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Abstract 

A piecewise-linear model of the Kramers-Kronig (K-K) relations has been used to analyze electromagnetic dispersion data on 
. RF polymers and composites. This K-K analysis revealed that concrete knowledge about the complex low-frequency !llaterial 

dispersion is critical to the analysis and understanding of the microwave dispersion. Furthermore, and more practically, the 
confidence in the material dispersion measurements may be, to some degree, ascertained through use of the K-K relations. 
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1. Introduction 

The measurement of the complex electromagnetic dispersion of 
materials is important for the design of various microwave 

structures. Although many techniques exist for the acquisition of a 
material's dispersion [1], the analysis of the extracted parameters 
that describe this dispersion (the complex permittivity and perme
ability) presents various challenges. Among these challenges, (1) 
the accuracy of extracted parameters is difficult to determine due 
to the lack of material standards; and (2) the extracted imaginary 
part ofthe material dispersion (dielectric or magnetic loss), for low 
loss materials, typically possesses large uncertainty. 

One way to address these challenges is to use the Kramers
Kronig (K-K) relations [2-4], which relate the real and imaginary 
parts of the complex material dispersion over all frequencies, as a 
data-analysis tool. In this work, these relations were employed to 
analyze various complex permittivity data on RF polymers and 
magnetic polymer composites. The analysis performed during this 
work was general, and could be extended to various other complex 
material parameters (see, e.g., [5, 6] and references therein), 
including permeability. 

The practical origin of this work arose from trends observed 
in microwave and RF dielectric measurements of composites engi
neered at A TK·Mission Research Corporation. The data on these 
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magnetic ceramic and metal-loaded composites revealed two ten
dencies. First, and rather obviously, as the percent loading of rela
tively high-dielectric-constant ceramic or metal increased, the 
composite material' 8 permittivity increased. Second, the increase 
in the material's permittivity was accompanied by an increase in 
the permittivity loss. These trends implied 3 connection between 
the permittivity and permittivity loss. In particular, the permittivity 
108S was shown to scale with the permittivity (this general trend 
was also observed between the permeability and penneability 
loss). 

The team at Mission Research Corporation decided to 
explore the observed trend in the data with the KcK relations. The 
primary goal was to establish whether some type of fundamental 
limit on the loss existed, associated with an increase in the real part 
of the permittivity or permeabilitr. Such a fundamental limit could 

prohibit the manufacture of useful composite materials with wave 
impedances greater than that of free space [7]. 

As a consequence of this K-K analysis, the observed trend 
was explained to some degree, and other interesting features were 
revealed. Section 2 presents a brief theoretical background discus
sion of materials and the K-K relations. Section 3 introduces and 
addresses the details of the piecewise-linear model used in con
junction with the K-K relations. Section 4 presents comparisons 
between the model and the data. Section 5 provides conclusions 
based on these comparisons. 
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2. Material Behavior and the 
Kramers�Kronig Relations 

As a starting point to the implementation of the K-K rela
tions, a background investigation into their origins was performed. 
A brief description of the K-K relations and their derivation will be 
given here, along with statements concerning their implications for 
materials. References [3], and especially [4], contain in-depth con
siderations of the K-K relations, and the discussion below draws 
from these texts. 

When the frequency of an applied electric field varies suffi
ciently rapidly, the well-known relations 

D=:eE (la) 

and 

B=: ,uH, (Ib) 

where c and ,u are static, real numbers, no longer hold. [As a 
point of reference, the free-space values of permittivity and perme
ability are c=£o,.,S.S5xlO-12F/m and ,u�J.Jo'" 4.1!"xIO-7H1m, 
respectively. These values are used to obtain the well-known 
impedance of free space: Zo ==JIlo/Co ""377.0.] "Sufficiently 

rapidly" in the above context means that the frequency of the 
applied field oscillation is not small in comparison with the char
acteristic frequencies of the electric and magnetic polarizations of 
the concerned substance. As a consequence of these characteristic 
frequencies, the Jl and 

e 
of the materials are necessarily functions 

of the angular frequency, w, of the applied field. They are now 
complex to account for material loss, that is, C � £' ( W ) - jc" ( W ) 

and ,u � Ji (w) + j,u" (w) . These expressions for the permittivity 

and the permeability are consistent with an e+ jon time convention, 
and should replace the constant values in Equations (l). Such a 
replacement yields 

