
When Pb < 10- 3, we may use the asymptotic approximation

erfc (x) _ [1/(N/2 x)] exp (-x2/2). (27)

Using (27) in both sides of (26) and taking the natural loga-
rithm of both sides, we obtain

na- [(E -Eb)INO ] = (1I/2)n(EIEb). (28)

We now approximate the right-hand side of (28) by the first
term in a Taylor series expansion, that is, we use

ln (Eb/Eb) = ln [1 b(E/Eb) 1)]

-(E E )- 1,

which is reasonably accurate if

( -/Eb)-1 ' 1. (30)

Substituting (29) into (28) and employing the result in (24),
we obtain the final expression,

D = 10 log 0 (1 + (ln a)/(Eb/NO) + 1/2)]. (31)

In Fig. 4 of the previous paper,' the degradation is plot-
ted for n = 60. The values ofD from (31) are found to
agree quite well with the plot.

It is easy to verify that (31) may also be used to calculate
the degradation in word error rate. In this case, we replace
(23) by

[[n+k-2-2-k(n -k--- 2)] k, n>k
a =

t[n +k-2 + 2-(n 3 k n < k. (32)

A comparison between (17) and (10) indicates that no
member of the cryptographic ensemble suffers significantly
more word error rate degradation than the ensemble average
when n = 60 and k = 10. This statement is true for most
practical values of n, k, and Pb. However, a comparison of
(19) and (11) reveals the possibility that one or more
members of the cryptographic ensemble may endure con-
siderably greater bit error rate degradation than the ensem-
ble average when n = 60. Substituting a = n = 60 into (22),
it is seen that a member of the ensemble may have an extra
degradation ranging from approximately 0.3 dB to 0.2 dB as
Pb varies from 10- 3 to 10- 6.

Section II I

The statements following (28) of the previous paper
must be modified. For a cryptographic system with a dif-
ferential detector, the expressions for P(w/tb = i) and
P(w/tb = k) are unchanged asymptotically, except when
tb = n = 1. In this case, P(w/tb = n = 1) = 1 because of the
initial assumption.

Using the same methods previously employed, it follows
that the asymptotic formulas for word and bit error rates of
the differential cryptographic system are

r tn±+k-1-2-k(n-k1-)]Pb, n>k

Pcb = (n+k-±+2-n)Pb, 1<n-k

L (k + l)Pb, n= 1 (33)

p =1[(n+2)12)]Pb, n>I
cb 2PV n = 1. (34)

A sufficient condition for the validity of these equations is
given by (8) of the previous paper.

DON J. TORRIERI
Naval Research Laboratory

(29) Washington, D.C. 20375

Discussion of "A Note on CEP's"l

The above recent correspondence' noted two approxi-
mations for CEP calculations; the first was concerned with
an off-set (biased) circular Gaussian distribution and the
second with a nonbiased elliptical Gaussian distribution.
The purpose of this correspondence is to present an analytic
approximation, which appears to be not well known, that
handles both of these cases, along with a biased noncircular
Gaussian distribution. The approximation may be utilized
to handle a biased three-dimensional nonvitcular Gaussian
case. The proof, given in a paper by Grubbs,2 is based on a
moment-matching technique of the probability density
function for R2 = Xl ± Al to an approximation chi-
squared variate, followed by a Wilson-Hilferty transforma-
tion to a normal variate.

For X, and X2 Gaussian distributed with means b,, b2
and variances a2, a2, the distribution function for R =
V./iLTT72~is given by determining

FR(r)=Prob [X+X2 6 r2l.

The analytic approximation to this distribution function is
given by

(1)FR(r)-(1/y4) ff(r) e-x212/2dx

where

(r) = {(r2/m)'13 - [1 - V/(9m2)] } [V/(9m2)] 1/2 (2)

with
2 2 2 2m=aO+±2 +bl +b2

V 2(a+ a2) + 4(a6b, ±a+b)2
1 J. Bell, IEEE Trans. Aerospace and Electronic System,

vol. AES-9, pp. 111-112, January 1973.
2F.E. Grubbs, "Approximate Circular and noncircular

offset probabilities of hilting," Operations Research, vol. 12,
pp. 51-6 1, January-February 1964.

Manuscript received January 23, 1974.
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(1) CEP
=

3

4 22
= 24a + b

V = 4 a 4+ 4 a2b2

(1XA

ljAC

2

NORMA4IZED OVFF-SF SAS
Fig. 1.

To obtain the desired CEP implies that f(CEP) = 0. Solving
(2) yields

CEP = [I-V/(9m2)j3. (3)

Fig. 1 illustrates the aypproximation given by (3) for the
circular case; i.e., a1 = a2 =a with b1 = and b2/a = 0,1,

2, 3,.
The extension to the three-dimensional case for SEP cal-

culation is clear. It should be noted that (1) allows for the
computation of any r at any desired probability level, and
may be easily programmed utilizing one of the several
numerical approximations for the integral of the normal
density function. There are no constraints on the off-set
values and, as such, (1) is extremely general. The one limi-

tation found in practice is that the relative accuracy for
probabflities less than about 0.10 may be low, and so the
usefulness of (1) for this range of probability calculations is
dubious.

R.C. TERZIAN
TRW Systems Group
Redando Beach, Calif. 90278

The Moon as Source For G/T Measurements

Abstract

For large-aperture antennas, it is customary to utilize radio stars in

order to determine the receiving gain to temperature ratio. In the

case of small-aperture antennas, which not only have reduced gain

Manuscript received February 28, 1974.

but usually higher system noise temperature as well, the y factors

obtained from the radio star measurements are so small that the

measurement error is intolerable. The moon, on the other hand,

provides a power flux density higher by at least one order of magni-

tude compared to the strongest radio star, and the resulting y

factors are usable. GIT ratios determined from moon measurements

agree well with expected values.

Introduction

The need for calibrated RF sources for the gain to tem-
perature ratio measurement of the medium size antennas
operating in the common carrier band calls for an inves-
tigation regarding the usefulness of the moon for such a

purpose. It may appear on first glance, that the moon is a

very undesirable source because of extended source size,
the lunar phases, and finite time-varying distance. Yet, if
proper account has been taken for the time-dependent
variables, and if correction factors have been applied to
compensate for extended source size, then the resulting
GIT ratio is reasonably accurate. The degree of accuracy

depends on how precisely the true distance from the station
location to the moon at the time of test has been calculated
and/or how well the gain pattern of the antenna under test
is known. It is estimated and shown by comparison with
independent gain and temperature measurements that the
maximum relative error is within ± 0.25 dB.

Moon's Surface Temperature

The moon's radiation is indirect. The moon reradiates
solar energy. Its temperature changes with lunar phases
according to
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