
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999 985

Guest Editorial
Vapnik–Chervonenkis (VC) Learning

Theory and Its Applications

Abstract— Statistical learning theory (aka Vapnik–Chervo-
nenkis or VC theory) is a general mathematical framework for
estimating dependencies from the empirical data. Recent interest
in VC-theory has been motivated by the practical applications of
a new constructive learning methodology called support vector
machines (SVM’s) originating from VC theory. This special
issue illustrates the growing importance of VC theory for the
field of predictive learning from data.

Index Terms—Predictive learning, statistical estimation, sup-
port vector machines, VC theory.

M ANY neural-network applications deal with the prob-
lem of predictive learning, i.e., estimating an unknown

dependency from known observations (or training samples).
The same problem is also addressed in other fields such as pat-
tern recognition and statistics. Once the dependency has been
estimated, it can be used to predict future data. The problem of
predictive learning is inherently difficult (ill-posed), due to the
general lack of knowledge about the underlying dependency
and the finiteness of available (training) data. However, with
the recent growth of computers and database technology,
the amount of available data has increased dramatically, and
the problem of predictive learning has become increasingly
important.

Currently there is no single universally accepted theoretical
framework for predictive learning. Therefore, we will briefly
overview several major approaches for predictive learning. We
distinguish three main approaches.

• Classical (parametric) statistical estimation. Under this
approach, the parametric form of the dependency is
known (up to the value of its parameters). Then the
training data is used to estimate the parameter values.
This approach assumes stronga priori knowledge about
the unknown dependency. Unfortunately, for many real-
world problems this parametric paradigm fails to work.
First, it is not practically feasible to extend the paramet-
ric approach to high-dimensional settings, since a huge
number of training samples are required for accurate
estimation. This is known as the curse-of-dimensionality.
Second, the parametric approach is heavily based on the
assumption that the underlying statistical distribution is
known, whereas many real-life problems do not satisfy
this assumption.

• Empirical nonlinear methods, such as artificial neural
networks and flexible statistical methods were developed
in 1980’s to address the shortcomings of the parametric

Publisher Item Identifier S 1045-9227(99)08541-0.

approach. These methods enable construction of nonlinear
models from the available data, without making strong
assumptions about the unknown dependency. However,
these methods lack unified mathematical theory, and are
usually motivated by biological arguments (as in the case
of artificial neural networks) or by informal common-
sense arguments (as flexible statistical methods, such
as projection pursuit or multivariate adaptive regression
splines).

• Statistical learning theory developed in the late 1960’s [1]
is a theory for nonparametric (distribution-free) depen-
dency estimation with finite data. This theory is based on
the theoretical analysis of the empirical risk minimization
(ERM) inductive principle. The ERM principle refers
to a common-sense procedure used in neural network
training, where the unknown dependency is estimated
via minimization of the average training error (called
empirical risk) with respect to model parameters (neural-
network weights). More generally, ERM is an approach
for dependency estimation based on the minimization of
the training error for a set of parametric functions (or
approximating functions) such as an multilayer perceptron
(MLP) network. The Vapnik–Cervonenkis (VC) theory
derives necessary and sufficient conditions for consis-
tency and fast rate of convergence of the ERM principle.
These conditions (as most results of VC theory) are
distribution-free.

Most theoretical treatments of adaptive nonlinear estimation
methods (such as neural networks) follow the classical para-
metric framework. However, this (classical) approach appears
fundamentally flawed when applied to many practical settings
with finite high-dimensional data. For instance, classical no-
tions of complexity (i.e., the number of free parameters or
degrees of freedom) fail to account for successful applications
of artificial neural networks with a huge number of parameters
(network weights) that can successfully generalize with finite
training data. In contrast, statistical learning theory uses the so-
called VC dimension as a measure of complexity (capacity)
of a set of approximating functions. In the simplest case of
linear models the VC dimension coincides with the number
of free parameters; however the VC dimension of nonlinear
estimators differs from the number of parameters.

Until very recently, VC theory has not been widely applied
in practice, because its original results presented in [1] and
[2] are mainly of a theoretical and conceptual nature. Re-
cent developments [3] resulted in the constructive learning
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methodology called support vector machines (SVM’s). The
SVM method enables a high level of generalization with
finite high-dimensional data, and hence it is very attractive
for many challenging real-world applications. However, VC
theory has many practical and conceptual implications beyond
SVM’s. We believe that VC theory can be used as a theoretical
and conceptual framework for neural-network and statistical
methods for learning dependencies from data. There is still
much work needed to bridge the gap between theory and prac-
tical applications; however the success of SVM applications
show potential advantages of developing constructive learning
methods based on VC theory.

