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Corrections to “Basins of Attraction in Fully Asynchronous
Discrete-Time Discrete-State Dynamic Networks”

Jacques M. Bahi and Sylvain Contassot-Vivier

Abstract—This paper brings a correction to the formulation of the
basins of fixed-point states of fully asynchronous discrete-time dis-
crete-state dynamic networks presented in our paper that appeared in the
IEEE TRANSACTIONS ON NEURAL NETWORKS, vol. 17, no. 2, pp. 397-408,
March 2006. In our subsequent works on totally asynchronous systems,
we have discovered that the formulation given in that previous paper
lacks an additional condition. We present in this paper why the previous
formulation is incomplete and give the correct formulation.

Index Terms—Asynchronism, convergence, networks dynamic.

I. INTRODUCTION

The result presented in our previous paper [1] deals with the
basins of attraction of fully asynchronous discrete-time discrete-state
networks. Such networks are usually described as a collection of n
neurons such that each neuron ¢ takes a finite number of discrete
values. If the value of neuron ¢ is noted x;, i € {1,...,n}, the
global state of the system is then described by z = (xy,...,x, ) and
the set of global states is

where FE; is the finite set of values which can be taken by neuron ¢. The
dynamic of the network is given by the activation function f such that

f('r) = (fl(w)v fQ(l')v' . '3f“($))

where each f; is the activation function of neuron ¢. Those f; are sup-
posed to be general and are not restricted to threshold networks. The
global state of the network at the discrete time ¢ (also called iteration
t) is denoted by

A global state ™ for which f(x*) = 2" is called a fixed point of the
system and its associated basin of attraction is the set of initial states
of the network which surely lead to it. Furthermore, the most general
execution mode of those networks is the fully asynchronous one. That
model implies the definition of the strategy .J(¢), which corresponds
to the set of neurons updated at time ¢, as well as the state of neuron j
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available for neuron i at time : a’(t) = t — ri(t) < t, where r}()
denotes the delay of neuron j with respect to neuron ¢. The dynamic
of the system is then described by Algorithm 1, in which it is generally
assumed (see [2]) that V#, ai(t) = t (the delay ri(t) = 0) for all
i €{l,...,n}.

Algorithm 1: Asynchronous iteration

Given an initial state +° = (29,...,25)

for each time stept = 0,1, ... do

for each neuron¢ = 1,....n do
ifi € J(t) then
2t = f,;(x?i(f')v e, xifl(t))
else
2 = g
end if
end for

end for

Also, the following conditions are assumed to ensure a representative
evolution.

Definition 1.1: Let us consider an n-neuron network and the
strategy J = {J(t) }+en, a sequence of subsets of the n neurons. For

e{1,....,n},let {ai(2),...,a} (t)}en be a sequence of N, such
that:

cl) al(t) =t —ri(t)with0 < ri(t) < t,75(t) being the delay of

neuron j according to neuron ¢ at the discrete time ¢.

€2) Vi,j € {1,...,n}, limy—o a}(t) = oo, ie., although the

delays associated with neuron ¢ are unbounded, they follow the
evolution of the system.

c3) No neuron is neglected by the updating rule. This condition

is called fair sampling condition and is equivalent to:
Vie{l,....n}|{t.i € J(t)}]| = 0.

As pointed out in [1], the description of the complete basins of at-
traction of the fixed points of such systems is a critical step towards the
complete understanding and control of their behavior. In that previous
paper, we proposed a formulation of the attraction basin in fully asyn-
chronous mode of a fixed point of a given network whose activation
function is known. Unfortunately, in our subsequent works, we have
discovered that our formulation is not restrictive enough and an addi-
tional condition is necessary.

In the following section, we briefly recall the formulation of the
basin of a fixed point given in [1]. In Section III, the problem with
that formulation is described. Then, the new formulation is presented
in Section IV.

II. PREVIOUS DESCRIPTION OF THE BASINS OF ATTRACTION

In this section, we recall the result presented in [1] and the reader
should refer to that paper for further details.