D(w) =e(w)E(w) (2a) 

and 

B(m)=.u(w)H(w). (2b) 

These time-varying fields, characterized by llJ, are necessarily 
variable in space, as well. Thus, at very large frequencies, the 
wavelength will be comparable to the material's atomic dimen
siolL'l, and the macroscopic picture described by Equations (2) no 
longer holds. [The high-frequency limit for the permittivity, which 
arises due to the motion of bound, unpaired electrons, lies in the 
ultraviolet (UV) frequency band. Above UV frequencies, the real 
part of the relative permittivity is unity, and the permittivity loss is 
zero. As a further note, the high-frequency relative permeability 
limit for magnetic materials arises due to spin resonances, and lies 
in the low end of the microwave band. This is an unfortunate bar
rier for the fabrication of magnetic microwave/ RF polymer com
posites.] Furthermore, the connection implied between Equa
tions (1) and (2) at very low frequencies suggests that at some 
finite frequency, Equations (2) do not differ appreciably from 
Equations (1). Thus, at sufficiently low frequencies (though still 
above de), the concept of a frequency-dependent Jl and e is 
uimecessary. [The low-frequency limit for the permittivity, which 
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arises due to electric dipolar resonances, lies below the UHF band. 
Below UHF, the ac permittivity does not differ significantly from 
the dc value.] 

Nonetheless, there exists a range of frequencies (which 
include the RF/microwave region) where the macroscopic picture 
is valid and the dispersive character of the material (that is. the 
complex frequency-dependent permittivity and permeability) is 
important. It is in this region where the K-K relations, which con
nect the teal and imaginary parts of the material dispersion through 
remarkably simple expressions, find great utility. 

The key elements in the derivation of the K-K relations are: 
(1) the use of the Fourier integrals of D and E, (2) the considera
tion of the complex permittivity as a function of a complex 
variable w � llJ' -jllJ" , (3) the determination of the analyticity of 
the complex permittivity, (4) the application of the Cauchy integral 
theorem [8], and (5) the statement of causality. Causality in this 
context means that the effect (the induced polarization in the 
material) cannot precede the cause (the applied electric field). 

After the application of the above steps, the K-K relations 
obtained for e�(llJ)=c'(w)/eo and c;(w)=c"(w)/co are typi

cally first written in the form 

, ( ) 1 "'f e
; 

( llJ ) 
e, llJo =l+-P ( )dllJ, 

1t -<r.J W-Wo 

" ( ) 
1 "'J e; ( w ) - 1 

er llJo =-P ( ) dllJ. 
1t --00 OJ -alo 

(3) 

In Equations (3), P stands for the principal part of the complex 
integral [S], roo is the constant angular frequency where the 

permittivity is evaluated, and (t) is the angular frequency integra
tion variable. The r subscripts in EquatiolL'l (3) denote relative val
ues, i.e., the real and imaginary parts of the permittivity have been 
normalized to the permittivity of free space, co. Typically, Equa

tions (3) are rewritten such that the integration covers only the 
range of positive frequencies. This is accomplished by exploiting 

the property c r ( -llJ ) = c; ( -llJ • ) , which is a statement of the even-

ness and oddness of the real and imaginary parts of £, (llJ) [2], 
respectively. The K-K relations then take the form 

and 

, ( ) 
2 "'J we; ( llJ ) 

Cr Wo = 1 + - P 2 2 d llJ 
Tr 00) -0)0 

"( )
_ 2lO0 "'S(e;(m)-l) 

6r llJO - - --p 2 2 dw. 
1t 0 llJ -WO 

(4) 

