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Foreword by the Editors 

This month, we have another contribution from Spain, this 
time from the Technical University of Valencia. This paper con- 
tinues a theme on practical aspects of Finite-Element program- 
ming, started in the December, 2000, column, and continued in the 
August, 2003, issue (references [l] and [Z] in this paper). One 
issue commented on in the latter was the difficulty of finding a 
public-domain version of a generalized eigenvalue solver for 
sparse systems. At the 7th Intemational Workshop on Finite Ele- 
ments for Microwave Engineering, held in Madrid earlier in 2004, 

the authors described just such a powerful package, SLEPc. We 
invited them to submit a full-length description for this column, 
which they have now done. Anyone doing eigenvalue computa- 
tions using the FEM should find both the paper and the software 
invaluable. In addition, this paper discusses more general issues of 
software re-use and publicly available libraries for numerical soft- 
ware, with an extensive list of references and Web sites,. We thank 
the authors for this most useful submission. 
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Abstract 

A key ingredient of finite-element analysis programs is the linear-algebra solver, typically either a linear-system solver or an 
eigensolver. The first part of this paper tries to justify why it is important to have recourse to publicly available software for 
addressing this part of the computation. A number of libraries are mentioned as successful examples that exhibit a series of 
desirable qualities. Although some of these libraries force the programmer to somewhat change the programming style and 
may be difficult to learn, the benefits usually pay off the extra effort. The second part of the paper describes one of these 
libraries in some detail, namely SLEPc, the Scalable Library for Eigenvalue Problem Computations, which is used to illustrate 
the benefits of modern software paradigms for scientific and engineering computing. 
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1. introduction 

be Finite-Element Method (FEM) is becoming a widespread T analysis .’ tool among electromagnetics practitioners, especially 
for high-frequency electromagnetic-field simulations in applica- 
tions such as the design of antennas and microwave circuits. How- 
ever, the implementation of an FEM-based program can be very 
challenging if it is intended to be general enough for analyzing 
non-trivial problems, in situations with complicated three-dimen- 
sional geometries, inhomogeneous media, or lossy materials. Many 
issues are specific to FEM codes that are not present in other sce- 
narios, such as Finite-Difference Time-Domain analysis: unstmc- 
tured mesh generation, storage formats for sparse matrices, assem- 
bly of elemental matrices, post-processing, etc. Many of these 
issues have already been nicely addressed in a couple of articles in 
this column: see [I] and [2]. In this article, we focus on the matrix 
solution of the linear-algebra problems that arise as a consequence 
of the FEM discretization of the corresponding differential or inte- 
gral formulation. 

The linear-algebra problems most commonly found in 
electromagnetic simulations are linear systems of equations and 
eigensystems. For solving these problems, one may be tempted to 
implement any of the simple algorithms found in introductory 
numerical-analysis books. However, these methods soon become 
ineffective when the size of the problem is considerably increased, 
for instance, when using a finer mesh for the finite-element analy- 
sis. Two of the main difficulties associated with “large” linear- 
algebra problems are the following. On one hand, there is a dra- 
matic growth of the cost of computing the solution, both in terms 
‘of the number of required operations and in terms of the storage 
requirements. This factor depends on the characteristics of the 
computer that is being used (processor speed and memory capac- 
ity) and, in a way, determines when a problem is considered to be 
large (e.g., a matrix of order 200 was considered large in the early 
1980s, while nowadays a moderate-size FEM analysis may involve 
tens of thousands bf degrees of freedom). On the other band, 
numerical difficulties are more likely to arise in large problems 
than in small problems. Typically, the conditioning of the problem 
gets worse as the size increases, and numerical stability may 
become an issue. For all these reasons, it is necessary to make use 
of algorithms and methods that are efficient as well as numerically 
robust. 

Fortunately, there has been much research in the last few 
years in this direction. Many methods are available for coping with 
large, sparse problems, that can be implemented efficiently and 
appropriately from a numerical point of view. There are many 
sources of information where surveys of such methods can be 
found, providing a general view of the topic (see, for instance, [3, 
Chapter 91 and [4, Chapter 131). However, these methods and 
techniques have reached such a level of sophistication that non- 
experts have great difficulty - or are entirely prevented from - 
implementing them in a computer program, because there are too 
many technical details that have be taken into account. For 
instance, implementing a direct solver for a sparse linear system of 
equations involves management of sparse-matrix storage; compu- 
tation of a matrix reordering to minimize fill-in; symbolic factori- 
zation to prepare for new nonzero elements; numerical factoriza- 
tion, possibly requiring pivoting; and, finally, two triangular 
solves. All of these aspects are typically plagued with heuristics, 
and efficiency and numerical issues that become more and more 
important as the size of the problem grows. All of these ingredients 
make it really difficult (or, at least, require a lot of effort) to carry 
out a good implementation of one of these modem methods, and 
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this difficulty is even higher when targeting a parallel machine in 
order to solve huge problems with many processors. 

The computational science community has the expertise 
required for providing high-quality implementations of these 
methods, and there is an increasing demand for transferring this 
technology to other scientific and engineering communities, in 
different fields. In this paper, we advocate transferring new solver 
technology in the form of software libraries satisfying certain 
desirable properties. Section 2 presents a discussion related to 
some of these qualities of software, and includes the description of 
several software packages that provide some of these features. 
Special emphasis is put in the solution of linear systems of equa- 
tions. The second part of the paper is more concerned with the 
solution of large, sparse eigenvalue problems. Section 3 provides a 
brief overview of the problem, and describes general techniques 
for computing its solution. In Section4, a particular soilware 
library is presented SLEPc, the Scalable Library for Eigenvalue 
Problem Computations, is being developed by the authors and 
other colleagues, and tries to follow the spirit of modem numerical 
software tools presented in this paper. Some examples of usage are 
included, in order to illustrate the potential of using this library in 
real applications. 