Definition 2.1: The asynchronous sets sequence (S;(x™),
0 < i < |E|) of a fully asynchronous network associated to the
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set of states E/ and the activation function f is recursively defined as
follows:

So(x") ={z"}
Si(x") = {l €E/xd U Si(x"),x & Cycle(E, f),

let A=CP t:v, FaN\ pCyc(z, E, f)
i—1
VyeAyel]Si@)

j=0

}, 0<i<]|E|

In this definition, Cycle( E, f) describes the set of states which be-
long to a cycle in chaotic mode. Such cycles are defined according to
pseudoperiods (see [3]), which corresponds to a time interval in which
all the neurons of the system are updated at least one time. Hence,
a state x is in Cycle(E, f) if there exists a sequence of successive
global states of the system containing a pseudoperiod and starting and
ending with state x. It can be noticed that this formulation also includes
the fixed points of the system since they form a cycle of length one.
Symmetrically, the set p_Cyc(x, F, f) describes the pseudocycles con-
taining the state x. Pseudocycles are not actual cycles as the sequence
of states involved in a pseudocycle does not induce the presence of any
pseudoperiod. Thus, they do not correspond to an actual evolution of
the system but rather to a transient behavior. Finally, C' P(x, y) is the
set of vectors obtained by the Cartesian product of vectors « and y
from E

CP(zx,y) = H;iv where {ZL' = }.EL}W

zZi =i, Vi
=1 z Z/JZ}W

ifx; =y,
if x; # yi.

Theorem 2.2: The basin of a fixed point 2™ [denoted by C'V (2™)]
of a fully asynchronous system can be described by the union of the
corresponding asynchronous sets sequence.

Theorem 2.2 formulates that the basin of a fixed point »™ can be re-
cursively built by using the property that a state x is in the basin of z* if
and only if all its possible successors at the next iteration, deduced from
the differences between = and its image f(x), are also in that basin. In
the next section, we show why this property is correct in the chaotic
mode (without delays) but not sufficient in the fully asynchronous one.

III. PROBLEM IN THE PREVIOUS FORMULATION

The problem with Definition 2.2 comes from the fact that in some
cases, the delays may imply that the updating of a neuron uses a global
state of the system which has never been actually reached. Let us con-
sider the example of a three-neurons boolean system whose activation
function is given in Fig. 1(a) and the particular asynchronous execution
given in Fig. 1(b). It can be seen that at times 5 and 6, x2 and x, are,
respectively, updated using the global state (0,0, 1), which has never
been actually taken by the system in the previous times. It is interesting
to note that such a behavior is specifically due to the delays between
the neurons of the system induced by the fully asynchronous mode.

In that context, the updating of x; leads to a global state of the
form (1, ., .) which is not reachable from (0, 1, 1) in sequential or even
chaotic modes. Moreover, if the images by f of all the states of the form
(1,.,.) are of the form (1, ., .), which is the case in our example, then it
is not possible to reach back a state of the form (0, ., .) since there is no
delay between the first neuron and itself. This implies on the one hand
that the state (0, 1, 1) does not always lead to the fixed point (0,0, 0),
and on the other hand, that it does not belong to any cycle. However, our
previous formulation gives So(000) = {000} and S1(000) = {010}
and since C'P(011, f(011)) = {010} C U}:o S5;(000), we have
S2(000) = {011} although the state (0,1, 1) should not be included
in C'V(000).
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Fig. 1. (a) Activation function of a three-neurons boolean system. The vertices
are the global states of the system (1, 22, 3 ) and the arrows are the transitions.
(b) Example of its fully asynchronous evolution at the bottom. The numbers
between parentheses indicate the delays used for the updating of the neuron
when it occurs, and the * means any delay.

This is why only considering the difference between x and f(z) to
deduce all the possible successors of a state is not sufficient in the
fully asynchronous mode. The problem in Definition 2.2 comes pre-
cisely from not taking into account the possible successors generated
by some particular configurations of delays. Thus, although Definition
2.2 is correct for all systems in chaotic mode, it is only correct for some
systems in fully asynchronous mode, but not all. In some fully asyn-
chronous systems, it may include more states than the actual basin of
attraction of a given fixed point. That problem has not been detected
in the proof of Theorem 3.2 given in [1] because the condition (A.3) is
not restrictive enough. That condition ensures that any state in C'V (™)
may lead to =™ in the asynchronous mode but does not prevent that
those states may also lead to other fixed points or cycles.

Thus, to obtain a correct formulation of the basins for any fully asyn-
chronous system, it is necessary to take into account the possible suc-
cessors induced by the updatings of each neuron performed with any
possible configuration of delays.

IV. NEW FORMULATION

The new formulation does not imply any modification of the condi-
tions in the previous formulation of the basin but only adds a new one
whose role is to discard the spurious states which do not actually lead
to the fixed point «* for some configurations of delays. That additional
condition requires three new definitions.