(5) 

Equations (4) and (5) are the commonly used versions of the K-K 
relations. These expressions show that the value of either compo
nent of the permittivity at one particular frequency roo depends on 

the other component's behavior over all frequenCies llJ. As will be 
shown below, the scope of this dependence is remarkably far
reaching. 
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Figure 3. Plots of the real and imaginary parts of the relative 
permittivity as a function of frequency, overlaid on measured 
data. Graph (a) shows 100 realizations for the real part of the 
permittivity (red curves) along with the measured data (black 
points). Graphs (b) and (c) show calculated curves for the 
permittivity loss along with permittivity loss data (black 
points). Graph (c) shows the same curves and data as (b), only 
on an expanded scale to accentuate the data. The black curves 
in (b) and (c) are the average of the calculated loss curves, 
while the red curves are 95% confidence curves. The frequency 
axis is shown on a logarithmic scale. The uncertainties in the 
measured real-part data were not taken into account. The 
format of this figure will be followed in the successive figures. 

Figure 4. Plots of the real and imaginary parts of the relative 
permittivity as a function of frequency, overlaid on measured 
data, with measurement uncertainties in the real part taken 
into account, for comparison with Figure 3. 

Figure 5. Plots of the real and imaginary parts of the relative 
permittivity as a function of frequency, overlaid on measured 
data, with measurement uncertainties in the real part taken 
into account. For this figure, the maximum-allowed dc permit
tivity was 5000, in contrast to Figure 4, where the maximum 
permittivity was 500. 
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3. A Piecewise-Linear 
Kramers-Kronig Model 

The main drawback of the K-K relations is that they are 
explicitly true only when one of the two parameters is known over 
all frequencies. In practice, such knowledge is at least difficult, if 

not impossible, to obtain. Therefore, in order to use the K-K re la
tions, one must assume and approximate some form of the mate
rial's dispersion in the region outside of the known data. If on e 
assumes a real part of the permittivity that is piecewise linear, it is 
possible to apply working forms of the K-K relations in a rather 
straightforward manner, 

A piecewise-linear model of the permittivity or permeability 
is a reasonable approximation to the behavior of real materials [9, 
10]. It should be emphasized here that the real behavior ofmateri
als is more complex. Nonetheless, this simple approximation 
yields much information about materials. Given an increasing 
sequence of real numbers, 0 = IV] < W:l < ' .. < (ON+l, and any 
sequence of real numbers al,a2, ... ,aN with aN+1 = I, the 
piecewise-linear model for e; «(0) is given by 

N 
e; «(0 ) = �) A.,(O + Bn -1) In «(0 ) + I , (6) 

n�1 

where 

(7) 

is a square pulse function of width lUn+l -(On' The expressions for 
All and Bn are given by Equations (9) and (10). If such an expres
sion is substituted into Equation (5) and the appropriate integration 
is performed, a closed-form, singularity-free solution for Ii; ((i)) of 
the form 

(8) 

can be obtained, In Equation (8), 

Mn=Bn+1-BlI• dWn=(O-(On+!' and L((O)=tVlnw. The 

parame ters All' Bn, and (On are related to the form of the a ssumed 
piecewise-linear real part of the permittivity above, and are given 
by the relations 

,f = _a""1I2C+1!--_a..J,nL 1 N A 0 Un ' :::; n :::; , N+l = , 
(i)n+l - (On 

where 

and 
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(9) 

(10) 

(lla) 

t11t =0. (llb) 

Equations (11) are expressions of the fact that the modeled real 
part of the relative permittivity is required to go to unity at large 
frequencies, and that the first frequency value corresponds to a de 
applied field. 