2. Numerical Software 

Traditionally, scientists and engineers have been forced to 
introduce simplifications in their analyses so that these could he 
feasibly solved in a computer. This scenario is changing, thanks to 
the capacity of today’s computers, which is several orders of mag- 
nitude larger than a few years ago, allowing the simulation of 
detailed models even on inexpensive desktop computers. This 
evolution of hardware is apparent by looking at processor speed 
and memory capacity of the latest PC available in the market, but it 
can also be appreciated by the average megaflop rate of the 500 
most powerful computers in the world (http://www.top500.org), 
which has been growing linearly in the last few years. 

However, the steady increase of computer capacity is not 
necessarily leading to a steady increase in the size of the problems 
being solved by scientists and engineers. The main reason for this 
is the complexity associated with software implementation of 
advanced numerical methods, as seen by the examples given in the 
introduction of this paper. The effort and expertise required for 
implementing these kinds of methods seem to be affordable only in 
the context of high-budget projects for grand-challenge applica- 
tions. In this sense, software development represents a curb that 
counteracts the positive hardware trend. 

Hopefully, this situation is likely to change by the introduc- 
tion of modem software technologies. The key for a faster and 
more productive development of numerical software is reutilizu- 
fion. As mentioned in the introduction, efficient and stable numeri- 
cal methods are already available. What the scientific community 
needs is simply a way to be able to reuse already existing imple- 
mentations of these methods. The ideal situation is to have a set of 
off-the-shelf pieces of software, with well-defined interfaces, that 
can be plugged into our code to solve a particular numerical prob- 
lem. This is the concept of a software componenf, which emerged 
in the commercial arena, where reutilization has long been consid- 
ered of paramount importance to reduce costs and time-to-market. 
In the case of numerical software, these types of development 
techniques are being introduced only slowly, due to the complexity 
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mentioned above, and also due to some specitic requirements not 
present in other scenarios. 

2.1. Complexity and Specificities of 
Numerical Software 

There are many sources of complexity in numerical software. 
One of them comes from the complexity of the problem being 
addressed. As commented on above, as the available processing 
power grows, scientists and engineers try to avoid simplifications 
introduced in the past. They try to take into account more aspects 
of the problem, such as nonlinearity, for example, or turbulent 
flow, in the case of fluid dynamics, etc. As another example, multi- 
physics simulations may require coupling several already existing 
simulation codes and the use of conforming discretizations. 

Another source is the algorithmic complexity, which refers to 
the method used for different stages of the solution process. A 
general example of this would be the discretization technique: the 
finite-element method provides more flexibility with respect to 
finite differences, hut involves a significant increase in complexity. 
Three-dimensional geometries also contribute to the complexity: 
managing data structures for structured or unstructured meshes 
associated with arbitrary three-dimensional domains can he very 
difficult, especially in problems with moving parts. Some issues 
related to meshing were covered in [ I ]  and [Z]. Complexity grows 
even further in the case of adaptive mesh-refinement schemes. 

The complexity associated with the design of a linear-algebra 
solver is mainly driven by two requirements that are specific to 
numerical software: efficiency and numerical stability. Of course, 
efficiency is desirable in any software project, hut in the case of 
numerical software, it is very important indeed, because some 
problems become unsolvable unless efficiency is pursued from 
many different points of view. For instance, efficiency is con- 
cemed with maximizing the convergence rate of iterative algo- 
rithms, and with keeping memory requirements to a minimum. 
Efficiency is also directly related to how well the program makes 
use of the computer resources. For instance, in some cases, it is 
possible to halve the computing time simply by better exploiting 
the memory hierarchy characteristics of modem microprocessors, 
with so-called block-oriented algorithms. Another obvious exam- 
ple is to gather several processors for solving a single problem: 
parallel computing pushes the level of complexity, and, typically, 
the effort required for code-development rockets. 

With respect to enforcing numerical stability, different tech- 
niques have been proposed in different settings, such as pivoting in 
theLU decomposi6on. The key point here is that these techniques 
may not he necessary when addressing small “toy” problems, but 
become a must with problems coming from real applications. In 
some cases, numerical difficulties make the algorithms useless 
(e.g., the loss of orthogonality in the Lanczos method), unless 
devices that guarantee stability are introduced. 

Another requirement specific to numerical software is 
portability. Being able to port a code from one platform or archi- 
tecture to a different one is often convenient. Moreover, it is 
sometimes a necessity, since the life cycle’of scientific codes may 
he several decades, whereas the lifetime of computers is just a few 
years. The portability problem was largely solved by the general- 
ized adoption of the IEEE-754 standard for floating-point arithme- 
tic, and the MPI standard for message-passing communication in 

parallel computers. However, there are still many other details to 
be taken into account in this respect, such as compiler and operat- 
ing-system issues. 

A final comment about specificities of numerical software is 
that within the scientific community, there are requirements that 
are distinctive for a particular field. For instance, in electromag- 
netics, there is often the need to address problems that involve 
complex arithmetic and, in particular, complex symmetric matrices 
appear quite frequently. For these cases, specialized numerical 
methods abound. 

2.2. Models of Software Development and 
Quality Criteria 

The simplest model of numerical software devt:lopmeut is 
that of the numerical recipes. Typically in this paradigm, the pro- 
grammer is also the user of the code and, therefore, the expert in 
the problem. Whenever requiring a method to solve a mathematical 
problem, he or she looks it up in a numerical recipes hook (see, for 
example, [SI), and inserts the code into the program. This para- 
digm has been very popular and successful, especially for simple 
tasks such as interpolation, integration, root finding, etc., but it is 
not sufficient for matrix problems, such as those we are concerned 
with in this article. There are a variety of other paradigms that are 
more appropriate for such problems, belonging to a wide spectrum, 
ranging from simple subroutine libraries to more-sophisticated 
problem-solving environments, as explained next. The objective is 
to be able to build codes for the solution of complex problems by 
putting together the functionality of different specialized software 
packages. This makes life easier to the user who can focus more on 
research, rather than wasting effort in implementation cdprograms. 

