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Foreword by the Editors 

The Electric-Field Integral Equation (EFIE) remains one of 
the stalwarts of Method-of-Moments (MOM) formulations, in par- 
ticular using the very popular Rao-Wilton-Glisson (RWG) basis 
functions (now recognized as the lowest-order divergence-con- 
forming element, very closely related to the curl-conforming 
Whitney edge elements used in Finite Element Method analysis). 
However, there are a number of potential pitfalls with this tech- 
nique, in particular the poor matrix condition numbers often 
encountered when dealing with large problems. Readers may be 

aware of recent work on “loop-tree” and “loop-star” hasis func- 
tions, which attempt to provide a partially decoupled basis for the 
components of the impedance matrix obtained from the vector 
magnetic and scalar electric potentials. This paper evaluates these 
basis functions, and compares convergence rates using an iterative 
solver to results using RWG hasis functions. It should be of inter- 
est to anyone interested in extending the capabilities of MOM 
analysis using the electric-field integral equation, and we thank the 
author for his contribution. 
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Abstract 

Method-of-Moments (MOM) solutions of the electric-field integral equation using Rao-Wilton-Glisson (RWG) basis functions 
suffer from the so-called low-frequency breakdown. Introduction of loop-tree or loop-star decompositions of the basis functions 
can effectively solve this problem, and a number of papers have been published discussing various aspects with respect to 
these techniques. Several papers imply that loop-tree or loop-star decompositions may help to improve iterative-solver con- 
vergence for the solution of the resulting linear-equation systems. Since only a few results with respect to this issue are avail- 
able, a study of the frequency-dependent iterative-solver convergence for RWG, loop-tree, and loop-star basis functions was 
performed. Two metallic scattering objects, with meshes comprising up to 21060 unknowns, were considered. RWG functions 
were found to provide the best convergence behavior, as long as the frequency considered was high enough to prevent the 
low-frequency breakdown, Among the loop-tree and loop-star bases, the loop-tree functions were found to be superior to the 
loop-star functions. The loop-tree functions resulted in good and stable convergence behavior if the number of subdivisions 
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per wavelength was larger than a few hundred. Moreover, it is shown that the so-called loop-tree decomposition can also be 
viewed as a loop-cotree decomposition if an alternative tree of edges connecting the free vertices of the mesh is constructed. 

Keywords: Integral equation; electric field integral equation; moment methods; iterative methods; convergence of numerical 
methods; mesh generation 

1. Introduction 

ethod-of-moments (MOM) solutions of surface integral 

tion of electromagnetic radiation and scattering problems involving 
metallic and homogeneous objects. Since the pioneering work by 
Rao, Wilton, and Glisson [I], dealing with arbitrarily shaped 
metallic objects, most implemeotations have worked with triangu- 
lar surface discretizations and the associated Rao-Wilton-Glisson 
(RWG) basis functions [I]. Also, the mixed-potential integral 
equation (MPIE) representation of the electric-field integral equa- 
tion (EFIE) in [I]  has become commonplace for the computation 
of the coupling integrals. Restricting the discussion to metallic 
objects, the first-kind hypersingular electric-field integral equation 
is preferably replaced by the second-kind magnetic-field integral 
equation (MFIE). However, the magnetic-field integral equation is 
not applicable for open metallic objects, and due to the problem of 
interior resonances, closed metallic objects are often treated by a 
linear combination of the electric-field integral equation and the 
magnetic-field integral equation: the combined-field integral equa- 
tion (CFIE) [Z, 31. Also, the modeling accuracy of the electric-field 
integral equation is often superior to the magnetic-field integral 
equation, especially when objects with sharp edges and comers are 
involved. A serious problem of the electric-field integral equation 
is its so-called low-frequency breakdown, which means that a reli- 
able solution cannot he found if the discretization becomes very 
fine in terms of subdivisions per wavelength. Finer discretizations 
cause larger matrix condition numbers and, eventually, the break- 
down of the solution. When iterative equation solvers are 
employed, the increasing condition number requires decreasing 
residual errors to achieve accurate solutions. Recently, analytically 
preconditioned versions of the electric-field integral equation have 
been developed [4]. However, currently available numerical 
implementations require considerably more computational 
resources than those for the conventional electric-field integral 
equation. 

