
ICSE Workshop on Software Visualization

Wim De Pauw
IBM T. J. Watson Research

Center
30 Saw Mill River Road
Hawthorne Ny 10532

USA
wim@us.ibm.com

Steven P. Reiss
Dept. of Computer Science

Brown University
Box 191 0

Providence RI 02912
USA

spr@ cs.brown.edu

John T. Stasko
College of Computing

GVU Center
Georgia Inst. of Technology

Atlanta GA 30332-0280
USA

stasko@cc.gatech.edu

Abstract

This workshop looks at current work in the area of
software visualization with an emphasis on software
understanding through visualization. It explores new
visualization techniques, addressing software problems
through visualization, frameworks for gathering and
analyzing data for sofrware visualization, software
visualization systems, and experiments and experiences
with software visualization. In addition to providing an
overview of current research in the area, it provides a
forum for discussions and cooperation among researchers
in this and related areas.

1. Introduction

Software visualization is the use of pictures for looking at
and understanding software systems. Today’s software
systems are inordinately complex and hence difficult to
understand. Yet such systems still need to be designed,
written, and maintained. Understanding the design, code,
and behavior of software systems is thus an essential and
important problem. Humans are inherently visual
creatures, relying most on their sense of sight. It is only
natural then that we attempt to draw pictures as a means
of understanding our software systems. This is the
motivation for software visualization.

2. Visualizing static aspects of a program

Contemporary programming languages embody countless
lessons learned over nearly a half century of modern

computing. In general, programmers use a language to
map their ideas into a program space. From this
perspective, visual tools can help to better understand and
manipulate the mapping into the program space. Such
tools complete a feedback loop that lets a programmer
view and modify the mapping to suit his or her needs.
Typically these visualizations are various forms of design
diagrams. Today, much of this has been standardized into
the various diagram classes supported by UML. However
UML only addresses a small fraction of the overall
structure of a software system and says very little about
its behavior.

3. Visualizing dynamic aspects of a program

This concept of a mapping between the programmer’s
ideas and a program space is also useful because it has a
direct analog in characterizing the dynamic aspects of a
program. A program’s dynamic behavior is just as
important to its design, implementation, and refinement as
its static specification.
This is especially true of object-oriented programs, where
the gulf between static specification and run-time
behavior is particularly wide. This has numerous causes:
the dichotomy between the code structure as hierarchies
of classes and the execution structure as networks of
objects; the atomization of functionality - small chunks of
functionality dispersed across multiple classes; and the
sheer number of classes and complexity of relationships
in applications and frameworks. But while much is known
about the static aspects of programs, much less is known
about characterizing and manipulating their dynamic
aspects. Visualizing the execution of these programs is

0-7695-1050-7/01 $10.00 0 2001 IEEE
758

mailto:wim@us.ibm.com
http://cs.brown.edu
mailto:stasko@cc.gatech.edu

critical for understanding, debugging and improving their
performance.

4. A wide spectrum of research directions

Considerable research [l] has been done over the past
twenty years aimed at using visualization to provide
programmers with a wide range of information about their
systems. Today, with more powerful computers, more
available computer graphics, and more complex software
systems, more researchers and users are interested in and
working on software visualization. Ongoing research in
software visualization is working on extending it in a
number of directions.
Some researchers are working on developing new
visualization techniques that provide a deeper insight into
different aspects of software structure or behavior. Others
are looking at various software understanding problems
and attempting to address them using existing
visualization techniques in new ways. Others are
developing frameworks to gather and organize the data
needed for understanding through visualization. Others
are developing visualization systems that provide a
variety of different visualizations over a common
database. Others are developing visualization frameworks
that make developing and using software visualizations
easier. Others are undertaking a variety of experiments
that measure the value of software visualization for
different tasks.
Since complexity in software systems is growing
significantly, purely textual means often are too
overwhelming for the programmer. Software visualization
however allows us to more easily understand and reverse
engineer these systems. Another challenge of analyzing
these more complex systems is to find performance
bottlenecks. The focus of optimization used to be
microscopic, such as making a while loop run 10% faster.
Nowadays, optimization typically involves understanding
long paths across components that are also repetitive. The
gains of such optimizations typically can make
transactions multiple times faster.
Modern languages take away some of the burden of
memory management by offering automatic garbage
collection. However, this feature can be a double-edged
sword. Programmers may get the false impression that
they do not have to worry about memory at all. Practice
shows that memory leaks in these programs can be very
difficult to fix. Visualizing the data structures of a
program in an intelligent way is crucial to solve these
problems.
Algorithm animation is yet another example of software
visualization that has proven to be very useful in teaching
computer algorithms. By giving concrete depictions to the
abstractions and operations of algorithms, algorithm

animation makes the algorithms more concrete and
meaningful.

5. Need for a common forum

While significant work is being done by a variety of
researchers, there is no common forum for presenting this
work and for researchers to obtain an understanding of
what others are doing in the field. Work on software
visualization tends to be a small part of a variety of
different conferences, such as IEEE Visual Languages,
ACM PASTE workshop, ICSE, IEEE Visualization, and
IEEE Information Visualization. However, it is not the
focus of any of these. The result is that the work on
visualization is scattered, many researchers do not know
what others are doing, and there is little sharing of
information and software. This workshop on software
visualization provides the necessary common forum for
researchers.

References

[l] Stasko, John, Domingue, John, Brown, Marc H. and
Price, Blaine A. (editors), Sofhyare Visualization:
Programming as a Multimedia Experience, MIT Press,
Cambridge, MA, 1998.

759