The concept of a library of subroutines was the first to he 
introduced as an attempt to make effective reutilization of numeri- 
cal software. A significant example of this idea is represented by 
the BLAS, the Basic Linear Algebra Subprograms [6] .  The BLAS 
are a set of subroutines with a well-defined interface that allow the 
programmer to easily perform basic operations with matrices and 
vectors. Their introduction in the 1980s represented a giant leap 
forward for numerical software. Their use reduces the coding 
effort and significantly improves the readability of programs. More 
importantly, using the BLAS contributes to achieving portability 
while maintaining efficiency, since machine vendors now include 
highly optimized implementations as part of the system software. 
LINPAK, the Linear Algebra Package [7], is built on top of the 
BUS. LINPAK provides higher-level routines for solving systems 
of  linear equations, least-squares problems, eigenvalue problems, 
and singular-value problems. 

Both the BLAS and LINPAK are designed to work with dense 
matrices: they enforce a fixed and well-defined data structure for 
storing matrices, namely the FORTRAN-style column-major array. 
This aspect is important in OUI discussion. The simplicity of this 
particular data structure allowed the designers of LINPAK to con- 
centrate on algorithms. Unfortunately, this simplicity cannot be 
easily translated into the realm of sparse-matrix computations (or, 
at least, in a uniquely accepted way), where many formats exist for 
storing sparse matrices, each of them being more appropriate for 
certain types of operations. In this context, the traditional suhrou- 
tine-library paradigm is definitively not sufficient, because it does 
not allow enough flexibility for the matrix storage. Some software 
libraries (e.g., SPARSKIT [SI) circumvent this difficulty by means 
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of the so-called reverse-communication scheme. In this scheme, a 
subroutine that implements a method does not know anything 
about how the matrix is stored because there is no prescribed for- 
mat or function prototype. Instead, whenever the solver requires a 
certain operation related to the matrix, it retums back to the calling 
program, where such operation is performed. The resulting code is 
quite obscure, but the goal of independence from the storage for- 
mat is achieved. This scheme is mostly useful for iterative methods 
that only use the matrix in matrix-vector products, and is applica- 
ble even in the case that the matrix is not explicitly stored. How- 
ever, this is not a completely satisfactow solution, because the user. 
bas to assume the coding effort related to data-structure manage- 
ment and the implementation of matrix operations, and this is usu- 
ally where most of the complexity resides. 

There is an emerging trend that addresses the problem from 
another angle: the so-called generic programming approach tries to 
regain focus on algorithms by completely abstracting data struc- 
tures. This paradigm will not be described further since it is still 
rather experimental, and requires special programming-language 
features, such as C++ templates (more details can he found in [9]). 

Problem-solving environments (PSE) are located at the other 
end of the spectrum with respect to subroutine libraries. These are 
typically software frameworks that provide a quite comprehensive 
set of functionalities for addressing a certain type of problem, for 
instance, for solving partial differential equations. In this type of 
system, the user has to develop code specifically for running in this 
framework. An example of this is Cactus [IO], in which user- 
defined modules are plugged into the core system in order to build 
an application. The user code is obliged by a number of rules, and 
interacts with the framework via a well-defined application- 
program interface (API). Although this scheme may seem too 
restrictive, it tums out to provide many benefits that should not be 
neglected. For instance, collaborative development of applications 
in the context of large projects developed by multi-disciplinary 
teams is far easier with this paradigm than with a traditional 
approach. 

Several conclusions can be drawn from the above discussion. 
One of them is that a good numerical software tool should include 
support for both algorithms and data structures. Also, no single 
paradigm is the best, since different paradigms are appropriate for 
different needs and situations. The paradigm of choice may depend 
on the scope of our software project, so for small, handmade pro- 
grams, the simplest paradigm may still be valid. In the case of 
more advanced paradigms, a higher-level programming style will 
necessarily have to be employed. In general, most modem numeri- 
cal software packages lie somewhere between simple subroutine 
libraries and fully fledged problem-solving environments. Selec- 
tion of the most appropriate approach should be made on the basis 
of the particular characteristics of our problem, but also taking into 
account for the tools a number of the quality criteria that are dis- 
cussed in the list below: 

- Reliability and robustness: Reliability is mainly related to the 
numerical stability of the algorithms and to the accuracy of the 
computed results. Robustness refers to the behavior of the soft- 
ware in unexpected situations, such as exceptions, errors, or 
when the user provides incorrect input data. 

Efficiency and scalability: As discussed above, efficiency is 
important in terms of algorithms (doing as few operations as 
possible) and in terms of architecture-specific issues (trying to 
reach the machine’s peak performance). In the case of parallel 

computers, a related concept is scalability, which refers to 
maintaining efficiency as the number of processors increases. 

Portability: This is the ability of code to be installed and exe- 
cuted on different computer platforms. Ideally, porting should 
not imply loss of efficiency. 

Flexibility: Carefully designed libraries should allow the user to 
address problems formulated in a number of ways, and to easily 
adapt the solution strategy to the particular characteristics of the 
problem. This quality is very important, because solving a 
problem usually implies experimenting with many different 
methods and algorithms, and tuning the values of a multitude of 
parameters. 