M equations are the preferrcd numerical methods for the solu- 

Another solution to the low-frequency breakdown of the 
electric-field integral equation is given by loop-star or loop-tree 
decompositions of the RWG basis functions. These techniques 
were introduced in the early 1980s [5 ,  61, and utilize the fact that 
electric and magnetic fields decouple for decreasing frequencies. 
The basic idea is to introduce divergence-free loop functions, and 
to extend the solution space of the loop functions by a second set 
of functions such that the solution space of the original RWG 
functions is retained. Thus, an incomplete Hodge decomposition 
[7] (similar to the well-known Helmholtz decomposition of vector 
fields) of the surface currents is realized, and a well-behaved MOM 
equation system is obtained for decreasing frequencies, provided 
that the matrix entries are appropriately scaled. 

Very detailed studies of loop-star and loop-tree decomposi- 
tions are to be found in [SI and [9]. The results on matrix condition 
numbers in [SI are interesting. Both loop-star and loop-tree 
decompositions resulted in almost frequency-independent condi- 
tion numbers. However, the loop-star condition number was found 
to be more than an order of magnitude larger than that of the loop- 
tree decomposition (more than 10000, as compared to ahout 1000). 

In contrast to this, the loop-star condition numbers in [9] were 
about 1000, which might have been due to the razor-blade testing, 
as opposed to the usual Galerkin technique, used in [XI. Also, [9] 
provided results on the diagonal dominance ratio (DDR) of the 
coupling matrix resulting from loop-star decompositions. Since the 
diagonal dominance ratio for the loop-star decomposition is typi- 
cally better than for RWG functions, it is expected that the loop- 
star equation system will be more amenable to iterative solvers. 

In [IO], the loop-star functions were applied to the analysis of 
microstrip antennas, and it was found that the resulting formulation 
was robust for the entire frequency range of interest. [ I l l  discussed 
the relationship between isotropic scalar quantities and loop-star 
functions, and also implied that the improved diagonal dominance 
ratio resulting from the loop-star functions may help with iterative 
solvers. Results on iterative-solver convergence for a relatively 
low frequency were given in [IZ].  The authors found that the 
equation systems for loop-star and loop-tree decompositions still 
exhibited bad convergence behavior, which was due to the star or 
tree basis functions. As a remedy to this issue, a second hasis- 
function rearrangement was introduced that projected the star or 
tree functions on pulse basis functions for electric charges. Unfor- 
tunately, the resulting matrix deteriorated for increasing frequen- 
cies. In [13], loop-star basis functions were employed in precondi- 
tioned iterative solutions of electric-field integral-equation scat- 
tering problems. Results were given for a very high frequency 
(only five subdivisions per wavelength), and it was implied that the 
loop-star decomposition helped to improve iterative-solver conver- 
gence. Since no comparison with RWG functions was included, it 
is not easy to quantify the results given, and it is also doubtful 
whether the iteration numbers for a residual error of 0.01 (to be 
compared to a matrix condition number larger than IOOOO) were of 
any practical relevance. 

The purpose of the present contribution is to compare 
dependence on frequency of the iterative-solver convergence 
behavior of loop-star, loop-tree, and RWG functions. It is certainly 
clear that loop-tree and loop-star functions are superior to RWG 
functions for low frequencies. However, one may still wonder 
whether iterative-solver convergence improvement can be 
expected in the popular MOM frequency ranges with about IO sub- 
divisions per wavelength. Before convergence results for scattering 
applications are presented, a short reyiew of some basic equations 
is given. It is shown that the loop-tree decomposition can also be 
interpreted as a loop-cotree decomposition, related to the tree- 
cotree techniques in Finite-Element Methods [14, IS]. 

