
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2012 1765

Transform Coefficient Coding in HEVC
Joel Sole, Rajan Joshi, Nguyen Nguyen, Tianying Ji, Marta Karczewicz,

Gordon Clare, Félix Henry, and Alberto Dueñas

Abstract—This paper describes transform coefficient coding
in the draft international standard of High Efficiency Video
Coding (HEVC) specification and the driving motivations behind
its design. Transform coefficient coding in HEVC encompasses
the scanning patterns and coding methods for the last significant
coefficient, significance map, coefficient levels, and sign data.
Special attention is paid to the new methods of last significant
coefficient coding, multilevel significance maps, high-throughput
binarization, and sign data hiding. Experimental results are
provided to evaluate the performance of transform coefficient
coding in HEVC.

Index Terms—High Efficiency Video Coding (HEVC), high
throughput entropy coder, transform coefficient coding, video
coding.

I. Introduction

I SO/IEC MPEG and ITU-T VCEG formed the Joint Collab-
orative Team on Video Coding (JCT-VC) to establish a new

standardization activity on video coding, referred to as High
Efficiency Video Coding (HEVC). A call for proposals was
issued in January 2010 and the responses were reviewed at
the first JCT-VC meeting in April 2010. The best performing
proposals formed the basis of the initial HEVC test model
under consideration [1]. The first HEVC test model (HM1.0)
was made available in October 2010. Since then, it has under-
gone several refinements. This paper describes the transform
coefficient coding in the draft international standard (DIS) of
the HEVC specification [2].

HEVC is a successor to the H.264/AVC video coding
standard [3]. One of its primary objectives is to provide
approximately two times the compression efficiency of its
predecessor without any detectable loss in visual quality.
HEVC adheres to the hybrid video coding structure; it uses
spatial and temporal prediction, transform of the prediction
residual, and entropy coding of the transform and prediction
information.

Manuscript received April 16, 2011; revised July 19, 2012; accepted August
21, 2012. Date of publication October 5, 2012; date of current version January
8, 2013. This paper was recommended by Associate Editor A. Kaup.

J. Sole, R. Joshi, and M. Karczewicz are with Qualcomm, San Diego, CA
92121 USA (e-mail: joels@qti.qualcomm.com; rajanj@qti.qualcomm.com;
martak@qti.qualcomm.com).

N. Nguyen and T. Ji are with Research In Motion Ltd., Waterloo, ON N2L
5Z5, Canada (e-mail: nnguyen@rim.com; tiji@rim.com).

G. Clare and F. Henry are with Orange Labs, Issy-les-Moulineaux 92794,
France (e-mail: gordon.clare@orange.com; felix.henry@orange.com).

A. Dueñas was with Cavium, San Jose, CA 95131 USA. He is now with
NGcodec, San Jose, CA 95126 USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2012.2223055

Fundamental difference between HEVC and previous video
coding standards is that HEVC uses a quadtree structure. The
quadtree structure is a flexible mechanism for subdividing a
picture into different block sizes for prediction and residual
coding. In HEVC, a block is defined as an array of samples. A
unit encapsulates up to three blocks (e.g., one luma component
block and its two corresponding chroma component blocks),
and the associated syntactical information required to code
these blocks. The basic processing unit is a coding tree unit
(CTU) that is a generalization of the H.264/AVC concept of
a macroblock. A CTU encapsulates up to three coding tree
blocks (CTBs) and the related syntax. Each CTU has an
associated quadtree structure that specifies how the CTU is
subdivided. This subdivision yields coding units (CUs) that
correspond to the leaves of the quadtree structure. A CU uses
either intra or inter prediction and is subdivided into prediction
units (PUs). For each PU, specific prediction parameters (i.e.,
intra prediction mode or motion data) are signaled. A nested
quadtree, referred to as the residual quadtree (RQT), partitions
a CU residual into transform units (TUs). The CUs, PUs,
and TUs encapsulate coding blocks (CBs), prediction blocks
(PBs), and transform blocks (TBs) respectively, as well as
the associated syntax. The quadtree structure gives an encoder
greater freedom to select the block sizes and coding parameters
in accordance with the statistical properties of the video signal
being coded. The reader is referred to [4] for additional details
on the use of the quadtree structure in video coding.

After the quadtree structure appropriately determines the
TBs, a coded block flag signals whether a TB has any sig-
nificant (i.e., nonzero) coefficient. If a TB contains significant
coefficients, the residual coding process signals the position
and value of each nonzero coefficient in the TB. This paper
describes the methods used to code this information, with a
focus on the transform coefficient coding methods for square
TBs. A TB can range in size from 4 × 4 to 32 × 32 for luma
and from 4 × 4 to 16 × 16 for chroma. Non-square TBs are
not explicitly discussed because they are coded in the same
way as the 16 × 16 and 32 × 32 TBs and they are not a part
of the HEVC main profile

Transform coefficient coding in HEVC is comprised of five
components: scanning (Section III), last significant coefficient
coding (Section IV), significance map coding (Section V),
coefficient level coding (Section VI), and sign data coding
(Section VII). Section II details the design principles that
guided the development of the transform coefficient coding
algorithms, Section VIII provides experimental results, and
Section IX concludes this paper.

1051-8215/$31.00 c© 2012 IEEE

1766 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2012

II. Transform Coefficient Coding Design

HEVC has a single entropy coding mode based on the
context adaptive binary arithmetic coding (CABAC) engine
that was also used in H.264/AVC. Unlike H.264/AVC, the
context adaptive variable length coding (CAVLC) mode is not
supported in HEVC. A thorough treatment of the inner work-
ings of the CABAC engine in H.264/AVC can be found in [5].

The CABAC engine has two operating modes, regular mode
and bypass mode. Regular mode has a context modeling stage,
in which a probability context model is selected. The engine
uses the selected context model to code the binary symbol
(bin). After each bin is coded, the context model is updated.
Bypass mode assumes an equiprobable model. This mode is
simpler and allows a coding speedup and easier parallelization
because it does not require context derivation and adaptation.

CABAC is highly sequential and has strong data depen-
dences, which makes it difficult to exploit parallelism and
pipelining in video codec implementations. The serial nature of
CABAC stems from its feedback loops at the arithmetic coding
and context modeling stages, particularly on the decoder side.
Context selection for regular bins has two dependences; the
context selection and the value of the context (CABAC state)
may depend on previous bins. Due to the large percentage of
bins devoted to residual coding, it is especially important that
transform coefficient coding design limits these dependencies
to enable high-throughput implementations.

HEVC introduces several new features and tools for the
transform coefficient coding to help improve upon H.264/AVC,
such as larger TB sizes, mode dependent coefficient scan-
ning, last significant coefficient coding, multilevel significance
maps, improved significance flag context modeling, and sign
data hiding. HEVC followed a development process in which
it was iteratively refined to improve coding efficiency and
suitability for hardware and software implementation. Core
experiments (CEs) were an important part of HEVC’s iterative
development process. A CE is a set of focused tests defined
to gain a better understanding of the proposed techniques in
JCT-VC. In a CE, new techniques had the opportunity to
mature and be refined before their adoption. Over the course of
the HEVC standardization process, several CEs on transform
coefficient coding were conducted (e.g., [6]).

The following practical issues played key roles in the
general design considerations.

1) Hardware Area: How many logic gates are required
to implement the codec (particularly the decoder) in
hardware? Is the size of the hardware reasonable, so as
to limit the power consumption, operating temperature,
and required footprint in a real device?

2) SIMD Implementation: Can single instruction multiple
data (SIMD) instruction sets be used to exploit data-
level parallelism?

3) Throughput: There is a significant complexity difference
between the processing of the regular and bypass coded
bins. Multiple bypass bins grouped together can be
coded in a single cycle. Regular coded bins generally
need to be processed sequentially, as the output of one
bin may affect the following bin. In contrast, in CAVLC
methods, all the data associated with a coefficient can

be computed in parallel. CAVLC is traditionally used
in applications that require high throughput because it
is easier to parallelize its operation, but it leads to a
penalty in compression efficiency compared to CABAC.
How many regular mode bins are required to code each
transform coefficient on average and in the worst-case?
How many transform coefficients can be (de)coded per
unit time?

4) Parallelism, Pipelining, and Speculative Computation:
The length of the data dependency path determines the
level of parallelism and pipelining. It is possible to use
speculative methods to predict the values of multiple
bins in parallel. Speculative computation is a look-ahead
technique that pre-calculates a tree of several future
bins. The proper branch of the tree is selected when the
actual bins become available. On average, these methods
allow coding of more than one regular bin per cycle.
However, in some scenarios, none of the pre-calculated
values match the actual bins, leading to problematic
corner cases. Hence, speculative computation may not
guarantee improvement in throughput in the worst-case.
Furthermore, additional hardware resources are required
to compute multiple cases in parallel, leading to a larger
and more complex design. Can the design facilitate
these performance optimizations to improve the overall
speed (especially at the decoder)?