Generality, extensibility, and interoperability: Generality (e.g., a 
libraq that handles both real and complex matrices is more 
general than another that only supports real arithmetic) is often 
a desirable feature and fosters reutilization. However, having a 
very broad scope may be contrary to good quality, and it is 
preferable to focus on a specific topic. In the latter case, it is 
sometimes desirable for the user to be able to extend the func- 
tionality of the libmy with new features. Also, focused libraries 
should be able to interoperate with other libraries, comple- 
menting each other in order to effectively serve as building 
blocks for applications. 

There are other quality criteria not included in the list that . .  
may be also important. Two of these are stability (the user inter- 
face does not change much from one version to the next) and 
maintenance (bugs and errors are detected and removed). This is 
difficult to find in public-domain numerical software, since such 
software is often developed in the context of research projects, and 
typically suffers from funding discontinuation. 

Finally, ease of use is probably one of the most important 
concerns to the reader. In this sense, high-quality software should 
provide good documentation. Regardless, in many cases the 
learning curve may be quite steep, depending on the user’s back- 
ground. For this reason, it is increasingly common to find com- 
puter science specialists participating in scientific and engineering 
computing projects. 

2.3. Examples of Successful 
Numerical Tools 

Software design is becoming an increasingly important issue 
in scientific and engineering computing, not only to enable reus- 
ability, but also to pursue desirable features, such as those men- 
tioned above. For these goals, object-oriented design can provide 
important advantages over traditional design - for instance, hiding 
details of parallel execution - and it allows the user to work at a 
higher level of abstraction. The object-oriented approach is being 
used in many of the most widely accepted numerical tools avail- 
able today, some of which are described next. More examples can 
be found in [ll],  together with a description containing technical 
details about software design. 

One of the most successful numerical tools is PETSc [12], the 
Portable Extensible Toolkit for Scientific Computation. In this 
statement, successful means “used a lot,” and this is assessed on 
the basis of the number of software downloads, the feedback 
received from users, and the number of projects in which it is 
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being employed. PETSc is a toolkit for the parallel solution of par- 
tial differential equations, written in C (although it can also used 
from FORTRAN or C++). Its approach is to encapsulate linear- 
algebra entities and algorithms using object-oriented programming 
techniques. All the PETSc software is freely available, and is used 
around the world in many application areas. 

PETSc focuses on sparse-matrix solvers, providing both data 
structures and algorithms, which are implemented as objects. The 
application programmer works directly with these objects, via 
generic interfaces as explained below, rather than concentrating on 
the underlying data structures. The three basic data objects are 
index sets (IS), vectors (vec), and matrices (Mat). Apart from 
these, basic support is also included for managing data associated 
with discretization meshes, both structured (finite differences) and 
unstructured (finite elements). Built on top of this foundation are 
various classes of solver objects, including linear, nonlinear, and 
time-stepping solvers. These solver objects encapsulate virtually 
all information regarding the solution procedure for a particular 
class of problems, including the local state and various options, 
such as convergence tolerances, etc. Options can be specified by 
means of calls to subroutines in the source code, and also as com- 
mand-line arguments. 

The design of PETSc is based mainly on the concept of the 
interface in object-oriented programming. The key idea is to 
cleanly separate the interface of an object class from its imple- 
mentation, in a way so that it is possible to provide more than one 
implementation for a single interface. By forcing the user code to 
access the object functionality via the generic interface, common 
to all implementations, it is easier to later replace an implementa- 
tion with a different one. This concept is illustrated with a simple 
example of matrix creation: 

MatCreate(PETSC-COMM-WORLD,PETSC-DECIDE,PETSC 
- DECIDE, n, n,  &A) ; 
for (e=O;e<nelm;e++) { 

ElementMatrix (e, mesh, indices, values) ; 
MatSetValues(A.6.indices.6.indices.values 

, ADD-VALUES 1 ; 
1 
MatAssemblyBegiII (A,  MAT-FINAL-ASSEMBLY) ; 
MatAssemblyEnd(A,MAT-FINAL-ASSEMBLY); 

The generic interface (Mat) admits multiple implementa- 
tions, one per each different storage format (sequential sparse, par- 
allel sparse, sparse symmetric, sparse by blocks, block diagonal, 
etc.). The operations with the Mat prefix in the above example 
correspond to the generic interface, and are valid for any imple- 
mentation. In this way, the program is independent of the storage 
format, which can be selected dynamically by specifying it either 
in the source code or in the command line at nm time. The exam- 
ple builds a finite-element stiffness matrix by assembling elemen- 
tal matrices of order six. 

This philosophy applies to solvers in a similar way. A call to 
a function of the generic solver interface (e.g., KSPSolve for 
solving linear systems of equations) will invoke one of many dif- 
ferent implementations (e.g., different Krylov methods, such as the 
Conjugate Gradient, GMRES, BiCGStah, etc., as well as different 
preconditioners). In this way, PETSc provides clean and effective 
code for the various phases of solving PDEs, with a uniform 
approach for each class of problems. This design enables easy 
comparison and the use of different algorithms (for example, to 
experiment with different combinations of Krylov subspace meth- 
ods and preconditioners, or truncated Newton methods for nonlin- 

ear problems), since methods can be specified at runtime, along 
with many different options. Hence, PETSc provides i i  rich envi- 
ronment for modeling scientific applications, as well ias for rapid 
algorithm design and prototyping. 

To a large extent, PETSc satisfies the quality criteria men- 
tioned in the previous section, flexibility being one of its flagship 
appeals. With respect to interoperability, PETSc interoperates with 
other libraries by providing a wrapper for each of them, so that its 
functionality is seamlessly integrated. Some of the libraries inte- 
grated in this way are SuperLU [13], MUMPS [14], UMFPACK 
[U], DSCPACK [16], and SPOOLES [I71 for direct linear solvers; 
Hypre [IS] for preconditioning; and PVODE [I91 for initial-value 
problems for ordinary-differential-equation (ODE) systams. 