This special issue attracted 21 submitted papers from North
America, Asia, and Europe. In spite of the very high quality
of most submissions, only eight papers have been selected for
inclusion in the special issue due to real-time constraints. The
issue contains one survey paper on VC theory by Vapnik and
eight papers describing various extensions and applications
of SVM’s. The composition of the special issue may give
an unintended impression that SVM’s represent the only
practically useful part of VC theory. However, this is definitely
not the case. An interested reader can refer to [3]–[6] for a
more detailed discussion of VC theory and its relationship to
statistical and neural network methods. In addition, references
[5], [7], and [8] describe application of VC generalization
bounds for model complexity control.

All the papers in this special issue are organized in three
parts: theory and concepts, SVM algorithm implementations,
and SVM applications, as described next.

I. THEORY AND CONCEPTS

“An Overview of Statistical Learning Theory” by Vapnik
provides a conceptual introduction to statistical learning the-
ory. The main theme of this paper is to show how theoretical
results have lead to practical learning algorithms. The article
begins with a description of the learning problem which
mathematically defines the problem scope. A general problem
statement is provided that applies for the three commonly
described learning problems: classification, regression, and
density estimation. The general learning problem is described
in terms of minimizing a risk functional for an unknown
distribution. The difficulty is that this must be done based
on the observed data (the distribution is not known). Most
classical approaches for solving this problem apply the ERM
principle. This principle states that we should minimize the
empirical risk (i.e., training error) as a proxy for the true
risk functional. The empirical risk minimization principle is
very general and encompasses the classical approaches for
solving learning problems, such as the least squares method in
regression and the maximum likelihood method for density es-
timation. The article focuses on addressing the main questions
of learning theory: 1) consistency and convergence properties
of the empirical risk minimization principle; 2) controlling the
generalization ability; and 3) constructing learning algorithms.
An analytical and conceptual comparison is made between the
support vector machine and sigmoid function-based multilayer
perceptrons optimized via backpropagation.

“Input Space Versus Feature Space in Kernel-Based Meth-
ods” by Scḧolkopf et al. delves into the topic of feature spaces
for support vector machines. It begins with a description of
the geometry of feature spaces and a relevant mathematical
formulation. The paper then discusses three important issues
concerning kernel functions: operations in the feature space,
their capacity (VC-dimension), and geometrical properties.
Given a vector in the feature space, a method for determining
an exact or approximate preimage in the input space is de-
scribed. Preimages may be useful for denoising, compression,
and feature interpretation. From preimages, the paper moves
to a slightly more general problem: that of finding a reduced
set expansions (i.e., an approximation using a small number
of vectors in the input space) for a vector in the feature space.
Reduced set expansion can be used to reduce the amount
of computation required for predictions made using support
vector machines.

“Moderating the Outputs of Support Vector Machine Clas-
sifiers” by Kwok extends the use of moderated outputs to the
support vector machine. This is done by taking advantage of
a relationship between the Bayesian evidence framework and
the SVM. The moderated outputs provide an approximation
to the posterior class probability, allowing the application of
meaningful rejection thresholds to SVM classifiers.

II. SUPPORT VECTOR MACHINE

ALGORITHM IMPLEMENTATIONS

“Successive Overrelaxation for Support Vector Machines”
by Mangasarian and Musicant describes an alternative opti-
mization approach for support vector classifiers with linear
kernels. The optimization approach operates on one data point
at a time making it applicable for huge data sets (empirical
results for 10 000 000 points are shown). The algorithm con-
verges linearly to a solution. The algorithm is compared to
the sequential minimal optimization (SMO) algorithm [9] in a
extensive empirical section.

“Simple and Robust Methods for Support Vector Expan-
sions” by Matteraet al. describes a generalization of the
support vector machine which provides a sparse solution
for a linear system of equations. The paper describes two
applications of sparse solutions; that of data compression
and regression estimation. Experimental comparisons of the
proposed SV approach and an alternative cross-correlation
approach are reported.

III. SUPPORTVECTOR MACHINE APPLICATIONS

“Support Vector Machines for Spam Characterization” by
Drucker et al. provides an illustrative application example
of classification using support vector machines. The paper
describes some of the engineering design choices made in
the development of the classifier. The support vector machine
is compared to three other classification algorithms: Ripper,
Rocchio, and boosting decision trees. Finally an analysis and
commentary of the empirical results is presented.

In “SVM’s for Histogram-Based Image Classification,”
Chapelle et al. apply support vector machines to a high-
dimensional image classification task. The paper describes a
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method for representing images using a histogram of the color
components. Support vector machines with linear, polynomial
and radial basis function kernels are compared to anearest
neighbor technique.

“Fusion of Face and Speech Data for Person Identity Ver-
ification” by Ben-Yacoubet al. describes the application of
support vector machines to problems in person identity authen-
tication. The authentication is based on two modalities: face
and speech. Results are presented for a number of different
binary classification schemes.
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