Transform coefficient coding in HEVC strives to achieve a
balance between coding efficiency and practicality. As such,
features and tools addressing the practical issues were adopted
only if they improve coding efficiency or at worst, resulted in
a slight degradation. With this in mind, the key principles in
the design of transform coefficient coding in HEVC can be
summarized as follows.

1) Improve coding efficiency, as this is one of the primary
goals of HEVC.

2) Reduce the number of coded bins on average and in the
worst-case guarantee a minimum throughput.

3) Increase the percentage of bypass bins and group bypass
bins together for higher throughput.

4) Reduce the dependency in context derivation of the
current bin on previously coded bins.

5) Avoid interleaving syntax elements; a serial dependency
exists if a syntax element depends on the value of the
previous syntax element.

6) Reduce the number of contexts: in H.264/AVC, the
number of contexts used for coefficient coding is a high
percentage of the total number of contexts [5].

7) Simplify scans for the hardware and SIMD implemen-
tation.

8) Simplify and modularize the coding of large TBs.

III. Scans

There are two distinct concepts in scanning. A scan pattern
converts a 2-D block into a 1-D array and defines a processing
order for the samples or coefficients. A scan pass is an iteration
over the transform coefficients in a block (as per the selected
scan pattern) in order to code a particular syntax element.

SOLE et al.: TRANSFORM COEFFICIENT CODING IN HEVC 1767

Fig. 1. Diagonal scan pattern in 8 × 8 TB: the diagonal scan of a 4 × 4 TB
is used within each 4 × 4 subblock of larger blocks.

A. Scan Patterns

In H.264/AVC, a zigzag scan is used. A zigzag scan interacts
poorly with the template-based context models [7] in which the
context for a coefficient depends on the previous coefficients
whenever the scan moves from one diagonal to another. A
diagonal scan starts in the top right corner and proceeds to
the bottom left corner. The diagonal scan reduces the data
dependency, that allows for a higher degree of parallelism in
context derivation. In HEVC, although the context model for
the significance of a coefficient has been refined to remove
the data dependency problem, however, a diagonal scan is still
used instead of a zigzag scan.

In HEVC, the scan in a 4 × 4 TB is diagonal. The scan
in a larger TB is divided into 4 × 4 subblocks and the scan
pattern consists of a diagonal scan of the 4 × 4 subblocks and
a diagonal scan within each of the 4 × 4 subblocks [8]. This
is possible because in HEVC, the dimensions of all TBs are a
multiple of 4. Fig. 1 shows the diagonal scan pattern in an 8×8
TB, that splits into 4 subblocks. One reason for dividing larger
TBs into 4 × 4 subblocks is to allow for modular processing,
that is, for harmonized subblock based processing across all
block sizes. Additionally, the implementation complexity of a
scan for the entire TB is much higher than that of a scan based
on 4×4 subblocks, both in software (SIMD) implementations
and hardware (the estimated gate count for the subblock scan
is one half [9]).

Horizontal and vertical scans may also be applied in the
intra case for 4×4 and 8×8 TBs. The horizontal and vertical
scans are defined by row-by-row and column-by-column scans,
respectively, within the 4×4 subblocks. The scan over the 4×4
subblocks is same as that used within the subblock.

B. Scan Passes

A coefficient group (CG) is defined as a set of 16 con-
secutive coefficients in a scan order. Given the scan patterns
in HEVC, a CG corresponds to a 4 × 4 subblock. This
is illustrated in Fig. 2, where each color corresponds to a
different CG. A 4 × 4 TB consists of exactly one CG. TBs of
size 8×8, 16×16, 32×32 are partitioned into nonoverlapping
4 × 4 CGs.

Scanning starts at the last significant coefficient in a block
and proceeds to the DC coefficient in the reverse scanning
order defined in Section III-A. CGs are scanned sequentially.
Up to five scan passes are applied to a CG [10] and all the
scan passes follow the same scan pattern [11]. Each scan pass

Fig. 2. Coefficient groups for 8 × 8 TB.

codes a syntax element for the coefficients within a CG, as
follows.

1) significant−coeff−flag: significance of a coefficient
(zero/nonzero).

2) coeff−abs−level−greater1−flag: flag indicating whether
the absolute value of a coefficient level is greater than 1.

3) coeff−abs−level−greater2−flag: flag indicating whether
the absolute value of a coefficient level is greater than 2.

4) coeff−sign−flag: sign of a significant coefficient (0:
positive, 1: negative).

5) coeff−abs−level−remaining: remaining value for abso-
lute value of a coefficient level (if value is larger than
that coded in previous passes).

In each scan pass, a syntax is coded only when necessary
as determined by the previous scan passes. For example, if
a coefficient is not significant, the remaining scan passes are
not necessary for that coefficient. The bins in the first three
scan passes are coded in a regular mode, while the bins
in scan passes 4 and 5 are coded in bypass mode, so that
all the bypass bins in a CG are grouped together [12]. In
certain scenarios, scan passes 2 and 3 may be terminated early.
In these cases, the remaining flags are not coded, and any
information signaled by these flags is instead signaled by the
syntax element coeff−abs−level−remaining, thus shifting more
bins to bypass mode [13].

Data processing is localized within a CG and once a CG
is fully processed, its coefficient levels can be reconstructed
before proceeding to the next one. With this syntax-plane cod-
ing approach, syntax elements are separated into different scan
passes, thus helping speculative coding algorithms [14], since
the next syntax element to be processed within a scan pass
is known. In contrast, in H.264/AVC, all the syntax elements
specifying the level information of a significant coefficient are
coded before proceeding to the next coefficient. Therefore,
the value of the current syntax element determines the type
of the next syntax element to be processed. For instance, if
coeff−abs−level−greater1−flag equals 1, then the next syntax
element is coeff−abs−level−greater2−flag. Otherwise, the next
element is coeff−sign−flag. This kind of dependency is con-
siderably reduced with the new design.

C. Mode Dependent Coefficient Scanning

A new tool in HEVC that improves coding efficiency is
mode dependent coefficient scanning (MDCS) [15]. For intra
coded blocks, the scanning order of a 4×4 TB and a 8×8 luma
TB is determined by the intra prediction mode. Each of the 35
intra modes uses one of the three possible scanning patterns:

1768 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2012

diagonal, horizontal, or vertical. A look-up table maps the intra
prediction mode to one of the scans.

This tool exploits the horizontal or vertical correlation of the
residual depending on the intra prediction mode. For example,
for a horizontal prediction mode, transform coefficient energy
is clustered in the first few columns, so a vertical scan results
in fewer bins being entropy coded. Similarly for a vertical
prediction, a horizontal scan is beneficial. Experiments showed
that including horizontal and vertical scans for large TBs offers
little compression efficiency, so the application of these scans
is limited to the two smaller TBs. A detailed performance
evaluation of MDCS is provided in Section VIII.

IV. Last Significant Coefficient

A. Last Significant Coefficient Flag

Signaling the last significant coefficient typically reduces
the number of coded bins by saving the explicit coding
of trailing zeros toward the end of a forward scan. In
H.264/AVC, the significance map coding is carried out by
interleaving a bin indicating the significance of the coeffi-
cient (significant−coeff−flag) and a bin indicating whether
the coefficient is the last significant within the block
(last−significant−coeff−flag) when the significant−coeff−flag
equals 1.

The drawback of the H.264/AVC approach is that the
decision regarding coding of the last−significant−coeff−flag
for a particular transform coefficient is dependent on the
value of the significant−coeff−flag. As discussed above, this
increases the complexity of speculative coding substantially.
This is especially critical for the significance map as it may
account for more than 40% of the bins.

B. Last Significant Coefficient Coordinates Signaling

In HEVC, the coding of the significance flag is separated
from the coding of the last significant coefficient flag. To
achieve this, the position of the last significant coefficient in
a TB following the forward scan order is coded first, and
then, the significant−coeff−flags are coded. The position of
the last significant coefficient in a block is coded by explicitly
signaling its (X, Y)-coordinates [16]. Coordinate X indicates
the column number and Y the row number.

The coordinates are binarized in two parts, a prefix
and a suffix. The first part represents an index to an in-
terval (syntax elements last−significant−coeff−x−prefix and
last−significant−coeff−y−prefix). This prefix has a truncated
unary representation and the bins are coded in regular
mode. The second part (last−significant−coeff−x−suffix and
last−significant−coeff−y−suffix) has a fixed length represen-
tation and is coded in bypass mode [17]. The suffix represents
the offset within the interval. For certain values of the prefix,
the suffix is not present and is assumed to be zero.

Let T be the transform size. The number of intervals is
N + 1, where N = 2 log2(T) − 1. The truncated unary code
for size N is used to code the interval index, i.e., the prefix.
The interval lengths are shared across all transform sizes and
the binarization is also shared (except when the unary code

is truncated). The suffix is coded only when the interval
length is larger than one, that is, when prefix > 3. The
suffix is represented by a fixed length binary code using b

bits specifying the offset within interval, where

b = max(0, � prefix/2� − 1) (1)

and the suffix range is

suffix = {0, . . . , 2b − 1}. (2)

The fixed length code is signaled starting with the most
significant bit.