Apart from PETSc, there are many other high-quality 
numerical software packages out there. It is worth mentioning two 
of them. The first one is Aztec [20], an older library that offers far 
less functionality than PETSc, hut was very successful precisely 
because of its simplicity. The other one is Trilinos [:21], a more 
recent effort that integrates Arlec and is rapidly growing to provide 
even more functionality than PETSc. All these software tools are 
often unknown to the end user, and this is the reason why some 
initiatives have been established in order to disseminate them in 
different fields and to promote their use (see [22]). 

3. Eigenvalue Problems 

This section provides an overview of eigenvalue problems 
and the techniques available to solve them. These are an important 
class of linear-algebra problems that arise in many applications in 
science and engineering, for instance, in stability or bifurcation 
analyses. In this article, we focus on large sparse eigenproblems, 
such as those encountered when computing solutions of Maxwell’s 
equations by the Finite-Element Method. 

In the standard formulation, the eigenvalue problem consists 
of the determination of a complex scalar, 1, for which the equa- 
tion 

A x = l x  (1) 

has nontrivial solution, where A is a square matrix of order n. The 
scalar 1 and the vector x are called the eigenvalue and eigenvec- 
tor, respectively. Quite often, the problem appears in generalized 
form: 

Ax = 1 B x  , (2) 

where B is also a square matrix of order n. Most applications do 
not require computing the entire spectrum hut only a few selected 
solutions, e.g., the smallest eigenvalues. Other related linear- 
algebra problems, such as the quadratic eigenvalue problem or the 
singular-value decomposition, can be formulated as standard or 
generalized eigenprohlems. 

3.1. Numerical Solution Techniques 

Many methods have been proposed to compute eigenvalues 
and eigenvectors. Some of them, such as the QR iteration, are not 
appropriate for large sparse matrices because they are based on 
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modifying the matrix by applying similarity transformations, 
which destroy sparsity. In what follows, we consider only methods 
that compute a few eigenpairs of large sparse problems (see [231 
for a comprehensive survey). These methods usually extract the 
solution from the information generated by applying the matrix to 
various vectors. In this way, matrices are only involved in matrix- 
vector products, which preserves sparsity and also allows the solu- 
tion of problems in which matrices are not stored explicitly. 

The most basic sparse eigensolver is the Power Method, in 
which an initial ,vector is repeatedly pre-multiplied by matrix A 
and conveniently normalized. Under certain conditions, this itera- 
tion converges to the eigenvector associated to the largest eigen- 
value in magnitude. After this eigenvector has converged, deflation 
techniques can be applied in order to retrieve the next eigenvector. 

The Subspace Iteration is a generalization of the Power 
Method in which the matrix is applied to a set of m vectors simul- 
taneously, and orthogonality is enforced explicitly in order to 
avoid the convergence of all of the vectors toward the same eigen- 
vector. This method is often combined with a projection technique 
to compute approximations to the eigenpairs of matrix A, extract- 
ing them from a given low-dimensional subspace on which the 
problem is projected. In the case of the Subspace Iteration, in the 
kth iteration this subspace is the one spanned by the set of vectors 
Akvi .  

The projection scheme is common to many other methods. In 
particular, so-called Krylov methods use a projection onto a 
Krylov subspace, 

The most basic algorithms of this kind are the Amoldi and 
Lanczos. These methods are the basis of a large family of algo- 
rithms. The Amoldi algorithm can be used for non-symmetric 
problems. It computes approximations of invariant subspaces from 
Krylov subspaces of increasing size. Since the computational (and 
storage) costs grow with the size of these subspaces, the algorithm 
is typically restarted when a maximum is reached. Several restart 
alternatives have been proposed. The Lanczos algorithm exploits 
the symmetry of the matrix, and builds the Krylov subspace with a 
simple three-term recurrence. The main concern in this case is to 
monitor the loss $f orthogonality of the basis vectors, due to 
round-off errors. A non-symmetric version of Lanczos exists that 
can be more efficient than Amoldi, but a robust implementation 
requires so-called look-ahead techniques to avoid the possibility of 
serious breakdown of the algorithm. 

There are several issues that are common to the methods 
mentioned above. One of them is the orthogonalization strategy 
when constructing the basis. Several schemes are available, with 
different behavior with respect to round-off errors. Another 
important aspect is the management of convergence. Locking 
already converged eigenvalues can considerably reduce the cost of 
an algorithm. 

Convergence problems can arise in the presence of clustered 
eigenvalues. Selecting a sufficiently large number of hasis vectors 
can usually avoid the problem. However, convergence can still be 
very slow, and acceleration techniques must be used. Usually, 
these techniques consist of computing eigenpairs of a transformed 
operator, and then recovering the solution of the original problem. 
The most commonly used spectral transformation is called shift- 

~ 

IEEE AntennasandPropagation Magazine, Vol. 46, No. 6, December 2004 115  

and-invert, and operates with the matrix (A-oI)-’. The value of 
the shift, a, is chosen so that the eigenvalues of interest are well 
separated in the transformed spectrum, thus leading to fast conver- 
gence. A linear system of equations must he solved whenever a 
matrix-vector product is required in the algorithm when using this 
approach. Typically, this computation must he quite accurate, often 
requiring use of direct methods. Recently proposed eigensolvers, 
such as Jacohi-Davidson, have tried to avoid the shift-and-invert 
spectral transformation by replacing the direct linear solver by 
approximate solves. These methods are called preconditioned 
eigensolvers, due to their resemblance to the idea of a precondi- 
tioner in the iterative solution of linear systems. 

3.2. Available Software 

Solving large sparse eigenvalue problems is essentially more 
difficult than solving linear systems of equations, and effective 
computational methods have only recently been proposed. For 
these reasons, the availability of public-domain implementations of 
such methods is scarcer. 