As an example of this model, consider a real part of the 
p e rmittivity with N '" 9 , which is plotted in Figure 1. In this case, 
the dimensionless a values and the corresponding frequencies, lU, 
in rad/s, are as follows: al = a2 = 86, a3 = Q4 = 56, as = a6 = 6.5, 

a7=a8=1.1, Q9=1, (01=0, W:l",16, �=1078S, 

(i)4 = 1.07 x 105, {()5 = 1 x 106, {()6 = 1.3 x 1010, IX'? =,}.3 X 1013, 

aJg =3.lxIOI4, and M) =4.7x1014. 
'
These parameters, which are 

indicative of the magnitude of the real part of the relative permit
tivity and the corresponding resonant absorption frequencies, are 
typical of insulating materials [7-9]. Note that the horizontal axis 
of Figure 1 is shown in a logarithmic scale, which distorts the 
piecewise linearity of &�. 

As is shown in Figure I, this model generates a real part of 
the permittivity, e;, that is constant at the particular a values over 
the frequency ranges defined by the corresponding OJn values. The 
value of the permittivity is then set to unity from the M) value up 

to lxlO1Srad/s (for the numerical calculations, IxlOlsradls is 
taken as infinity). Frequencies higher than I x 1015rad/s create 
unacceptable levels of numerical noise, due to a limitation in the 
numerical resolution of the MatLab® program. For example, as is 
shown in the plot of Figure I, the relative permittivity is equal to 
86 from dc up to 16 rad/s, where it then begins to drop linearly 
until it reaches 56 at 10785 radls. It repeats this behavior according 
to the other parameters listed above, until unity is reached at 
4.7 x 1016radls. 

Figure 2 shows curves that demonstrate the effect of using 

Equation (8) in conjunction with t he real part of the permittivity 
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Figure 1. An example plot of the real part of the relative per� 
mittivity as a function of frequency according to the piecewise
linear model given by Equation (6). The frequency axis is 
shown on a logarithmic scale, which distorts the linearity ofthe 
generated permittivity. 

' 
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Figure 6. Plots of the real and imaginary parts of the relative 
permittivity as a function of frequency, overlaid on measured 
data. These should be considered with Figure 7. 

Figure 7. Plots of the real and imaginary parts of the relative 
permittivity as a function of frequency, overlaid with experi· 
mental data. Here, over the measured band of frequencies, the 
generated real part of the permittivity was arbitrarily raised 
above the measured data to a value oC 26.5. This is in contrast 
to Figure 6, where the generated real part of the permittivity 
was required to go through the measured data. When consid· 
ered with Figure 6, the graphs in this figure demonstrate the 
lack of influence of the local increase in B; on c;. 

Figure 8. Plots of the real and imaginary parts of the relative 
permittivity as a function of frequency, overlaid with low-loss 
polymer data. 
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Figure 2. Example plots of the real and imaginary parts of the 
relative permittivity as a function of frequency. The real part 
shown in (a) is identical to the real part shown in Figure 1. The 
imaginary part was calculated using Equation (8) in conjunc� 
tion with the assumed real part shown in (a). The frequency 
axis is shown on a logarithmic scale, which creates some distor� 
tion to the plots. 

shown in Figure L Figure 2a reproduces the permittivity, £;, 
shown in Figure 1. Figure 2b shows the imaginary part calculated 
using the real part in Figure 2a in Equation (8). The following 
points become evident from an examination of the curves in Fig
ure 2. First, at the positions of the decreases in the real part of the 
permittivity, the permittivity-loss data show resonances. Addition
ally, a small or large decrease in the real part of the permittivity 
corresponds to a small or large value of the loss, respectively. 
Finally, decreases in the real part that occur over a small or large 
frequency band yield narrow or broad resonances in the loss, 
respectively. These observations appear to hold generally, and will 
be useful when analyzing the data. 

4. Measured Data Analysis 

Consider now the application of the above model to the 
analysis of experimental data. In practice, one typically has data 
over some finite range of frequencies. Additionally, unless meas
urements are performed near resonance or over a very broad range 
of frequencies, the measured data are flat, within the error of the 
measurement. If we assume that the real part of the data are well 
known and of a reliability defined by the standard deviation in the 
data, the above piecewise-linear K-K model may be used to ana
lyze the loss data over the measured band. 