The magnitude of the last position, denoted by last, can be
derived from the prefix and suffix as

last =

⎧⎨
⎩

2b(2 + mod(prefix, 2)) + suffix, if prefix > 3

prefix, otherwise
(3)

where mod(.) is the modulus after division operation.
The maximum length of the truncated unary code (which is

also the number of regular coded bins) for one coordinate
is 3, 5, 7, and 9 for transform sizes of 4, 8, 16, and 32,
respectively. The maximum number of bins for coding one
coordinate (regular and bypass) is 3, 6, 9 and 12, respectively.
As an example, Table I shows the binarization for T = 32.

In order to group bypass bins, the prefix of the X coordinate
is signaled first, followed by the prefix of Y . After that,
the suffixes for X and Y are signaled. Coordinates X and
Y have separate set of contexts. Different bins within the
truncated unary part with similar statistics share contexts in
order to reduce the total number of contexts. The number of
contexts for the prefix of one coordinate is 18 (15 for luma
and 3 for chroma), so the total number of contexts for last
position coding is 36. Table II shows the context assignment
for different bins for a given coordinate across all transform
sizes, luma, and chroma components.

This method has no performance penalty [16] with respect
to the interleaved signaling of significance map and last
flags in H.264/AVC. At the same time it has the following
advantages.

1) On average, the total number of bins for the last position
is reduced.

2) In the worst-case, the number of bins are significantly
reduced. For an N × N TB, the maximum number of
bins with the H.264/AVC method is N × N − 1. For
example, in case of a 32×32 TB, the worst-case is 1023
bins in regular mode, whereas in HEVC, the worst-case
is reduced to 24 bins: 12 bins per coordinate when each
value is equal or larger than 24 (see last row in Table
I).

3) Some of the bins are coded in bypass mode and grouped.
4) Interleaving of significance map and last flags is elimi-

nated.
5) In H.264/AVC, the scan pass for the significance map is

in the forward direction due to the method of signaling
the last coefficient. For the next scan pass the position
of the last coefficient is known, and hence, coefficient
levels are scanned in reverse order enabling the usage of

SOLE et al.: TRANSFORM COEFFICIENT CODING IN HEVC 1769

TABLE I

Last Position Binarization for T = 32. For the suffix X is 0 or 1

and the Most Significant Bits Are Signaled First

Position prefix suffix Suffix Range
Truncated unary Fixed length
(regular mode) (bypass mode)

0 0 – –
1 10 – –
2 110 – –
3 1110 – –
4–5 11110 X 0 to 1
6–7 111110 X 0 to 1
8–11 1111110 XX 0 to 3
12–15 11111110 XX 0 to 3
16–23 111111110 XXX 0 to 7
24–31 111111111 XXX 0 to 7

TABLE II

Last Position Context Index for Each Truncated

Unary Code Bin and T

Bin Index 0 1 2 3 4 5 6 7 8
T Luma
4 0 1 2
8 3 3 4 4 5

16 6 6 7 7 8 8 9
32 10 10 11 11 12 12 13 13 14
T Chroma
4 15 16 17
8 15 15 16 16 17

16 15 15 15 15 16 16 16

efficient context models [5]. The HEVC method allows
all the scan passes to use the same reverse scan order.

V. Significance Map

In HEVC, as in H.264/AVC, a coded block flag (CBF) sig-
nals the significance of the entire TB, i.e., it signals whether a
TB contains nonzero transform coefficients. There are separate
CBFs for luma and each of the two chroma components.
A CBF is coded using CABAC in regular mode. Context
selection for a CBF depends on the depth of the block in
the quadtree hierarchy and whether it is comprised of luma or
chroma samples. There are two contexts for luma and three for
chroma. The contexts are defined in such a way for simplicity
and due to the disparity between their statistics. Indeed, luma
and chroma blocks have different properties as do blocks at
different levels of the RQT. All of the transform coefficients
in the TB are zero when a CBF equals zero. On the other
hand, when a CBF equals one, the last significant coefficient
and the significance map, which identifies the positions of the
nonzero coefficients in the TB, are coded.

The significance map is coded in the first scan pass over
the residual data. Since the last coefficient is already known
to be significant, the significance map scan pass starts at the
coefficient before the last coefficient in the scan order, and
continues backwards until the top-left coefficient of the CG
is reached. The scan pass then proceeds to the next CG in
reverse scan order, continuing in this manner until the entire
TB has been processed.

A. Multilevel Significance

Effective intra and inter frame prediction methods in HEVC
reduce the energy of the prediction residual. The strong energy
compaction property of the discrete cosine and sine transforms
concentrates this energy in a small number of coefficients.
Then, quantization may adjust certain coefficients to zero. As
a result, the significance map is often sparse. In order to exploit
this sparsity, a new approach introduced in HEVC is to code
the significance map within a TB in two levels [18]. The idea
is to group together coefficients and code the significance
of coefficient groups before coding the significance of the
coefficients contained within them. As such, this design is
highly compatible with the subblock and CG based scans
described in Section III-A. Benefits come from the fact that
if the significance of a CG is known to be zero, then the
coefficients in that CG do not need to be coded since they can
be inferred to be zero.

Let p0 denote the probability that a given CG is comprised
entirely of coefficients that are zero, and let N denote the
number of coefficients in that CG. Then, if

p0 + (N + 1) × (1 − p0) < N (4)

the coding complexity measured in terms of the number of
explicitly coded bins is reduced. This in turn increases the
average throughput as per the design principles. Experimental
results (see Section VIII-B) indeed show that the approach in
[18] reduces the average number of coded bins, in addition to
improving the coding efficiency.

In HEVC, the significance information is coded at multiple
levels. The CBF signals the significance of the entire TB,
while within a TB, level L1 corresponds to the significance of
CGs, and level L0 corresponds to the significance of individual
coefficients.

At L1, the significance of a CG is defined to be 1 if at
least one coefficient in that CG is nonzero, and 0 otherwise.
The significance of a CG is signaled using the syntax element
coded−sub−block−flag (CSBF). The flag of the CG containing
the last significant coefficient is not coded, since it is known to
be 1. Similarly, the CSBF of all subsequent CGs (in forward
scan order) are not coded because they are known to be 0. To
improve coding efficiency, the CSBF of the CG containing the
DC coefficient is not coded but instead, implicitly set to be 1 at
both the encoder and decoder. This is because the probability
of this CG being entirely comprised of coefficients that are 0
is itself nearly 0.

The CSBF is coded using CABAC in regular mode. The
context model is based on a template of neighboring CGs, the
basic premise being that the significance of neighboring CGs
can be used to make a good prediction about the significance
of the current CG. The context cg for the CSBF of a given
CG g can be 0 or 1 and is derived as follows:

cg = min(1, sr + sl) (5)

where sr and sl are equal to the CSBF of the neighboring
right and lower CGs, respectively. If the neighboring CG falls
outside the boundary of the TB, its CSBF is assumed to be 0.

1770 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2012

Fig. 3. Significance flag context assignment in the 4 × 4 TB. Assignment is
based on the position within the block.

At L0, the significance of the individual coefficients are
signaled using the significant−coeff−flag. L1 is leveraged to
avoid having to explicitly code this flag in many instances. A
significant−coeff−flag in the CG containing the DC coefficient
is always coded since the CSBF of that CG is always 1.
Otherwise, a significant−coeff−flag is not coded if:

1) the corresponding coefficient is in a CG with CSBF =
0, in which case the significant−coeff−flag is inferred to
be 0, or

2) the corresponding coefficient is the last in reverse scan
order in a CG with CSBF = 1, and all other coefficients
in that CG are 0, in which case the significant−coeff−flag
is inferred to be 1.

B. Coefficient Significance

A significance flag is coded using a context model for each
coefficient between the last one in scanning order (which is
excluded) and the DC coefficient. For 4 × 4 TBs, the context
depends on the position of the coefficient within the TB, as
in H.264/AVC. Coefficient positions are grouped according to
their frequency [19] and the significance flags within a group
are coded using the same context. Fig. 3 shows the context
modeling for a 4 × 4 TB. High-frequency coefficients with
similar statistical distributions share the same context, while
a separate context is assigned to each of the lower frequency
coefficients. Luma and chroma components are treated in the
same way for simplicity, even though significance information
in chroma blocks requires less modeling.

The position-based context modeling approach is simple
to implement and allows for a high degree of parallelism in
context derivation. On the other hand, a template-based context
modeling approach, in which a context is determined using a
causal neighborhood [7], provides a higher coding efficiency
in large TBs. However, this approach does not allows for a
high degree of parallelism because in certain cases, a context
is dependent on the significance of coefficients immediately
preceding it in the scan order.