There are several parallel software libraries that approach the 
problem by some variant of the methods mentioned above. The 
most complete of these libraries is ARPACK [24], which imple- 
ments the Amoldi and Lanczos processes with Implicit Restart for 
standard and generalized problems, in both real and complex 
arithmetic. Other available parallel libraries are BLZPACK [E], 
PLANS0 [26] ,  and TRLAN [27], which implement different “fla- 
vors” of the Lanczos method. A sequential implementation of the 
subspace iteration is provided by SRRIT [28]. 

All of these libraries require the user to provide a matrix- 
vector subroutine or to use a reverse-communication scheme. As 
mentioned above, these two interface strategies are format- 
independent, but keep part of the complexity on the user’s side. All 
of these libraries are research codes, focused on providing a robust 
implementation of a single method. They can be used successfully 
in many situations, but are far from fully satisfying many of the 
quality criteria discussed above. For instance, flexibility and inter- 
operability are often very limited in these codes. Very desirable 
features in this case are an easy way of experimenting with differ- 
ent parameter values as well as shifting from one method to 
another, and straightfonvard connections to various linear system 
solvers and preconditioners. The library presented below tries to 
address all of these issues. 

4. Solving Eigenvalue Problems with 
SLEPc 

SLEPc [29, 301, the Scalable Library for Eigenvalue Problem 
Computations, extends the functionality of PETSc to solve large, 
sparse eigenvalue problems on parallel computers. It can be used 
for the solution of problems formulated in either standard or gen- 
eralized form, as well as other related problems, such as the sin- 
gular-value decomposition. It supports either real or complex 
arithmetic, and includes solvers for both Hermitian and non- 
Hermitian problems. SLEPc is currently being used in numerous 
applications from different areas, including computational elec- 
tromagnetics, computational chemistry, nuclear engineering, mate- 
rials science, statistics and information retrieval, quantum 
mechanics, etc. 



4.1. Design Principles 

The functionality provided by SLEPc is grouped around two 
objects, EPS and ST, as described next. 

The Eigenvalue Problem Solver (EPS) is the main object 
provided by SLEPc. It is used to specify an eigenvalue problem, 
either in standard or generalized form, and provides uniform and 
efficient access to all of the package’s eigensolvers. The EPS 
object provides functions for setting several parameters, such as 
the number of eigenvalues to compute, the dimension of the suh- 
space, the requested tolerance, and the maximum number of itera- 
tions allowed. The user can also specify other things, such as the 
portion of the spectrum of interest. 

The solution of the problem is obtained in several steps. 
First, the matrices associated with the eigenprohlem are specified 
via EPSSetOperators. Then, a call to EPSSolve is done, 
which invokes the subroutine for the selected eigensolver. 
EPSGetConverged can he used afterwards to determine how 
many of the requested eigenpairs have converged to working pre- 
cision. Finally, EPSGetSolution is used to retrieve the eigen- 
values and eigenvectors. All of these function calls refer to the 
generic EPS interface, thus making the user code independent of 
which solver is selected. The solution method can he specified 
procedurally or via the command line. Currently available solvers 
are Power Iteration with deflation, Inverse Iteration, Rayleigh 
Quotient Iteration, Subspace Iteration with non-Hermitian projec- 
tion and locking, and Amoldi with explicit restart and deflation. 
Lanczos and more advanced methods are under development. In 
addition to these methods, there are also wrappers for integrating 
the eigenvalue-solver libraries mentioned in the previous section, 
so that, for instance, one can use the A M A C K  solver as well as 
any of the other solvers provided natively by SLEPc. 

The other main SLEPc object is the Spectral Transformation 
(ST), which encapsulates the functionality required for accelera- 
tion techniques based on the transformation of the spectrum. The 
user does not usually need to create an ST object explicitly. 
Instead, every EPS object internally sets up an associated ST. One 
of the design comerstones of SLEPc is to separate spectral trans- 
formations from solution methods so that the user can specify any 
combination of them. To achieve this, all the eigensolvers con- 
tained in EPS must he implemented in a way such that they are 
independent of which transformation the user has selected. That is, 
the solver algorithm has to work with a generic operator, the actual 
form of which depends on the transformation used. After conver- 
gence, eigenvalues are transformed hack appropriately, if neces- 
sary. Table 1 lists the operators used in each case, either for stan- 
dard or generalized eigenprohlems. 

By default, the shift-of-origin spectral transformation is used, 
with a zero shift (u=O).  Changing the value of the shift can 
sometimes improve the convergence rate. This benefit is always 
obtained when using the other two transformation modes, but at 
the expense of a higher cost per iteration, due to the inverted 
matrix. In all cases, the value of the :hit? can he specified at run- 
time. The expressions shown in Table 1 are not built explicitly. 
Instead, the appropriate operations are carried out when applying 
the operator to a certain vector. The inverses imply the solution of 
a linear system of equations, which is managed internally by set- 
ting up an associated KSP object (PETSc’s linear-system solver). 
The user can control the behavior of this object by adjusting the 
appropriate options, as will he illustrated in the examples in the 
next section. 

Table 1. The operators used in each spectral-transformation 
mode. 

Figure 1. The abstraction used by SLEPc solvers. 

Apart from separating spectral transforms I?om solvers, 
another remarkable design decision is the abstraction of. inner 
products. Different inner products are used depending on the 
problem type, and this is transparent to the eigensolver, simplify- 
ing its implementation. This is done, for instance, for preserving 
symmetry in positive-definite symmetric generalized problems, in 
order to he able to use symmetric solvers (e.g., Lanczos). Figure 1 
summarizes the abstraction used in SLEPc. 

4.2. Example of Usage 

The following C source code illustrates the solution of a sim- 
ple generalized eigenvalue problem by means of SLEPc. The code 
for creation of matrix A and for error checking is omitted. 

