
Joint Integrated Probabilistic Data Association:
JIPDA

A new recursive filter for multi-target tracking in clutter is

presented. Multiple tracks may share the same measurement(s).

Joint events are formed by creating all possible combinations

of track-measurement assignments and the probabilities for

these joint events are calculated. The expressions for the joint

event probabilities incorporate the probabilities of target

existence of individual tracks, an efficient approximation for

the cluster volume and a priori probability of the number of

clutter measurements in each cluster. From these probabilities the

data association and target existence probabilities of individual

tracks are obtained, which allows track state update and false

track discrimination. A simulation study is presented to show the

effectiveness of this approach.

I. INTRODUCTION

In many radar, sonar, and other target tracking
applications, measurements (detections) may originate
from targets, whose existence and trajectory are
generally not known a priori, and also from other
random sources, usually termed clutter. Target
measurements are present in each scan with a certain
probability of detection. In a multi-target situation,
the measurements may have also originated from
one of various targets. Automatic tracking in this
environment initiates tracks using both target and
clutter measurements. If a track follows a target, we
call it a true track otherwise we call it a false track.
To discriminate between true and false tracks, a track
quality measure is necessary.
This paper presents the joint integrated

probabilistic data association (JIPDAF) filter for
multi-target tracking in a cluttered environment.
JIPDAF contains recursive expressions for the track
quality measure and data association coefficients.
JIPDAF and all other algorithms mentioned here
use the probabilistic data association (PDA) [3]
approximation, which uses all validated measurements
of the track being updated and approximates the track
state estimate probability density function (pdf) with
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a single Gaussian pdf. JIPDAF, in a manner similar
to integrated PDAF (IPDAF) [9, 12], recursively
calculates the probability of target existence for the
track quality measure. Target existence is modeled
as a Markov process, with two propagation models,
Markov Chain One and Markov Chain Two. When
applying JIPDAF to an isolated track, JIPDAF
becomes IPDAF and in this sense it is a multi-target
generalization of IPDAF. JIPDAF and IPDAF
integrate seamlessly in the sense that a track can be
processed by either as the circumstances dictate, with
no transition effects when switching from one to the
other.
JIPDAF handles the possible presence of multiple

targets in a joint PDAF (JPDAF) [6] manner. The
JPDAF algorithm allows for the possibility that a
measurement may have originated from one of a
number of candidate tracks or from clutter. In each
scan, JPDAF partitions tracks into clusters, where
tracks in each cluster have common measurements.
It generates all possible joint measurement to track
assignments, which are called joint events, and
calculates the a posteriori probability of each joint
event. From these probabilities, the data association
coefficients of each track are calculated and then used
to update the track estimates. JIPDAF enumerates
the same joint events as JPDAF and adds the target
existence concept to the JPDAF. When no a priori
information on clutter measurement density is
available, nonparametric JPDAF uses the volume of
the whole surveillance area and the number of all
measurements present in its equations. Nonparametric
JIPDAF uses an efficient approximation of the volume
of the cluster area and estimates the number of
clutter measurements within the cluster. Parametric
JPDAF assumes a uniform clutter density with an
a priori known clutter measurement density, whereas
parametric JIPDAF, in the manner of IPDA-MAP
[11], allows use of spatially nonuniform a priori
known clutter measurement density [11, 15]. In the
manner of IPDA-MAP, JIPDA-MAP is used to denote
the parametric form of JIPDAF.
Integrated JPDAF (IJPDAF) [4] is also an

algorithm for multi-target tracking in clutter. IJPDAF
provides a measure of track quality and handles
multiple target measurement origin possibility by
creating all possible joint events. The measure of track
quality is calculated in a manner similar to EB-PDAF
[5, 8]. It is assumed that a target exists ‘behind’ each
track, and the probability of perceivability of the
target is recursively calculated as the track quality
measure. The propagation model for the perceivability
is equivalent to Markov Chain One model for target
existence propagation, no Markov Chain Two model
is identified. The number of joint events of IJPDA is
much larger than in J(I)PDA due to nonperceivable
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target possibility. Apart from the fact that it also
has JPDA parametric and nonparametric limitations
described above, the main difference between JIPDAF
and IJPDAF is that JIPDAF calculates the track
state estimate pdf conditioned on target existence,
whereas IJPDAF track state estimate depends on the
probability of target perceivability, in the manner of
generalized pseudo-Bayesian estimator of the first
order (GPB1) [2].
Section II outlines categories of JIPDAF, and

Section III defines the cluster. The joint events and
associated a posteriori probabilities are presented
in Section IV. Simulation is used in Section V to
compare JIPDAF with IPDAF, EB-PDAF and IJPDAF
algorithms in crossing targets situations in a dense and
nonuniform clutter, followed by concluding remarks
in Section VI. The nonparametric JIPDAF with
Markov Chain One target existence model derivation
is presented in the Appendix.1

II. VARIOUS CATEGORIES OF JIPDAF

Let zk denote the set of measurements at scan
k, and let zk,i denote the ith measurement of zk,
with Zk = zk [Zk¡1 denoting the set of sets of
measurements up to and including scan k. At any
scan k, and based on data Zl, l · k, each track t is
described by a state estimate x̂tkjl, an error covariance
matrix P̂tkjl and a probability of target existence. We
model the target existence propagation as a Markov
chain, and examine two possible cases. The first,
Markov Chain One, has two states, the target may
exist and is detectable with a known probability of
detection PtD (event Â

t
k), or the target may not exist.