In HEVC, context modeling for significance flags in 8 × 8,
16 × 16 and 32 × 32 TBs is both position and template-
based. The key is that the template is designed to avoid data
dependencies within a CG [20]. As shown in Fig. 4, a context
is selected for a significance flag depending on a template of
the neighboring right and lower CSBF, sr and sl respectively,
and on the position of the coefficient within the current CG.
There are 4 patterns, corresponding to the 4 combinations
of sr and sl, with each pattern assigning different contexts
(represented by distinct numbers in Fig. 4) to the different
positions in the CG [21]. For example, if sr = 0, sl = 1 and the
coefficient is in the top leftmost position of the CG, the context

Fig. 4. Significance flag context assignment in the 8×8, 16×16, and 32×32
TBs. A context depends on the significance of the neighboring right (sr) and
lower (sl) CGs and on the coefficient position in the current CG.

for its significance flag is “2.” This design sacrifices some
of the coding gain of a context model based on a template
of neighboring coefficients, but allows the determination of
up to 16 contexts in parallel. This tradeoff is an example of
how transform coefficient coding in HEVC achieves a balance
between coding efficiency and practicality.

TBs are split into two regions: the top leftmost subblock is
region 1, and the rest of subblocks make up region 2. Both
regions use the context selection method described above,
but have different sets of contexts for luma to account for
the different statistics of the low and high frequencies. For
chroma blocks, contexts for regions 1 and 2 are shared. The
DC component has a single dedicated context and it is shared
across all TB sizes. TBs of size 16 × 16 and 32 × 32 share
contexts to limit the total number of contexts.

VI. Coefficient Level

H.264/AVC codes the absolute level as a truncated unary
code in the regular mode for bins 1 to 14. If the level is
larger than 14, then a suffix is appended to the truncated unary
code. The suffix is binarized with a 0th-order Exp-Golomb
code (EG0) and coded in bypass mode.

Coefficient level coding in HEVC is partly inherited
from H.264/AVC. Several modifications are introduced to
address large TBs [7] and to enhance throughput by en-
coding more bins in bypass mode [13], [22]. The abso-
lute level of a significant coefficient is coded in the sec-
ond, third and fifth scanning passes in a CG. The corre-
sponding syntax elements are coeff−abs−level−greater1−flag,
coeff−abs−level−greater2−flag and coeff−abs−level−remai-
ning.

A. Greater Than One and Two Flags

In order to improve throughput, the second and third
passes may not process all the coefficients in a CG
[13]. The first eight coeff−abs−level−greater1−flags in
a CG are coded in regular mode. After that, the values
are left to be coded in bypass mode in the fifth pass
by the syntax coeff−abs−level−remaining. Similarly,
only the coeff−abs−level−greater2−flag for the first

SOLE et al.: TRANSFORM COEFFICIENT CODING IN HEVC 1771

TABLE III

Context Set Definition for Coefficient Level Coding

Context Sets for a CG
Luma Chroma

of coeff−abs−level−greater1−flag = 1 in
previous CG

0 > 0 0 > 0

Region 1 (top left CG) 0 1 4 5
Region 2 (other CGs) 2 3 4 5

TABLE IV

Context Models in Each Context Set for

coeff−abs−level−greater1−flag

Context Model Description
0 1 or more larger than 1
1 Initial—no trailing ones
2 1 trailing one
3 2 or more trailing ones

coefficient in a CG with magnitude larger than 1 is
coded. The rest of coefficients with magnitude larger
than 1 of the CG use coeff−abs−level−remaining to code
the value. This method limits the number of regular
bins for coefficient levels to a maximum of 9 per
CG: 8 for the coeff−abs−level−greater1−flag and 1 for
coeff−abs−level−greater2−flag. There is no performance
impact by introducing this method in the HEVC design as
demonstrated in [13].

For coefficient level flags, a context set is selected depend-
ing on whether there is a coeff−abs−level−greater1−flag equal
to 1 in the previous CG [23] and whether the DC coefficient
is part of the CG [11], i.e., if the current CG is in region 1
or 2. For chroma, the context set assignment does not depend
on the CG location. Therefore, there are 4 different contexts
sets for luma and 2 for chroma, as shown in Table III. Each
set has 4 context models for coeff−abs−level−greater1−flag
and 1 context for coeff−abs−level−greater2−flag, so the num-
ber of contexts for these syntax elements is 24 and 6,
respectively. The specific context within a context set for
coeff−abs−level−greater1−flag is selected depending on the
number of trailing ones and the number of coefficient levels
larger than 1 in the current CG (Table IV). The same logic
and contexts are applied to all TB sizes.

B. Remaining Absolute Level

After the level flags are coded, the fifth and last scan pass
codes the syntax element coeff−abs−level−remaining, which
specifies the remaining absolute value of the coefficient level.
Let the baseLevel of a coefficient be defined as

baseLevel = significant−coeff−flag
+coeff−abs−level−greater1−flag
+coeff−abs−level−greater2−flag

(6)

where a flag has a value of 0 or 1 and is inferred to be 0 if not
present. Then, the absolute value of the coefficient is simply

absCoeffLevel = baseLevel + coeff−abs−level−remaining .

(7)

The syntax element coeff−abs−level−remaining is present in
the bitstream if a coefficient level is greater than 2 or whenever
the maximum number of coeff−abs−level−greater1−flag
or coeff−abs−level−greater2−flag per CG is reached.
Coeff−abs−level−remaining is binarized using Golomb–Rice
codes and Exp-Golomb codes [24].

Golomb–Rice codes are a subset of Golomb codes and
represent a value n >= 0, given a tunable Rice parameter
m, as a quotient q and a remainder r

q = �n/m� (8)

r = n − q × m (9)

where m is a power of 2. The quotient q is the prefix and
has a unary code representation. The remainder r is the suffix
and has a fixed length representation. Golomb–Rice codes are
attractive here for several reasons. Firstly, they are optimal
for geometrically distributed sources such as the residual
coefficients. Secondly, since m is a power of 2, division
and multiplication can be efficiently implemented using shift
operations. Finally, the fixed length part is coded with exactly
log2(m) bins, which simplifies reading from the bitstream.

Exp-Golomb codes, like Golomb–Rice codes, have imple-
mentation and speed advantages. They are also very efficient
for geometric distributions, but more robust to changes in the
source distribution. The code structure is similarly formed
by a unary prefix followed by a fixed length suffix, but the
number of codewords in the suffix part doubles after each bit
in the unary code. Therefore, Exp-Golomb codes have a slower
growth of the codeword length. By using Exp-Golomb codes,
the maximum codeword length for coeff−abs−level−remaining
is kept within 32 bits.

The syntax element coeff−abs−level−remaining is coded in
bypass mode in order to increase throughput. HEVC employs
Golomb–Rice codes for small values and switches to an Exp-
Golomb code for larger values. The transition point between
the codes is when the unary code length equals 4. Table V
shows the binarization for Rice parameter m = 0 and m = 1.

The Rice parameter is set to 0 at the beginning of each CG
and it is conditionally updated depending on the previous value
of the parameter and the current absolute level as follows:

if absCoeffLevel > 3 × 2m, m = min(4, m + 1). (10)

The parameter update process allows the binarization to
adapt to the coefficient statistics when large values are ob-
served in the distribution. Fig. 5 summarizes the absolute level
binarization processes of H.264/AVC and HEVC.

VII. Sign Data

In HEVC, the sign of each nonzero coefficient is coded
in the fourth scan pass in bypass mode, assuming that
these symbols are equiprobable and uncorrelated. Sign flags
coeff−sign−flag represent a substantial proportion of a com-
pressed bitstream (around 15–20% depending on the config-
urations). It is difficult to directly compress this information.

1772 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2012

TABLE V

Binarization for the Remaining Level

Value prefix suffix Suffix Range
m=0 unary fixed length

0 0 – –
1 10 – –
2 110 – –
3 1110 – –

4–5 11110 X 0 to 1
6–9 111110 XX 0 to 3

10–17 1111110 XXX 0 to 7
18–33 11111110 XXXX 0 to 15

...
m=1 unary fixed length
0–1 0 X 0 to 1
2–3 10 X 0 to 1
4–5 110 X 0 to 1
6–7 1110 X 0 to 1

8–11 11110 XX 0 to 3
12–19 111110 XXX 0 to 7
20–35 1111110 XXXX 0 to 15
36–67 11111110 XXXXX 0 to 31

...

The top of the table is for Rice parameter equals 0 and the bottom is for
Rice parameter equals 1.

Fig. 5. Binarization of absolute value of the transform coefficients for
H.264/AVC and HEVC.

However, HEVC provides a mechanism to reduce the number
of coded signs, called sign data hiding (SDH), introduced in
[25] and [26].

For each CG, and depending on a criterion, encoding the
sign of the last nonzero coefficient (in reverse scan order)
is simply omitted when using SDH. Instead, the sign value
is embedded in the parity of the sum of the levels of the
CG using a predefined convention: even corresponds to “+”
and odd to “-.” The criterion to use SDH is the distance in
scan order between the first and the last nonzero coefficients
of the CG. If this distance is equal or larger than 4, SDH
is used. This value of 4 was chosen because it provides the
largest gain on HEVC test sequences. Also, this value is fixed
in the standard, because experiments could not establish that
additional compression gain can be obtained by allowing this
threshold to vary for different sequences or pictures [27].
Having a fixed value simplifies hardware implementation and
bitstream conformance testing.