In order to accomplish this goal, the modeled real part of the 
permittivity is allowed to vary outside of the measured frequency 
band according to the model discussed above. The modeled real 
part of the permittivity is additionally required to go through the 
experimental data in the measured frequency band. Furthennore, 
the variation in the modeled real part of the permittivity outside of 
the measured band is governed by three restrictions. First, the 
value of the real part of the permittivity must be decreasing -
starting from within some chosen maximum dc permittivity - as 
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the frequency increases. Second, the value of the modeled real part 
of the permittivity at frequencies lower than the measured data 
may not assume a value lower than the average value of the 
measured real part of the permittivity. If this were not required, the 
material would radiate energy when its permittivity increased to 
the measured value, which is not physically reasonable for the 
experiments to be considered. Third, the real part of the 
permittivity must equal unity at and above frequencies of 
Ix 1015radis. 

If one constructs a large number of realizations for the real 
part of the permittivity similar to those shown in Figures 1 and 2, 
then an average of the permittivity loss can be plotted, along with 
95% confidence curves. All of this can be overlaid on the data as a 
means of analysis. For the realizations of the real part of the per
mittivity below, the pairs of a values were randomly generated 
with a uniform distribution on a logarithmic scale between the 
allowed values. In the region below the measured data, the allowed 
values were between the assumed value of the dc permittivity and 
the value of the permittivity in the measured band. In the region 
above the measured data, the allowed values were between the 
measured permittivity and unity. The OJ values were generated 
according to OJ = 10ft ,where f3 was a randomly generated num
ber. 

Figure 3 shows a plot similar in format to Figure 2, with 
measured real and imaginary permittivity data, along with the 
modeled (defined and generated) real part and the calculated 
imaginary part. The measured data were obtained from a 
composite sample of 40% nickel-zinc ferrite in a silicone-rubber 
binder. In Figure 3, the maximum value of the dc relative 
permittivity allowed was 500, and 100 realizations were 
calculated. In all graphs, the data are shown as black points and 
appear in a band between 1 MHz and 12 GHz. The red curves in 
Figure 3a show the 100 different realizations of the real part of the 
permittivity. In Figures 3b and 3c, which show the permittivity 
loss, the black curve is the average of all of the calculated loss 
curves. The red curves in Figures 3b and 3c are 95% confidence 
bounds. Figure 3c is identical to Figure 3b, but is on an expanded 
scale, to show only the frequency band of the measured data. 

The curves in Figure 3 show, for the assumptions above, 
which of the measured data points fall within the 95% confidence 
curves. There are two primary reasons why all the measured data 
do not all fall within the bounding curves. First, some of the data 
are clearly bad (as can be seen at the low-frequency end of the 
measured data, where some of the loss data are negative). Second, 
the assumptions made about the behavior of the piecewise-linear 
behavior of the real part of the permittivity may not be sufficient or 
precise enough to describe the low-frequency behavior of the 
material (the randomly generated a and OJ values may not be 
representative of the material's behavior). This point will be 
addressed further, below. It is important to note that the bounding 
curves did not change position with a larger number of realizations 
in the real part. 

Figure 4 shows the same graphs as Figure 3, except that the 
uncertainty in the data was taken into account. The standard devia
tion of the measured data was calculated and used to introduce 
scatter in each generated realization of the real part of the permit
tivity. In the region of the measured data, the modeled real part of 
the permittivity could vary within one standard deviation of the 
data. The introduction of this scatter caused the bounding curves in 
Figures 4b and 4c to increase slightly when compared to those 
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shown in Fi�re 3. Here, we see that more of the data now lie 
within the 95% bounding curves. 