2. Formulation 

Consider a time-harmonic (time factor e’”‘) surface integral- 
equation technique using the electric-field integral equation in a 
mixed-potential integral-equation formulation for metallic objects. 
According to [l], a Galerkin-type MOM equation system is derived 
as 
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where the I, are the unknown surface-current expansion coeffi- 
cients, the b,, are the excitation vector elements due to an incident 
wave or delta-gap voltage sources, and N is the number of 
unknowns. The MOM matrix elements are given by 

element community 114, 191. Alternatively, another tree can be 
constructed connecting the centroids of the mesh triangles (see the 
fine lines in Figure 1). Using such a tree, our cotree edges can also 
be identified as the edges crossed by the branches of this new tree 
181. 

with 

(2 )  In contrast to this, the star functions are related to the mesh 
triangles (one star function for all triangles but one in simply- 
connected meshes, as shown in Figure I).  They are constructed by 
linearly combining all RWG basis functions defined on a triangle 

- jklr-r'l such that the surface charges on the triangle add. Further details on 
Zdn = - j % j j j i f , , ,  477 1 I (r) .Ie_.f ,(r ' )]du~u,J3) lr - r'/ 

- 
I is the unit dyad, and k is the wavenumber in the medium consid- 
ered. Also, f n  and f,,, are Rao-Wilton-Glisson expansion and test- 
ing functions, respectively [l], and A is the surface of the scatter- 
ing or radiation object. The reason for the low-frequency break- 
down is the different frequency scaling of Equations (3) and (4) (k 
is proportional to 0). For decreasing o, the contribution of the 
also decreasing magnetic vector potential contribution, Equa- 
tion (3) (as compared to the electric scalar potential contribution, 
Equation (4)) is eventually no longer captured by finite computer 
accuracy. If one uses a discretization with ahout IO subdivisions 
per wavelength, the condition number of the resulting equation 
system is typically smaller than 100, hut increases badly if the 
mesh becomes finer (see [SI for quantitative results). 

A solution to this problem is found if it is possible to 
decouple the contributions of Equations (3) and (4), for instance, 
by the construction of an appropriate set of hasis functions. Ideally, 
we wish to have two types of basis functions: one contributing to 
Equation (3) only, and the other one contributing to Equation (4) 
only. In this case, we would have to solve two separate (smaller 
and better-behaved) equation systems for the two types of basis 
functions. However, this is possible only for vanishing o , when 
electric and magnetic fields are decoupled. Nevertheless, one can 
try to decouple Equations (3) and (4) as well as possible, and this is 
achieved by the so-called Hodge decomposition of the surface- 
current densities. That is, the surface currents are split into curl- 
free and divergence-free contributions. Using the RWG basis as a 
starting point, only an incomplete Hodge decomposition can be 
realized. However, this is sufficient to remove the low-frequency 
breakdown. 

The loop functions are constructed as a linear combination of 
RWG functions, such that they are divergence-free. For a simply- 
connected surface mesh, as illustrated in Figure 1, we introduce 
one loop function for every free vertex in the mesh (indicated by 
the bold dots in Figure 1) by linearly combining all RWG func- 
tions corresponding to all edges connected at the vertex (see the 
circular arrows in the figure). If we first Construct a complete tree, 
of edges connecting all free vertices of the mesh (see the hold 
edges in Figure I), we can easily integrate the loop-tree or loop- 
star decomposition into an existing MOM code working with RWG 
functions. For every lo00 function introduced, we iust delete one 

Figure 1. A triangular mesh for discretizing the electric-field 
integral equation. The dark dots indicate free vertices, repre- 
senting the centers o f  loop basis functions illustrated by the 
circular arrows. Bold edges span a tree connecting the free ver- 
tices, and the tine lines span an alternative tree, connecting the 
centroids of all triangles. 