On the encoder side, if the criterion is met and if the parity
of the sum of the levels in the CG matches the sign to omit,
there is no additional process, and one bit of information is

saved by avoiding the signaling of this sign. If the parity does
not match the sign to omit, the encoder has to change the
value of one of the quantized coefficients in the CG so that
the parity matches the sign. This is an encoder choice and it is
up to the implementer to decide which coefficient to modify
and how. Of course, it is preferable to make the change that
least affects the rate-distortion (RD) performance. References
[25] and [26] show that such change can be found with a
satisfying tradeoff between complexity and compression.

A first approach [25] relies on rate-distortion optimized
quantization (RDOQ) being used during encoding. RDOQ
[28], [29] is an encoder-only method that adjusts the quantized
values of the coefficients to minimize a joint RD cost function.
RDOQ tests alternate quantization values of the coefficients
and selecting them if they provide a better RD tradeoff
compared to the inital ones. When SDH is used, the RD costs
computed during the RDOQ phase are also used to identify the
parity change that least degrades RD performance. This can
be performed without computing new RD costs in addition
to the ones already computed by RDOQ and, therefore, very
little additional complexity is needed.

A second approach [26] has been proposed when RDOQ
is not used, such as in low-complexity encoders. Here, it is
desirable to avoid computing RD costs, mostly because of the
complexity incurred by simulating the encoding of alternate
quantization values by CABAC. Therefore, for each coefficient
in a CG, only the difference between the original coefficient
and its dequantized value is computed. The coefficient that
yields the largest difference magnitude in its CG has its
quantized value increased by one (if the difference is positive)
or decreased by one (if the difference is negative), thus
providing the parity change. Since the coefficient with the
largest difference magnitude is also the closest to its alternate
quantization value, this process ensures that the impact of
the parity change is small. The computation of the difference
can be simply derived from the usual quantization formula.
Therefore, the impact on the encoder complexity is modest.

On decoder side, if the SDH criterion is met, the sign of the
last nonzero coefficient of each CG is not decoded. Instead,
it is inferred from the parity of the sum of the levels in the
CG. The advantage of hiding the sign of the last coefficient in
scan order (instead of the first, for instance) is clear; when the
last coefficient is reached, the information needed to process
its sign when SDH is used (such as obtaining the parity of the
sum of the quantized coefficients in order to infer the sign) is
already available.

The rationale behind SDH, as shown on Fig. 6 (left di-
agram), resides in the fact that, in about 50% of the CGs
where it is used, a full bit is saved. In the other 50%, when
a change in one of the quantization levels is needed, the RD
loss is moderate because there exist quantization solutions of
the CG that are close to the optimal solution and have the
opposite parity, as shown in Fig. 6 (right diagram). In this
case, embedding the sign bit in a CG gives enough of a chance
to find a quantized coefficient that causes moderate RD loss
when modified. Furthermore, when there are more sign bits to
hide (e.g., with small quantization steps), there is more residual
data where to embed them.

SOLE et al.: TRANSFORM COEFFICIENT CODING IN HEVC 1773

Fig. 6. Example of RD cost modification when the parity matches the sign
(left, large RD gain) and when it does not (right, small RD loss). Dashed
arrow: rate gain of one bit provided by omitting the signaling of one sign.

HEVC includes several tools that are aimed at facilitating
lossless encoding at the CU level. Since SDH usually requires
some change in the quantization levels, it is inherently a lossy
algorithm. Therefore, the standard does not allow the use of
SDH in CUs where lossless tools are activated [30]. Also, a
specific syntax element is provided to activate SDH at picture
level during encoding, so an encoder can choose simply not to
use SDH if it does not match its efficiency-complexity target.

VIII. Experimental Results

This section provides performance results for transform
coefficient coding in HEVC. Individual results for the new
features of MDCS, multilevel significance map, and SDH
are first reported. Then, HEVC transform coefficient coding
and H.264/AVC transform coefficient coding are compared
as a whole with respect to coding efficiency, bin usage, and
throughput. This is done by comparing a realization of HEVC,
HM8.0, and a model of H.264/AVC. In this model, H.264/AVC
transform coefficient coding has been extended in a straight-
forward manner, as in [31], to deal with transforms larger than
8 × 8 and integrated into HM8.0. The main profile does not
include non-square transforms, so no further extension to cover
them is necessary. However, RDOQ has been disabled in order
to measure the performance of the coefficient coding methods
directly without the influence of this encoder-only technique.

The conducted experiments follow the JCT-VC common
test conditions as described in [32] using HEVC main profile
in HM8.0. The test set has twenty sequences split in five
classes depending on the resolution: class A (4K), class B
(1080p), class C (WVGA), class D (WQVGA), and class E
(720p). Additionally, there is a class F (not included in the
performance averages) composed of screen content sequences.
Ten seconds of each sequence are encoded. The three coding
configurations in common test conditions are all-intra (AI),
low delay (LD), and random access (RA) with a hierarchical
GOP structure of size 8 and refresh points every second.
Common test conditions do not include results for the highest
resolution sequences (class A) in the LD configuration and for
the video-conference content (class E) in the RA configuration.
The quantization parameter is set to QP = {22, 27, 32, 37}.
Coding efficiency results are presented as the percentage of
bit-rate savings (BD-rate [33]) with respect to the main profile
anchor. BD-rate computes an average of the bit-rate savings

TABLE VI

BD-Rate [%] of MDCS

All Intra Random Access Low Delay
Y U V Y U V Y U V

Class A 0.4 0.5 0.4 0.2 0.1 0.0 – – –
Class B 0.5 0.7 0.9 0.3 0.3 0.4 0.1 0.1 0.1
Class C 1.0 1.5 1.5 0.4 0.7 0.6 0.2 0.4 0.2
Class D 1.0 1.6 1.7 0.4 0.7 0.8 0.1 0.9 0.0
Class E 1.4 0.6 0.6 – – – 0.3 −0.7 0.3
Overall 0.8 1.0 1.0 0.3 0.5 0.5 0.1 0.2 0.2
Class F 0.7 1.1 1.0 0.3 0.4 0.3 0.4 0.6 0.7
Enc Time 100% 100% 100%
Dec Time 100% 100% 100%

TABLE VII

BD-Rate [%] of Multilevel Significance Map

All Intra Random Access Low Delay
Y U V Y U V Y U V

Class A 1.1 2.2 2.2 1.0 0.6 0.7 – – –
Class B 1.1 2.1 2.2 1.0 1.6 1.8 1.1 1.7 1.6
Class C 0.6 1.0 0.9 0.9 0.8 0.9 1.4 1.1 0.6
Class D 0.6 1.0 0.8 0.8 0.6 0.3 1.0 0.2 0.0
Class E 1.4 1.8 1.8 – – – 1.2 0.5 2.6
Overall 1.0 1.6 1.6 0.9 1.0 1.0 1.2 0.9 1.1
Class F 0.4 0.4 0.3 0.6 0.4 0.5 1.0 1.0 0.5
Enc Time 101% 99% 100%
Dec Time 100% 100% 100%

over the four QP points. Positive numbers indicate BD-rate
losses. Results include the encoding and decoding times of the
methods as a percentage of the tested anchor.

A. MDCS Performance

The performance of MDCS is tested by disabling the
method. Table VI compares MDCS on and off cases. Positive
numbers show the loss incurred by disabling MDCS. For the
AI configuration, MDCS shows an average BD-rate gain of
0.8%. Since MDCS is applied only to intra predicted blocks,
the gains are lower for the configurations that make use of
inter prediction. For RA, the gain is 0.3%, and for LD, which
uses less intra prediction than RA, the gain is 0.1%. Encoding
and decoding times are essentially unchanged.

B. Multilevel Significance Map Performance

The performance of the multilevel significance map is mea-
sured by disabling level L1 significance. Tables VII and VIII
report the BD-rate and number of bins of having the multilevel
significance map enabled versus disabled. In Table VIII, the
columns labeled T, R, and S correspond to the total bins per
pixel, regular coded bins per pixel, and significance map bins
per pixel, respectively. In both tables, positive numbers show
the loss incurred by disabling the L1 significance.