#include “slepceps .h” 

EPS eps; / *  eigensolver context */ 
Mat A.B;  / *  matrices of Ax=kBx * /  
Vec xr,xi; / *  eigenvector, x */  
Petscscalar kr, ki; / *  eigenvalue, k */ 
int i, nconv; 

EPSCreate(PETSC-COMM-WORLD,&eps); 
EPSSetOperators(eps,A,B); 
EPSSetProblemType(eps,EPS-GNHEP); 
EPssetFromOptions (eps) ; 
EPSSolve (eps) ; 
EPSGetConverged (eps , &nconv) ; 
for(i=O;i<nconv;i++) 

EPSDestroy (eps) ; 
EPSGetEigenpair (eps, i, &kr, &ki ,xr,xi) ; 

All of the operations of the program are done over a single 
EPS object, the eigenvalue problem solver, created in the first call. 
The next two operations specify the matrices associated with the 
generalized eigenprohlem and set the problem type (generalized 
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non-Hermitian). At this point, the value of the different options 
could be set by means of function calls, such as 
EPSSetTolerances. After this, a call to 
EpSSetFromOptions is made, so that options specified at run- 
time in the command line are appropriately passed to the EPS 
object, In this way, the user can easily experiment with different 
combinations of options without having to recompile. The call to 
EPSSolve launches the solution algorithm. The subroutine being 
actually invoked depends on which solver has been selected by the 
user. At the end, the data associated with the solution of the eigen- 
problem is kept internally. The next line queries how many eigen- 
pairs have converged to working precision. The solutions of the 
eigenproblem are retrieved with the function 
EPSGetEigenpair. Finally, the EPS context is destroyed. 

The following are examples of command-line usage. 

$ program -eps-nev 10 -eps-ncv 24 

The above line executes the program specifying the number of 
eigenvalues and the dimension of the subspace. 

In this other example, the solution method is given explicitly, 
and the matrix is shifted with U = 0.5. 

$ program -eps-type subspace -st-type shift 
-st-shift 0.5 -eps-monitor 

The last option instructs SLEPc to activate the convergence moni- 
tor. In cases where the operator contains an inverted matrix (see 
Table l), the user can additionally specify options relative to the 
solution oftbe linear systems. For example, 

$ program -st-ksp-type qmres -stqc-type ilu 

In the above example, the prefix st- is used to indicate an option 
for the linear system of equations associated with the ST object. In 
particular, the system is solved with GMRES, preconditioned by 
incomplete LU factorization. Similarly, for using shift-and-invert: 

$ program -st-type sinvert -st-shift 10 
-stgc-type jacobi 
-st-ksp-type cg -st-ksp-rtol le-7 

In this last example, the value of the shift is U = 10, and linear sys- 
tems are solved via Conjugate Gradients with Jacobi precondi- 
tioning, up to a precision of IO-’. A detailed description of these 
options and others is included in the SLEPc user’s guide. 

4.3. The Resonant Cavity Problem 

To finish this section, an example is shown from an applica- 
tion in electromagnetics, namely the resonant cavity problem. The 
objective is to illustrate how SLEPc can be used to address prob- 
lems that do not exactly match the formulations presented in 
Equations (1) and (2). 

When using the Finite-Element Method to compute the 
eigenfunctions of Maxwell’s equations in a bounded volume, we 
obtain the following algebraic eigensystem: 

(A- B)E = 0, (4) 

where A and B are large, sparse matrices, resulting from assembly 
of elemental matrices; k,’ is the eigenvalue of the system; and E is 
the eigenvector from which the electric field can be reconstructed. 
Vector elements are used in order to avoid spurious modes (solu- 
tions satisfying the algebraic problem but not the original differen- 
tial equation). More details related to the discretization of the 
problem can be found in [3 I]. 

With the SLEPc example code provided above, the program 
would be ready for computing the extreme eigenvalues or the 
internal eigenvalues if using shift-and-invert. However, in this 
particular application, one is usually interested in computing a few 
of the lowest wavenumbers, k i .  The dimension of A’s null space 
is very high (about a sixth of the order of A), and therefore Equa- 
tion (4) has many zero eigenvalues that have to be avoided during 
computation. This new problem can be formulated as a constrained 
eigenproblem 

C’BE=O,  (5h) 

where the columns of C form a basis of the null space of A. This 
problem can be addressed in several ways (see [32] for a detailed 
discussion). One possible way is to solve the following modified 
problem: 
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where M = A+ BCHCTBT , and H is a positive definite matrix so 
that zero eigenvalues are shifted and do not disturb computations. 
This modified eigenproblem can be easily implemented in SLEPc 
with the aid of shell matrices. These are matrices that do not 
require explicit storage of the component values. Instead, the user 
must provide subroutines for all of the necessary matrix opera- 
tions, typically only the application of the linear operator to a vec- 
tor. Shell matrices are a simple mechanism of extensibility, in the 
sense that the package is extended with new, user-defined matrix 
objects, Once the new matrix has been defined, SLEPc can use it 
as any other matrix. In Equation (6),  matrix M should not be com- 
puted explicitly because it may be dense, and a shell matrix can 
instead be used by simply providing a subroutine for computing 
the product y = Mx for any given vector x. 

5. Conclusion 

The implementation of a finite-element analysis program has 
to cope with many sources of complexity, in particular in the 
matrix solution of linear-algebra problem. A large community 
effort, carried out in the few last years by many computational sci- 
ence specialists, has made possible the fact that today there is a 
wide panoply of high-quality numerical software tools that can he 
used in order to avoid much of the complexity. These tools exhibit 
desirable qualities and provide many benefits. However, they are 
not simply black-box subroutines, and their use requires adapting 
our programming habits. 

