of optimizing circuit
parameters [29, 30].

In order to see how simulation results based on our device
model compare to those with small-signal models, we perform
transient simulations with input pulse signals of different en-
ergies using our device model and small-signal model, respec-
tively. The results are plotted in Fig. 12. For the small-signal
model simulation, we need the device’s temperature sensitivity
α and current sensitivity β [1]. Assuming the two-fluid model
applies, we perform a dc analysis with our device model to
determine the steady state of the system in the absence of
signal power. We then calculate α and β at this steady state
according to the expression for the TES resistance in (3) [26].
α and β obtained in this manner are used in small-signal model
simulations for all input signal energies.

As shown in Fig. 12(a), the simulation results for the TES
temperature with our device model and small-signal model
are almost identical when the input signal energy is small.
However, when the input signal energy becomes large, although
the decay time from the small-signal model simulation does
not change, simulation results based on our device model start
to deviate from those from small-signal model simulations.
This trend is even more appreciable in the TES current plot in
Fig. 12(b), where the peak heights of the TES current changes
are substantially different in simulations based on our device
model and small-signal model when the input signal energy is
large. Most interestingly, when the signal energy is so large that
the TES temperature shoots above the critical temperature [the
top-most curves in Fig. 12(a) and 12(b)], the TES current in
simulations based on our device model becomes capped. This
is because once the TES device becomes normal, its resistance
is fixed at Rn, and the TES current is determined by the ratio
between Rn and the shunt resistance.

The comparison between simulation results based on our
device model and small-signal model indicates that our device
model might enable more accurate simulations in situations in
which the signals are not necessarily small (such as finding
the slew rate of the device). However, we should emphasize
that this is not the most important benefit that our model
offers. With a clear underlying physical mechanism, our device
model allows us to simulate and observe how the behavior
of TES circuits is related to the device parameters and other
relevant factors (such as bias conditions) and, thus, gain deep
understanding of the operation of TES circuits. Knowledge and
insights obtained in such studies are very valuable because they
can directly guide the design and optimization of TES circuits
even if the simulation results are not completely accurate
numerically.

A direct comparison of the simulation results in Figs. 11
and 12 to experimental data is hindered by the incomplete-
ness of the device parameters and experimental plots in [16].
However, the device’s temperature sensitivity suggested by the
simulation appears to be smaller than the values given in the
original reference for the same bias current. This indicates
that our TES model based on idealized device physics might
not give completely accurate numerical results for all TES
devices considering the many uncertain and poorly controlled
factors in the fabrication process that can impact the charac-
teristics of the fabricated device. A possible reason for the
disagreement can be our setting CR = 1 in the device model
without considering the possibility of CR being nonunity [26]
or even temperature dependent. It is also conjecturable that the
exponent λ in the supercurrent–temperature relation Is(T ) =
Is0(1 − T/Tc)λ can deviate from the BCS result λ = 1.5 in
the transition regime for practical devices. It is up to further
theoretical and experimental studies to determine whether care-
ful consideration of these issues can explain the discrepancy
between the simulation and experimental data and lead to more
accurate device models.

Although the example simulations we described in this
paper are all based on the simple voltage-biased TES cir-
cuit in Fig. 6, more sophisticated circuits can be simulated,
and more complex analysis can be performed using our
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device model. When the scale of TES sensor array increases,
the main challenge will shift from optimization of individ-
ual sensor units to design and verification of system-level
circuits and architecture. These system-level considerations
may include circuits for signal conversion and processing,
and they can contain Josephson devices. There is also the
possibility of incorporating other advanced superconducting
circuit technologies [31]. If we integrate our device model in a
circuit simulator like WRspice [32] which supports Josephson
devices http://www.wrcad.com/wrspice.html, we will be able
to simulate complete superconducting circuit systems that
contain both TES devices and supporting Josephson circuits
(e.g., SQUID amplifiers, multiplexers, and RSFQ circuits).
Such powerful tools will make it possible to design and
study large-scale TES circuit systems for future scientific
applications.

V. CONCLUSION

In summary, we have developed a simple TES device model
based on the superfluid–normal fluid theory. The device model
is not limited to small-signal simulations and can be used
to study important characteristics of TES circuits and assist
their design. Simulation results based on our device model are
consistent with important observations and conclusions derived
from experimental data, and they can be used to study phenom-
ena not directly measurable in experiments. The device model
can be improved by refining the device physics and considering
neglected factors. The ideas and techniques used in our work
can be also applied to the modeling of other superconductor
electrothermal devices such as hot-electron-bolometers [33],
[34]. It is hoped that future improved device models will give
better accuracy and reliability so that they can be used to
develop sophisticated EDA tools that can eventually support the
design and simulation of large-scale TES circuits.
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