Table VIII shows average savings of significance bins per
pixel of 5.5% in AI, 8.2% in RA and 16.2% in LD. The
main reason for differences in the three configurations is that
inter predicted blocks have sparser residue than intra predicted
blocks, since inter prediction is typically more accurate. As
explained in Section V-A, the multilevel significance map is

1774 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2012

TABLE VIII

Average Bins Per Pixel Savings [%] of

Multilevel Significance Map

All Intra Random Access Low Delay
T R S T R S T R S

Class A 1.8 3.0 2.4 3.2 4.9 8.9 – – –
Class B 2.8 4.2 3.2 4.4 5.8 10.3 5.6 7.0 12.8
Class C 1.4 2.2 1.5 3.1 4.5 8.5 4.2 5.7 10.8
Class D 1.3 2.1 2.3 2.0 3.0 5.3 2.1 2.8 4.3
Class E 5.8 9.2 18.0 – – – 10.7 13.7 36.7
Overall 2.6 4.1 5.5 3.2 4.5 8.2 5.7 7.3 16.2
Class F 1.0 1.7 2.5 1.5 2.2 4.1 2.3 3.3 6.7

designed to take advantage of sparse residual. Table VII shows
that the average BD-rate gain provided by the method is be-
tween 1.0% and 1.2%, without a noticeable effect on encoding
and decoding times. Disabling L1 increases the number of bins
and changes the significance map statistics, which negatively
affects other significance map methods tuned to work along
with L1. The total bin savings does not directly translate into
corresponding BD-rate gains because the significance flag bins
eliminated by a zero CSBF have relatively low entropy

C. SDH Performance

An encoder can choose whether to activate or deactivate
the SDH tool. Table IX shows the loss incurred over the
different test configurations when SDH is disabled. In these
experiments, SDH is applied with the encoder approaches
described in Section VII. The first approach is used together
with RDOQ (which is a part of the main profile common test
conditions), and the second approach is used for the case when
RDOQ is disabled. The average gain provided by SDH is 0.8%
when used on top of RDOQ. When RDOQ is disabled, trans-
form coefficients tend to have larger magnitude, and therefore
SDH is activated more often, and an average gain of 1.4% is
observed. Since SDH requires additional computation on the
encoder side to determine the right place to hide the sign bit,
the encoding time is decreased by an average of 2% when SDH
is deactivated. The decoding time is essentially unchanged
because there is very little additional decoding complexity
due to SDH and the number of bins is reduced slightly. The
encoder strategies may be modified to further improve the
gains achieved by SDH. For instance, since coefficients are
heavily interdependent for entropy coding, an encoder may
chose to test several combined coefficient changes in order to
obtain the desired parity, instead of changing just one. This
type of approach could potentially provide compression gains
at the expense of additional encoder complexity.

D. Coding Efficiency

Transform coefficient coding in HEVC and the H.264/AVC
model are compared in terms of bit-rate savings. Table X
shows that on average, the HEVC method reduces the BD-
rate by approximately 4.5% for AI and 3.5% for RA and LD
when compared to the H.264/AVC model. Coding efficiency
improvement is greater when more residual data is present
i.e., at high bit-rates and for intra coding. Most of the gain

TABLE IX

BD-Rate [%] of Sign Data Hiding for Common Test Conditions

(Top-Table) and with RDOQ Disabled (Bottom-Table)

All Intra Random Access Low Delay
Y U V Y U V Y U V

Class A 1.1 1.5 1.7 1.0 0.3 0.5 – – –
Class B 0.9 1.6 1.6 0.7 0.9 1.0 0.9 1.1 1.3
Class C 0.8 1.1 1.2 0.6 0.5 0.7 0.9 0.8 0.9
Class D 0.9 1.3 1.2 0.7 0.5 0.6 0.8 1.6 0.6
Class E 0.5 1.5 1.6 – – – 0.2 0.6 1.5
Overall 0.9 1.4 1.4 0.8 0.5 0.7 0.7 1.1 1.1
Class F 0.7 0.6 0.4 0.5 0.0 −0.1 0.8 0.3 −0.1
Enc Time 97% 100% 100%
Dec Time 98% 101% 102%
RDOQ All Intra Random Access Low Delay
off Y U V Y U V Y U V
Class A 1.7 1.4 1.4 2.0 0.0 0.4 – – –
Class B 1.4 1.2 1.1 1.6 0.9 1.2 1.3 0.0 0.0
Class C 1.4 1.4 1.3 1.4 0.8 1.1 1.1 0.2 −0.2
Class D 1.5 1.3 1.3 1.6 1.1 1.0 1.3 0.3 0.3
Class E 1.2 0.8 0.8 – – – 0.6 −0.5 0.4
Overall 1.5 1.2 1.2 1.6 0.7 1.0 1.1 0.0 0.1
Class F 1.0 1.0 0.7 1.1 1.0 0.4 1.0 0.5 −0.3
Enc Time 96% 97% 98%
Dec Time 101% 100% 101%

TABLE X

BD-Rate [%] of HEVC Coefficient Coding Compared to

H.264/AVC Model (RDOQ Disabled)

RDOQ All Intra Random Access Low Delay
off Y U V Y U V Y U V
Class A 5.0 6.0 6.2 4.4 1.8 2.8 – – –
Class B 4.2 5.8 5.9 3.1 3.5 3.6 3.3 3.3 2.8
Class C 4.3 4.8 4.9 3.1 2.8 3.0 4.1 3.0 2.7
Class D 4.6 5.4 5.3 3.0 2.8 2.4 3.7 1.8 2.9
Class E 4.9 6.0 6.2 – – – 3.3 2.4 3.2
Overall 4.6 5.6 5.7 3.4 2.8 3.0 3.6 2.7 2.9
Class F 2.4 2.5 2.4 2.0 1.9 1.8 2.8 2.7 2.7
Enc Time 98% 98% 100%
Dec Time 97% 99% 99%

TABLE XI

HEVC and H.264/AVC Coefficient Contexts

Per Syntax Element

Syntax HEVC H.264/AVC
Y U/V Y U/V

Last (X&Y) 30 6 53 17
CSBF 2 2 – –
Significance 27 15 59 17
Greater than 1 16 8 20 10
Greater than 2 4 2 20 9
Total 79 33 152 53

comes from MDCS, multilevel significance map and SDH.
Some gain comes from the careful selection of a reduced and
meaningful set of context models for the syntax elements.
Table XI provides a summary of the number of contexts used
for the syntax elements related to coefficient coding in HEVC
and H.264/AVC.

SOLE et al.: TRANSFORM COEFFICIENT CODING IN HEVC 1775

Fig. 7. Average HEVC to H.264/AVC model bin ratio (in %) for AI, RA,
and LD configurations in HM8.0 (RDOQ disabled).

E. Throughput Analysis

In H.264/AVC, applications requiring higher throughput
than those achieved by using CABAC could rely on CAVLC
entropy coding. However, HEVC supports only one entropy
coder based on CABAC. Hence, it is crucial that residual
coding can achieve much higher throughput when compared
to the H.264/AVC CABAC method [34].

HEVC substantially reduces the average number of coded
bins of the H.264/AVC model. Fig. 7 shows the average ratio
of HEVC to H.264/AVC model number of bins for the three
coding configurations and a wide range of QP values. HEVC
codes fewer bins and a higher percentage of them are coded in
bypass mode. The average number of bins per pixel for HEVC
are shown in Table XII. The highest bin-rate occurs for all-
intra at low QP . For QP = 0 (left column), 6.9 bins per
pixel are coded. In that scenario, HEVC reduces the average
number of regular mode bins up to 2.5 times. The percentage
of regular and bypass coded bins in HEVC are shown in Table
XIII. The data is split for coefficient-related syntax elements.
For AI and QP = 0, the average percentage of bypass bins
is above 60%: most of them are grouped together in the sign
and remaining level scan passes.

However, it is fundamental to focus on the worst-case
when comparing the implementation complexity of different
entropy coding methods as the worst-case defines the hardware
requirements. In case of HEVC, the worst-case is greatly
improved compared to H.264/AVC [35]. In H.264/AVC, more
than 15 bins per coefficient may be coded with adaptive
context modeling, while remaining bins are coded in bypass
mode. Using this approach, all the residual data could use
regular bins in the worst-case even with typical operational
data rates. HEVC minimizes the maximum number of regular
coded bins per coefficient and achieves a throughput closer
to what would traditionally have been possible using CAVLC
schemes. For a 4 × 4 TB, HEVC requires at most 30 regular
coded bins: 6 for last coding, 15 for significance, 8 for the
larger than one flag, and 1 for the larger than two flag. Thus,
the worst-case is 1.875 regular bins/coefficient. The ratio is
lower for larger TBs, due to the last significant coefficient
coding method. In comparison, H.264/AVC requires 15.875

TABLE XII

Average Number of Bins Per Pixel for AI, RA, and LD

Configurations and Different QP Values

AI RA LD
QP 0 22 37 22 37 22 37
Bins per pixel 6.89 1.35 0.288 0.290 0.028 0.281 0.024

TABLE XIII

Proportion [%] of Bins Used for Each Syntax Element

AI RA LD
QP 0 22 37 22 37 22 37
Last (prefix) 4.9 10.9 13.6 10.6 9.5 12.9 8.9
CSBF 0.4 1.0 0.9 1.3 0.6 1.2 0.6
Significance 18.9 29.5 25.4 30.7 16.6 33.1 14.6
Greater than 1 10.0 13.5 11.7 11.7 7.2 10.8 6.0
Greater than 2 1.2 1.5 1.2 1.4 0.8 1.0 0.7
All other syntax 2.2 9.0 22.0 18.3 40.8 22.2 49.0
% Regular 37.6 65.5 74.7 74.0 75.6 81.3 79.8
Last (suffix) 0.3 0.5 0.5 0.6 0.4 0.7 0.4
Sign 15.0 13.6 10.4 11.0 6.4 9.2 5.2
Remaining level 45.8 14.7 3.9 8.0 2.1 3.5 1.0
All other syntax 1.3 5.7 10.4 6.4 15.5 5.2 13.7
% Bypass 62.4 34.5 25.3 26.0 24.4 18.7 20.2

All other syntax refers to all the other syntax elements in HEVC.

regular bins/coefficient for a 4 × 4 TB and 15.969 regular
bins/coefficient for a 8 × 8 TB in the worst-case.