. .  
RWG function for a tree edge. Doing this; the so-called loop-tree 
decomposition has heen finished just by introducing the loop- 
functions. Accordine to this Drocedure. the looo-tree decompxi- 

Figure 2. The geometry and mesh of a metallic half-ellipsoid 
shell. The surface normal of the opening is directed along - y ,  - 

tion can also be called a loop-cotree' decomposition, since we 
retain the RWG functions on the cotree. This procedure is strongly 
related to the tree-cotree techniques introduced in the finite- 
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and the x-polarized incident plane wave propagates in the -2 
direction. The number o f  unknowns is 1003 for all sets o f  hasis 
functions. 
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Figure 3. The convergence behavior of GMRES(l0) as a func- 
tion of frequency for the problem in Figure 2 using RWG hasis 
functions (1003 unknowns). 
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Figure 6. The Convergence behavior of GMRES(l0) as a func- 
tion of frequency for the problem in Figure 2 using RWG basis 
fnnctions (2041 unknowns). 
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Figure 4. The convergence behavior of GMRES(10) as a fnuc- 
tion of frequency for the problem in Figure 2 using loop-tree 
basis fnnctions (1003 unknowns). 

Figure 7. The Convergence behavior of GhfRES(l0) as a func- 
tion of frequency for the problem in Figure 2 using loop-tree 
basis functions (2041 unknowns). 
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Figure 5. The convergence behavior of GMRES(I0) as a func- 
tion of frequency for the problem in Figure 2 using loop-star 
basis functions (1003 unknowns). 

80 

70 

60 

g 50 

b 140 
cc r e s = i o  0 

6 30 
E 3 20 

2041 unknowns 10 

0 . .  
IO' i o 2  i o 3  i o 4  i o 5  

Subdomains per wavelength 

Figure 8. The convergence behavior of GMRES(10) as a func- 
tion of frequency for the problem in Figure 2 using loop-star 
hasis functions (2041 unknowns). 
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implementing loop-tree and loop-star decompositions may be 
found in [S, 9, 131. The divergence-free property of the loop func- 
tions is essential for loop-tree and loop-star decompositions. Thus, 
the loop functions do not contribute to Equation (4), and the differ- 
ent frequency behaviors of Equations (3) and (4) can be compen- 
sated for by appropriate frequency scaling (see [U] for a very 
detailed discussion). 

I” 

lo-*. 

E,,.. OI - 
3 
E 
I 
0 lo4.  

IO5 

3. Numerical Results 

- Loop-tree 100 - RWG 150 

’ 

The pupose of this section is to investigate the frequency- 
dependent convergence behavior of loop-tree and loop-star 
decompositions compared to RWG functions, when the resulting 
equation system is solved by an iterative solver. We considered 
two different metallic scattering objects, and chose the generalized 
minimal residual (GMRES) iterative solver (restarted version, with 
n search vectors in GMRES(n)), since it produces a smooth resid- 
ual error. The matrix elements were normalized such that the 
diagonal elements were of the same order of magnitude, and a 
simple Jacobi-like preconditioner was applied. The first example 
was the half-ellipsoid metallic shell shown in Figure 2. A compu- 
tation of the matrix condition number for a mesh with 536 
unknowns gave results similar to those found in [8]. RWG func- 
tions resulted in a small condition number (less than 100) for about 
IO subdivisions per wavelength or less, but caused - with power of 
two - increasing condition numbers for larger numbers of subdivi- 
sions per wavelength. The loop-tree decomposition resulted in a 
constant condition number of about 900, and the loop-star decom- 
position caused a constant condition number of about 40000. Since 
larger condition numbers typically require smaller residual solver 
errors, we should keep these observations in mind when we judge 
the solver convergence results. Figures 3 to 8 give the convergence 
results for RWG, loop-tree, and loop-star basis functions, as a 
function of the approximate number of subdivisions per wave- 
length. Two different meshes were considered one with 1003 
unknowns (shown in Figure 2) and one with 2041 unknowns. The 
varying numbers of subdivisions or subdomains per wavelength 
were realized by varying the frequency. The excitation was M 
incident plane wave, propagating towards the opening of the ellip- 
soid shell. RWG functions required increasing numbers of itera- 
tions for a smaller number of subdivisions per wavelength; in par- 
ticular, less than 10 subdivisions per wavelength needed many 
iterations. Despite increasing condition number, increasing num- 
bers of subdivisions required less iterations. For more than about 
1000 subdivisions per wavelength, the bad conditioning prevented 
achieving the low residual errors that would he necessary for cor- 
rect results. 