Definition 4.1: For a given state x, the set of states reachable from
2 in the synchronous mode is defined by

SP(x) = {y/Elk € N such that f*(z) = y}

where f°(x) = x. The name S P stands for sequential path.
Definition 4.2: For a given state 2 and a fixed point #* such that
x* € SP(x), the set DI (x,2™) is defined as follows:

DIk(I7T*)
ifi =k

otherwise.

17/ ey
_H{{yi/y:(y1a"'7yi7"'ﬂy7’)ESP(I)}W
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It represents the set of possible vectors that may be used to update the
component & once the state 2™ has been reached, starting from state .
DI stands for differential images.

Definition 4.3: For a given state x and a fixed point z* such that
2" € SP(x), the set AE(x, 2™) is defined by

AE(z,2") = [[{£i(y)/y € DLi(x,2")} .

=1

That last definition describes the set of states which correspond to the
possible asynchronous evolutions of the system initialized with x, after
having reached »* before the convergence. It has to be pointed out that
in the asynchronous mode, other states may be reached after a fixed
point due to the delays.

Those definitions allow us to give the new formulation of the basin
of attraction of a given fixed point z*.

Definition 4.4: Let us define the set CV (2™, E, f) of a fully asyn-
chronous network associated to the set of states E and the activation
function f as the union of the asynchronous sets sequence S;(z*),0 <
i < |E)|, recursively defined by

Sola*)={a"}

Si(a*)= {x € E/x g | Si(@"),xgCycle(E, f),

j=0

let A=C'P (. f(2)) \ p-Cyc(a. E. f)

i—1 i—1
Vyed,yel ] Si(@"),VyeAB@. 2. ye | J sjcv*)},
7=0 1=0

0<i<|E|

Theorem 4.5: The set C'V(z*, E, f) represents the basin of the
fixed point ™ of a fully asynchronous network with the set of states
FE and the activation function f.

It should be noted that in [1], the word eventually in Theorem 3.2
is to be replaced by the word potentially and, as the last two subcases
may not be distinct, the word either should be suppressed.

A. Proof

The major part of the proof of Theorem 4.5 is common to the one
of Theorem 3.2 in our initial paper [1]. For clarity, we recall here the
different steps of that proof.

A) Vo € CV(z™), 2 == 2

1) C'V(x*) does not contain any other fixed point than z*;
2) C'V(2™) does not contain any element of a cycle other than

.
a”

3) Ve € CV(™), a0 % 2.
B) Vy & CV(a"),y F=a™.
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The only difference takes place in condition (A.3). Only this modi-
fied condition is described here and the reader should refer to [1] to get
more details on the other parts of the proof.

The new condition (A.3) is as follows.

(A3) Ve € C'V(a™), the set AI(x) of states, different from x, reached
by any asynchronous evolution of the system starting from x is
included in C'V (z*).

Proof of (A.3): We proceed by recurrence on the S;(x™) subsets of
CV(2"). The condition (A.3) is obvious for z € Sp(z™) = {z*}.
Let us consider that the condition (A.3) is verified for all the subsets
Si(x*),0 < i < k, and show that the condition is still verified for the
subset Sg+1(z").

Let us consider x € Si41(x™). The proof of the previous formu-
lation has already shown that « is actually in C'V (2™) when there is
no delay. So, we only focus here on the implication of the presence of
delays. As already mentioned, it induces different possible evolutions
after having reached =* when the system is initialized with x. As all
those possible evolutions are contained in AE(x, ™) and, by defini-
tion, that set is included in the previous S;(z™), this means that all the
subsequent evolutions will surely converge toward 2.

On the other hand, if we consider z ¢ C'V (z*), this implies that ei-
ther « is in a cycle, or it leads to different fixed points from an execution
to the other. In the first case, the condition on Cycle( E, f) in Defini-
tion 4.4 prevents  from being included in any S;(z*). In the second
case, the fact that # may lead to different fixed points is detected in
the set AE(x, »™) which would then contain states outside C'V (x™),
and thus outside any S;(«™). In such a case, = could not be included in
CV(x™).

V. CONCLUSION

The lack of another restraining condition has been pointed out in
the theoretical formulation of the basins of attraction given in [1]. That
former version is correct in the case of chaotic networks without any
delays but is not sufficient in the more general case of totally asyn-
chronous networks. The source of the problem has been identified and
illustrated by a counterexample. It comes from the influence of the his-
tory of the system evolution on its current evolution by implying up-
datings of neurons with global states which have never actually been
reached by the system. Finally, a new theoretical formulation has been
given and proved which fixes that problem.
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