The studies in [36]–[39] indicate that in practice, the parsing
and decoding of the transform coefficients in HEVC, which
account for over 50% of the compressed bitstream, takes at
most the same amount of time as the motion compensation or
deblocking filter stages.

IX. Conclusion

This paper described in detail the transform coefficient
coding in the HEVC DIS specification. Transform coefficient
coding in HEVC strives to strike a balance between high
coding efficiency and practicality of implementation. It is com-
prised of five components: scanning, last significant position
coding, significance map coding, coefficient level coding, and
sign data coding. Since HEVC and H.264/AVC share the basic
arithmetic coding engine, the HEVC transform coefficient
coding design has sought to overcome the shortcomings in
the H.264/AVC design with respect to its throughput capacity,
which became apparent during the implementation phase of
that standard. The new design is capable of high compression
efficiency and delivering high throughput at the same time,
leading to a single entropy coder that can address a wider
range of applications.

From the point of view of coding efficiency, existing meth-
ods in significance map and level coding were improved while
new schemes such as MDCS, multilevel significance map and
SDH were introduced, leading to an overall average gain of
3.5% over the H.264/AVC-like transform coefficient coding.
To summarize, HEVC transform coefficient coding improves
coding efficiency while reducing the average and worst-case
complexity.

1776 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2012

References

[1] ITU-T and ISO/IEC JTC1, Test Model Under Consideration, JCTVC-
A205, 1st Joint Collaborative Team on Video Coding (JCT-VC) Meeting,
Dresden, Germany, Apr. 2010.

[2] B. Bross, W.-J. Han, J.-R. Ohm, G. Sullivan, and T. Wiegand,
High Efficiency Video Coding (HEVC) Text Specification Draft 8,
Joint Collaborative Team on Video Coding (JCTVC-J1003), Jul.
2012.

[3] ITU-T and ISO/IEC, Advanced Video Coding for Generic Audiovi-
sual Services, ITU-T Rec. H.264 and ISO/IEC 14496-10, version 13,
2010.

[4] D. Marpe, H. Schwarz, S. Bosse, B. Bross, P. Helle, T. Hinz, H.
Kirchhoffer, H. Lakshman, T. Nguyen, S. Oudin, M. Siekmann, K.
Suhring, M. Winken, and T. Wiegand, “Video compression using nested
quadtree structures, leaf merging, and improved techniques for motion
representation and entropy coding,” IEEE Trans. Circuits Syst. Video
Technol., vol. 20, no. 12, pp. 1676–1687, Dec. 2010.

[5] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary
arithmetic coding in the H.264/AVC video compression standard,” IEEE
Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 620–636,
Jul. 2003.

[6] V. Sze, T. Nguyen, K. Panusopone, Y. Piao, and J. Sole, CE11: Sum-
mary Report of Core Experiment on Coefficient Scanning and Coding,
JCTVC-H0041, 8th Joint Collaborative Team on Video Coding (JCT-
VC) Meeting, San Jose, CA, Feb. 2012.

[7] T. Nguyen, H. Schwarz, H. Kirchhoffer, D. Marpe, and T. Wiegand,
“Improved context modeling for coding quantized transform coefficients
in video compression,” in Proc. Picture Coding Symp., Dec. 2010, pp.
378–381.

[8] J. Sole, R. Joshi, and M. Karczewicz, Non-CE11: Diagonal Sub-Block
Scan for HE Residual Coding, JCTVC-G323, 7th Joint Collaborative
Team on Video Coding (JCT-VC) Meeting, Geneva, Switzerland, Nov.
2011.

[9] C. Auyeung and T. Suzuki, CE11: Hardware Complexity of Large Zig-
Zag Scan for Level-Coding of Transform Coefficients, JCTVC-F597, 6th
Joint Collaborative Team on Video Coding (JCT-VC) Meeting, Torino,
Italy, Jul. 2011.

[10] J. Sole, R. Joshi, and M. Karczewicz, CE11: Scanning Passes of Residual
Data in HE, JCTVC-G320, 7th Joint Collaborative Team on Video
Coding (JCT-VC) Meeting, Geneva, Switzerland, Nov. 2011.

[11] J. Sole, R. Joshi, and M. Karczewicz, CE11: Unified Scans for the
Significance Map and Coefficient Level Coding in High Efficiency,
JCTVC-F288, 6th Joint Collaborative Team on Video Coding (JCT-VC)
Meeting, Torino, Italy, Jul. 2011.

[12] V. Sze and M. Budagavi, Parallel Context Processing of Coefficient
Level, JCTVC-F130, 6th Joint Collaborative Team on Video Coding
(JCT-VC) Meeting, Torino, Italy, Jul. 2011.

[13] J. Chen, W.-J. Chien, R. Joshi, J. Sole, and M. Karczewicz, Non-
CE1: Throughput Improvement on CABAC Coefficients Level Coding,
JCTVC-H0554, 8th Joint Collaborative Team on Video Coding (JCT-
VC) Meeting, San Jose, CA, Feb. 2012.

[14] M. Budagavi and M. U. Demircin, Parallel Context Processing Tech-
niques for High Coding Efficiency Entropy Coding in HEVC, JCTVC-
B088, 2nd Joint Collaborative Team on Video Coding (JCT-VC) Meet-
ing, Geneva, Switzerland, Jul. 2010.

[15] Y. Zheng, M. Coban, X. Wang, J. Sole, R. Joshi, and M. Karczewicz,
CE11: Mode Dependent Coefficient Scanning, JCTVC-D393, 4th Joint
Collaborative Team on Video Coding (JCT-VC) Meeting, Daegu, Korea,
Jan. 2011.

[16] J. Sole, R. Joshi, and M. Karczewicz, CE11: Parallel Context Processing
for the Significance Map in High Coding Efficiency, JCTVC-E338, 5th
Joint Collaborative Team on Video Coding (JCT-VC) Meeting, Geneva,
Switzerland, Mar. 2011.

[17] W.-J. Chien, J. Sole, and M. Karczewicz, Last Position Coding for
CABAC, JCTVC-G704, 7th Joint Collaborative Team on Video Coding
(JCT-VC) Meeting, Geneva, Switzerland, Nov. 2011.

[18] N. Nguyen, T. Ji, D. He, G. Martin-Cocher, and L. Song, Multi-
Level Significant Maps for Large Transform Units, JCTVC-G644, 7th
Joint Collaborative Team on Video Coding (JCT-VC) Meeting, Geneva,
Switzerland, Nov. 2011.

[19] G. Korodi, J. Zan, and D. He, Encoding and Decoding Significant
Coefficient Flags for Small Transform Units Using Partition Sets,
JCTVC-G657, 7th Joint Collaborative Team on Video Coding (JCT-VC)
Meeting, Geneva, Switzerland, Nov. 2011.

[20] T. Kumakura and S. Fukushima, Non-CE3: Simplified Context Deriva-
tion for Significance Map, JCTVC-I0296, 9th Joint Collaborative Team

on Video Coding (JCT-VC) Meeting, Geneva, Switzerland, Apr.–May
2012.

[21] J. Sole, R. Joshi, and M. Karczewicz, Removal of 8×2 / 2×8 Coefficient
Groups, JCTVC-J0256, 10th Joint Collaborative Team on Video Coding
(JCT-VC) Meeting, Stockholm, Sweden, Jul. 2012.

[22] T. Nguyen, CE11: Coding of Transform Coefficient Levels with Golomb-
Rice Codes, JCTVC-E253, 5th Joint Collaborative Team on Video
Coding (JCT-VC) Meeting, Geneva, Switzerland, Mar. 2011.

[23] Y. Piao, Y. Hong, I.-K. Kim, and J. H. Park, Cross-Check Results for
JCTVC-J0228, JCTVC-J0408, 10th Joint Collaborative Team on Video
Coding (JCT-VC) Meeting, Stockholm, Sweden, Jul. 2012.

[24] W.-J. Chien, M. Karczewicz, J. Sole, and J. Chen, On Coefficient
Level Remaining Coding, JCTVC-I0487, 9th Joint Collaborative Team
on Video Coding (JCT-VC) Meeting, Geneva, Switzerland, Apr.–May
2012.

[25] G. Clare, F. Henry, and J. Jung, Sign Data Hiding, JCTVC-G271, 7th
Joint Collaborative Team on Video Coding (JCT-VC) Meeting, Geneva,
Switzerland, Nov. 2011.

[26] X. Yu, J. Wang, D. He, G. Martin-Cocher, and S. Campbell, Multiple
Sign Bits Hiding, JCTVC-H0481, 8th Joint Collaborative Team on Video
Coding (JCT-VC) Meeting, San Jose, CA, Feb. 2012.