FOI some classes of problems, such as linear systems of 
equations, a surprisingly rich variety of implementations of differ- 
ent methods are publicly available, each of them satisfying more or 
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less the quality criteria mentioned in this article. For different rea- 
sons, the offerings related to eigenvalue problems is much more 
limited. Several software tools exist for this task, but they are far 
from reaching the same quality level as packages intended for 
other domains. An exception could be SLEPc, a parallel library for 
the solution of large, sparse eigenvalue problems, described in 
Section 4. It is based on PETSc, and aims at being able to cope 
with problems arising in real applications by using standard tech. 
niques, such as shift-and-invert transformations and state-of-the-m 
solvers. It offers a growing number of solution methods, as well as 
interfaces to external eigenvalue packages. With little progtam- 
ming effort, it is possible to easily test different solution strategies 
for a given eigenprohlem. Once the problem has been specified, it 
is extremely easy to experiment with different solution methods 
and to carry out studies by varying parameters, such as the value of 
the shift. It is also possible to easily prepare the program for mn- 
ning with several processors, thus allowing the solution of huge 
problems without requiring much experience in parallel program- 
ming. 

SLEPc inherits all the good properties of PETSc, including 
portability, scalability, efficiency, and flexibility. Due to the 
seamless integration with PETSc, the user has at his or her disposal 
a wide range of linear-equation solvers. The use of shell matrices 
allows easy formulation of block-structured or implicit eigenproh- 
lems, as illustrated with the resonant cavity problem. 
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Editor‘s Comments Conrinuedfrompage 53 

The Italian government is funding a major study on the 
impact of electromagnetic-field-emitting systems - including cell 
phones - on humans and the environment. Similar studies are also 
being undertaken in other European counties. In his Telecommu- 
nications Health and Safety column, Jim Lin describes a recent 
conference held in connection with the Italian study, and discusses 
the importance and need for such work. 

Interruptions: 
Etiquette, Safe Computing, and 

Time Management 

Randy Haupt’s Ethically Speaking column is devoted to a 
discussion of the interruptions we experience !?om e-mail, cell 
phones, call-waiting, pagers, and the other electronic communica- 
tion mechanisms upon which we have come to depend. There are 
certainly ethical and etiquette issues here: you need to read the 
column. 

In reading it, I was reminded of the reason why I have rarely 
had a problem with e-mail intemptions (and why I’ve never 
inflicted e-mail intemptions on those with whom I’m working!): I 
don’t “stay connected.” When my Intemet connection was a dial- 
up connection, I would only check e-mail once or twice per day, 
because I had to dial in to it: it was inherently not an always-on 
connection. My primary Internet connection is now a broadband 
(cable modem) connection, which is inherently an always-on con- 
nection. However, when I first got the broadhand connection, I 
installed a switch between my computer and the Internet for secu- 

rity reasons. I thus again have to take action in order to connect to 
the Intemet to receive my e-mail. A side effect of this is that as a 
result, I typically only check e-mail once per day. 

I think there are at least two benefits from this situation. First, 
by turning off the Internet connection when not in use, I make 
myself much less vulnerable to the various attacks and malware 
that have become a dominant factor in Intemet usage. I have a hub 
between my cable modem and my computer and internal network, 
and I simply turn it off when I’m not accessing the Intemet. I’ll 
comment more on this below. Second, I thus end up managing my 
time, rather than allowing e-mail to manage my time for me. I 
decide when to process my e-mail, and how much time I devote to 
doing so. If you have your e-mail set to notify you whenever a new 
message comes in - and worse, if you then interrupt whatever 
you’re doing to process that e-mail - you are probably far less pro- 
ductive because of the interruptions, and you have turned control 
of your time over to whoever is sending you e-mail. 

There are some disadvantages to not “staying connected all 
the time. The primary disadvantage is that I might not immediately 
receive and respond to an urgent e-mail. However, e-mails that are 
so urgent that they need to be responded to immediately are really 
very rare, in my experience. If someone needs to communicate 
something to me that urgently, they can (and probably should) 
telephone me. The cost and effort of a telephone call (compared to 
an e-mail) serves as an excellent filter for determining what is 
really urgent! Furthermore, that kind of urgent communication is 
usually better done by telephone, since it often involves the need 
for rapid two-way communication. 

I’ve adopted the same approach with my cell phone. When I 
do carry one, I leave it turned off unless I’m either expecting a call 
or I need to make a call. I do check voice mail periodically, but I 
can do that when it is efficient and convenient (and safe!) to do so. 
Among other benefits, this means that unless I’m in a situation 
where I’m expecting an emergency call, I’m not using a cell phone 
when I’m driving, which is much safer. It also means that I’m not 
receiving cell-phone calls when I’m where I would prefer not to 
receive them - such as in public places ~ so I’m not disturbing oth- 
ers, nor am I holding private conversations in public. 

Who controls your time when it comes to communications? 

From the Screen of Stone Lite: 
Thoughts on Connecting a New Computer 

Connecting to the Intemet has become almost an inherent 
part of setting up a new computer. It is also a very hazardous step. 
The CERT’ Coordination Center (http://www.cert.org), located at 
Camegie Mellon University, is a worldwide leader in computer 
secunty. CERT estimates that the mean time between connecting a 
computer to the Internet and the first attack on that computer is 
measured in minutes. I have experienced attacks less than 10 sec- 
onds after connecting a computer via a broadband connection. 
These attacks usually do not have direct human involvement. They 
are typically the result of software implanted on large numbers of 
systems around the world (and typically, without the knowledge of 
the owners of the systems). 

This situation creates a paradox when you’re trying to set up 
a new computer. On the one hand, you typically need to connect 
the new computer to the Internet to download operating-system 

Continued onpage 134 
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