The calculations above assumed that the maximum value of 
the dc pennittivity was 500. However, it is to be emphasized that 
how well the permittivity loss data in the microwave region corre
spond to the calculated curves depends stronglY'on the assumed dc 
value of the real part of the permittivity, as well as assumptions 
made about the general low-frequency behavior of the real part. In 
order to demonstrate this point, Figure 5 shows the effect of 
changing the maximum-allowable dc value of the real part of the 
permittivity compared to the value in Figure 4. The effect was 
drastic. The graphs in Figure 4 and 5 show that the effectiveness of 
modeling the data with the K-K relations is strongly dependent on 
knowledge of the dc permittivity and the general behavior of the 
permittivity in the unmeasured low-frequency band. 

If the dc permittivity was assumed large (Figure 5: maxi
mum-allowed dc permittivity of 5000), the correspondence with 
the data was poor. If the de pennittivity was assumed relatively 
small (Figure 4: maximum-allowed dc pennittivity of 500), the 
correspondence with the data was improved. These plots show that 
some concrete knowledge of the dc permittivity of the material 
under test is crucial. 

Consider now the local behavior of E; as a function of a 

corresponding local change in e;. As stated earlier, many band
limited measurements suggest that a larger pennittivity at micro
wave frequencies yielded a larger permittivity loss over that band. 
Figures 6 and 7 show that not to be the case. In Figure 6, the loss 
curves in Figures 6b and 6c were calculated with the modeled real 
part of the permittivity in Figure 6a required to go through the 
measured value of 6.5. Figure 7 shows the same loss calculation 
with the modeled permittivity forced to go through an arbitrarily 
higher pennittivity of 26.5. In order for the effect to be more visi
ble, the maximum-allowed dc permittivity was chosen to be 50. It 
is clear from the data in Figures 6c and 7c that the calculated per
mittivity loss was virtually unaffected by this increase in the 
microwave permittivity. 

One may therefore conclude that the reason the measured . 
data demonstrated an increase in the pennittivity loss with the per
mittivity increase was due to an increase in the dc (not microwave) 
permittivity of the material. This speaks to the primary goal of the 
investigation. That is, within the framework of this model, there 
appears to be no principal limit on the permittivity loss with an 
increase in the permittivity. It appears that increases in the permit
tivity at low frequencies (or the proximity of the decrease in the 
permittivity to the microwave band) drive the increase in the per
mittivity loss. 

As a final application, consider the use of the K-K relations 
as a data analysis tool for low-loss polymers. Figure 8 shows the 
application of the piecewise-linear K-K model to data on pure 
polyethylene, measured from 1 MHz to I GHz. In this case the 
maximum allowed value of the de permittivity was chosen to be 3 
[1 r The data in Figure 8 show two features of note. First, the 
experimental data showed typical measurement inaccuracies in e; 
for low-loss polymers. Second, the bounding curves could be quite 
tight when the variation of the de permittivity was significantly 
restricted. Such tight bounding curves provide an excellent form of 
data analysis. Note that the negative values plotted on the lower 
bounding curve were due to the allowance for scatter in the data. 
Due to this allowance, the generated real part in the permittivity 
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can have local increases. These' increases correspond to negative 
values of the permittivity loss. 

5. Conclusions 

The primary conclusions of this K-K work were four-fold. 
First, the piecewise linear K-K model provides a mechanism for 
the analysis of confidence, consistency, and error in electromag
netic dispersion data of materials. Second, this analysis revealed 
much about the general behavior of materials. For example, it was 
clear from the analysis that low-loss materials fit one of tWo 
descriptions. The material must possess either (I) a dc permittivity 
that is close to its microwave permittivity (low-loss polymers, like 
Teflon, fit this description); or (2) a large dc pennittivity, but 
experiences a sharp decrease in the permittivity far from micro
wave frequencies. In these ways, the material either (1) does not 
absorb energy at or below microwave frequencies, or (2) the reso
nance absorption occurs far from microwave frequencies and thus 
does not leak into the microwave region. 

Third, the ability to measure the low-frequency and dc mate
rial characteristics is critical to understanding and analyzing their 
microwave responses. Finally, and most practically, the confidence 
and error in the material dispersion measurements may, to some 
degree, be ascertained or improved through use of the K-K rela
tions. 
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