[27] X. Yu, J. Wang, D. He, G. Martin-Cocher, and S. Campbell, Simplifica-
tion of Multiple Sign Bits Hiding, JCTVC-I0156, 9th Joint Collaborative
Team on Video Coding (JCT-VC) Meeting, Geneva, Switzerland, Apr.
2012.

[28] E.-H. Yang and X. Yu, “Rate distortion optimization for H.264 inter-
frame coding: A general framework and algorithms,” IEEE Trans. Image
Proces., vol. 16, no. 7, pp. 1774–1784, Jul. 2007.

[29] M. Karczewicz, Y. Ye, and I.-S. Chong, Rate Distortion Optimized
Quantization, VCEG-AH21, Antalya, Turkey, Jan. 2008.

[30] G. Clare and F. Henry, AHG 13: Proposed Bugfix for Tickets 410 and
470 Related to Lossless Coding , JCTVC-I0529, 9th Joint Collaborative
Team on Video Coding (JCT-VC) Meeting, Geneva, Switzerland, Apr.
2012.

[31] K. McCann, W.-J. Han, I.-K. Kim, J.-H. Min, E. Alshina, A. Alshin,
T. Lee, J. Chen, V. Seregin, S. Lee, Y.-M. Hong, M.-S. Cheon, and
N. Shlyakhov, Samsung’s Response to the Call for Proposals on Video
Compression Technology, JCTVC-A124, 1st Joint Collaborative Team
on Video Coding (JCT-VC) Meeting, Dresden, Germany, Apr. 2010.

[32] F. Bossen, HM8 Common Test Conditions and Software Reference
Configurations, JCTVC-J1100, 10th Joint Collaborative Team on Video
Coding (JCT-VC) Meeting, Stockholm, Sweden, Jul. 2012.

[33] G. Bjøntegaard, Improvements of the BD-PSNR Model, ITU-T SG16
Q.6, document VCEG-AI11, Berlin, Germany, Jul. 2008.

[34] J. Lainema, K. Ugur, and A. Hallapuro, Single Entropy Coder for
HEVC With a High Throughput Binarization Mode, JCTVC-G569, 7th
Joint Collaborative Team on Video Coding (JCT-VC) Meeting, Geneva,
Switzerland, Nov. 2011.

[35] A. Dueñas, BoG report on High Throughput Binarization Schemes for
CABAC, JCTVC-H0728, 8th Joint Collaborative Team on Video Coding
(JCT-VC) Meeting, San Jose, CA, Feb. 2012.

[36] F. Bossen, On Software Complexity, JCTVC-G757, 7th Joint Collabo-
rative Team on Video Coding (JCT-VC) Meeting, Geneva, Switzerland,
Nov. 2011.

[37] K. McCann, J. Choi, and J. H. Park, HEVC Software Player Demon-
stration on Mobile Devices, JCTVC-G988, 7th Joint Collaborative
Team on Video Coding (JCT-VC) Meeting, Geneva, Switzerland, Nov.
2011.

[38] K. Veera, R. Ganguly, B. Zhou, N. Kamath, S. Chowdary, J. Du, I. S.
Chong, and M. Coban, A Real-Time ARM HEVC Decoder Implemen-
tation, JCTVC-H0693, 8th Joint Collaborative Team on Video Coding
(JCT-VC) Meeting, San Jose, CA, Feb. 2012.

[39] F. Bossen, On Software Complexity: Decoding 720p Content on a Tablet,
JCTVC-J0128, 10th Joint Collaborative Team on Video Coding (JCT-
VC) Meeting, Stockholm, Sweden, Jul. 2012.

Joel Sole (M’01) received the M.Sc. degree in telecommunications from the
Technical University of Catalonia (UPC), Barcelona, Spain, and Télécom
ParisTech, Paris, France, and the Ph.D. degree from UPC in 2006.

From 2006 to 2010, he was with Thomson Corporate Research, Princeton,
NJ, initially as a Post-Doctoral Fellow and later as a Staff Member and Senior
Scientist. He is currently a Staff Engineer with Qualcomm, San Diego, CA.

SOLE et al.: TRANSFORM COEFFICIENT CODING IN HEVC 1777

Rajan Joshi (M’95) received the B.Tech. degree in electrical engineering and
the M.Tech. degree in communications engineering from the Indian Institute
of Technology Bombay, Mumbai, India, in 1988 and 1990, respectively, and
the Ph.D. degree in electrical engineering from Washington State University,
Pullman, in 1996.

In 1995, he was with the Xerox Palo Alto Research Center, Palo Alto, CA.
From 1996 to 2006, he was a Senior Research Scientist with Eastman Kodak
Company, Rochester, NY. From 2006 to 2008, he was a Senior Technical Staff
Member with Thomson Corporate Research, Burbank, CA. He is currently a
Senior Staff Engineer with Qualcomm, San Diego, CA. His current research
interests include video and image coding, video processing, and information
theory.

Nguyen Nguyen received the M.A.Sc. degree from the University of Waterloo,
Waterloo, ON, Canada, in 2005.

In 2005, he joined SlipStream Data, Inc., Waterloo, as a Performance
Engineer, focusing on optimized network protocols and lossless compression
algorithms. In 2006, he joined Research in Motion Ltd. (RIM), Waterloo, ON,
Canada, as a part of its acquisition of SlipStream Data, Inc. Between 2006
and 2010, he designed and developed compression algorithms tailored for the
BlackBerry platform. He is currently a member of the Compression Research
Group, RIM, focusing on the development of HEVC. His current research
interests include video coding and compression, lossless compression, and
network protocols.

Tianying Ji received the Bachelors, Masters, and Ph.D. degrees from the
Department of Electrical Engineering, Tsinghua University, Beijing, China,
in 1989, 1991, and 1995, respectively.

In 1995, he joined the University of Waterloo, Waterloo, ON, Canada,
as a Post-Doctoral Fellow, where his research was focused on speech
recognition. He has been with companies such as Lucent and LSI Logic in
DSP and video processor design. In 2008, he joined Research in Motion
Ltd. (RIM), Waterloo, ON, Canada. Initially, he optimized a real-time H.264
decoder on a BlackBerry device, and developed multimedia drivers for the
BlackBerry operating system. He is currently a member of the Compression
Research group at RIM, focusing on the development of HEVC. His research
interests include video coding and compression, embedded systems, and DSP
applications.

Marta Karczewicz received the M.Sc. and Ph.D. (Hons.) degrees from the
Tampere University of Technology, Tampere, Finland, in 1994 and 1997,
respectively.

From 1996 to 2006, she was with Nokia Research, Tampere. She is
currently the Senior Director of the Multimedia Research and Development
and Standards Group, Qualcomm, San Diego, CA.

Gordon Clare received the M.Sc. degree from the University of Auckland,
Auckland, New Zealand, in 1984.

From 1985 to 1989, he was a Development Engineer with Rakon Com-
puters, Sydney, Australia. From 1989 to 1991, he was a Team Leader with
Software Development International, Sydney, creating a network management
system for fault tolerant environments. From 1991 to 1997, he was with
CISRA, a Canon Research Center, Sydney, focusing on real-time hardware and
software image processing solutions. He has been with several international
companies working on developing document management systems and search
engines in France. From 2005 to 2010, he was a Consultant, developing H.264
and SVC solutions at Canon and Orange Labs, Issy-les-Moulineaux, France.
He is currently with France Telecom Orange. His current research interests
include HEVC standardization and development.

Félix Henry received the Dipl.-Ing. (M.Sc.) degree in telecommunications
from Telecom ParisSud, Paris, France, in 1993, and the Ph.D. degree from
Telecom ParisTech, Paris, in 1998 in the domain of wavelet image coding.

He started his career in 1995 with the Canon Research Center, France,
where he worked on still image compression and video coding. He participated
actively in JPEG2000 standardization and is a co-inventor of more than
100 patents in the domain of image and video processing. He is currently
working as a Video Coding Project Leader with Orange Labs, Issy-les-
Moulineaux, France. His current research interests include development of
HEVC, transform coefficient coding, and high level parallel processing.

Alberto Dueñas received the M.Sc. degree in telecommunications from the
Technical University of Madrid, Madrid, Spain, in 1995.

In 1996, he was with DMV-NDS-Tandberg Television, working on audio
and video compression research, including development of AAC and MPEG-4
specifications. From 2000 to 2004, he developed a real-time MPEG-4 video
compression product at PRODYS. From 2004 to 2005, he architected a high-
performance systems-on-a-chip solution for imaging and vision applications at
AnaFocus, Seville, Spain. From 2005 to 2008, he developed communications
H.264/AVC based low latency products at W&W. From 2008 to 2012, he
continued the development of wireless video compression chips and systems
at Cavium, San Jose, CA. In 2012, he developed network-based panoramic
cameras at Altia Systems and Co-Founded NGCodec to develop HEVC
products. He is currently involved in the development of HEVC. His current
research interests include high throughpout entropy coding, low latency, high
level parallel processing, and error resilience.