In case of loop-tree decomposition, it was difficult to achieve 
convergence for small numbers of subdivisions per wavelength. 
However, for large numbers of subdivisions the equation systems 
were reliably solved with a constant number of iterations. Unfom- 
nately, we needed more than 100 subdivisions per wavelength in 
order to achieve the low number of iterations. Consequently, the 
loop-tree decomposition is not advantageous for “high-frequency” 
problems where we wish to work with ahout 10 subdivisions per 
wavelength or even less. For the loop-star decomposition, we 
found it difficult to obtain reasonable convergence with the 
restarted GMRES( 10) at all. Interestingly, convergence improved 
for very low numbers of subdivisions per wavelength (less than 
IO). This may be the reason why only five subdomains per wave- 
length were used in [13]. As expected, the problem with the larger 
number of unknowns required larger numbers of iterations, 
whereas the typical behavior with respect to frequency remained 
the same. 

84 

In order to investigate the convergence behavior for even lar- 
ger problems, we considered the comer reflector illustrated in Fig- 
ure 9. The mesh comprised 21060 unknowns. To efficiently solve 
this problem, we employed a diagonalized version (high- 
frequency) of the Multilevel Fast Multipole Method (MLFMM) 
[16]. Since direct application of MLFMM to the loop-tee or loop- 
star basis functions 1s not recommended, due to the large spatial 
support of these functions, we implemented the MLFMM solver 

Y 
J’> . ,  

Figure 9. The geometry and mesh o f a  metallic corner reflector 
with a side length of 1 m and 21060 unknowns. The y-polarized 
incident plane wave propagated in the -2 direction. 

0 5 10 15 20 25 30 
Number of restarts 

Figure 10. The convergence behavior of GMRES(40) for the 
problem in Figure 9 using RWG and loop-tree basis funetions. 
The curves with 100 subdivisions per wavelength correspond 
to f =1.875MHz, and 150 subdivisions correspond to 
f = 1.25 MHz. 
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Figure 11. The bistatic radar cross section (RCS) in the xz 
plane for the problem in Figure 9 (f = 1.875MHz) using RWG 
and loop-tree bases. 

using RWG functions, only. Thus, for the evaluation of the 
MLFMM contributions for the loop-tree and loop-star functions, 
sparse transformations between the different bases were performed 
(see also [16]). Convergence results for RWG and loop-tree func- 
tions are given in Figure IO for about 100 and 150 subdivisions per 
wavelength. RWG convergence was found to be better in both 
cases. However, loop-tree convergence came close to the RWG 
rate for 150 subdivisions per wavelength. Figure 11 shows excel- 
lent agreement for bistatic radar cross section (RCS) results 
obtained with RWG and loop-tree bases. 

4. Conclusions 

The frequency-dependent iterative solver convergence bebav- 
ior for RWG, looptree, and loop-star basis functions in MOM 
solutions of the electric-field integral equation was investigated, 
using a restarted GMRES solver. RWG bases were found to be the 
preferred choice, as long as the number of subdivisions per wave- 
length was small enough to prevent the well-known low-frequency 
breakdown. Loop-tree bases were found to behave considerably 
better than loop-star bases. The loop-tree functions provided for 
good and stable convergence behavior if the number,of subdivi- 
sions per wavelength was larger than a few hundred per wave- 
length. Howevkr, convergence was found to be very poor in the 
“high-fiequency” range of about 10 subdivisions per wavelength or 
less. Moreover, it was shown that the loop-tree basis can also be 
considered to be a loop-cotree basis if a complete tree of edges 
connecting the free vertices of the mesh is constructed. 
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