This model is first used in [1] and is given by

PfÂtkg= p(1)11PfÂtk¡1g+p(1)21 (1¡PfÂtk¡1g): (1)

The Markov Chain Two model [9, 12] distinguishes
three possibilities. The first, denoted by Ât,dk , is that
the target exists at scan k and is detectable (term also
used in IMM-PDA (Interacting Multiple Model PDA)
[1] in a similar context); i.e. the target measurement is
present in zk with a known probability of detection
PtD. The second, denoted by Â

t,n
k , is that the target

exists in scan k but is not detectable, i.e. the target
measurement is present in zk with probability zero.
The third possibility is that the target does not exist at
scan k. Possible uses of this model are discussed in
[9, 12, 14]. This model is given by

PfÂt,dk g= p(2)11PfÂt,dk¡1g+p(2)21PfÂt,nk¡1g+p(2)31 (1¡PfÂtk¡1g)
(2)

1Parts of this paper have appeared as [10], however this paper
contains considerable extensions.

PfÂt,nk g= p(2)12PfÂt,dk¡1g+p(2)22PfÂt,nk¡1g+p(2)32 (1¡PfÂtk¡1g)
(3)

PfÂtkg= PfÂt,dk g+PfÂt,nk g: (4)

For both models above, the Markov chain coefficients
must satisfy

0· p(1)11 ,p(1)21 ,p(2)11 +p(2)12 ,p(2)21 +p(2)22 ,p(2)31 +p(2)32 · 1:
(5)

The track t update on scan k starts with the track
predicted state x̂tkjk¡1, and state covariance matrix

P̂tkjk¡1, and the a priori probability PfÂtk j Zk¡1g for
Markov Chain One or PfÂt,dk j Zk¡1g and PfÂt,nk j Zk¡1g
for Markov Chain Two. The estimation algorithm
provides the a priori pdf of the predicted measurement
position ft(z j Zk¡1). The expected measurement
position ẑtkjk¡1 is calculated and a selection window
(validation gate) is defined around ẑtkjk¡1 such that
the probability of detected target measurement
being selected is PtW. Let V

t
k denote the volume of

the window at scan k. If pt(z j Zk¡1) denotes the
a priori pdf for the predicted measurement position,
conditioned on the measurements being selected,
then

PtW =
Z
Vt
k

ft(z j Zk¡1)dz (6)

pt(z j Zk¡1) =
8<:
1
PtW
ft(z j Zk¡1), z 2 Vtk

0, z =2 Vtk
: (7)

No a priori knowledge of clutter measurement density
results in the nonparametric version of JIPDAF. If
we assume known clutter measurement density in the
surveillance region, we obtain the parametric version
of JIPDAF (JIPDA-MAP).

III. CLUSTER OVERVIEW

In each scan, tracks are partitioned into clusters
[6]. A cluster is a set of tracks which share no
measurements with any track not belonging to the
cluster. A trivial cluster is the set of all the tracks,
for computational reasons each cluster should contain
the minimal set conforming to the definition. Let T
denote the number of the cluster tracks, let mk and
mtk denote the total number of cluster measurements
and the number of measurements in the window of
track t, respectively. For Markov Chain One model,
the a priori estimated number of clutter measurements
m̂k in the cluster is

m̂k =
mkX
i=1

Ã
TY
t=1

µ
1¡ P

t
DP

t
WPfÂtk j Zk¡1g

mtk

¶¹(k,t,i)!
(8)
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where ¹(k, t, i) is one if measurement i is in the
window of track t at scan k and zero otherwise.
For Markov Chain Two, PfÂt,dk j Zk¡1g replaces
PfÂtk j Zk¡1g. The cluster volume Vk, is the union of
individual track windows. The approximate expression
for Vk used in JIPDAF is

Vk =max

Ã
mkPT
t=1m

t
k

TX
t=1

Vtk ,maxt
(Vtk )

!
(9)

where maxt(V
t
k ) is the biggest window volume of

individual tracks.

IV. JIPDAF DATA ASSOCIATION

A joint event is one possible mapping of the
cluster measurements to the cluster tracks. JIPDAF
generates the same joint events as the JPDAF
algorithm [6]. In each joint event
1) each cluster track can be assigned zero

measurements or one of the measurements which falls
in the selection window of the track,
2) each measurement can be allocated to zero or

one of the cluster tracks.
Two joint events are different if assignment of at least
one measurement is different. The joint events are
mutually exclusive, and they should form a complete
set. Let Âi and X denote the joint event i and the
number of joint events in the cluster, respectively.
Let Ti0 and T

i
1 denote the set of tracks allocated no

measurements and one measurement, respectively,
in the joint event Âi. For Markov Chain Two,
nonparametric version, the a posteriori probability of
joint event Âi becomes

PfÂi j Zkg= C¡1
Y
t2Ti0

(1¡PtDPtWPfÂt,dk j Zk¡1g)

£
Y
t2Ti1

µ
PtDP

t
WPfÂt,dk j Zk¡1g

ptiVk
m̂k

¶
(10)

where pti = p
t(zm(i,t) j Zk¡1) and m(i, t) denotes the

measurement allocated to track t under joint event
i. The joint events form a complete set and the
normalization constant C is calculated using

XX
j=1

PfÂj j Zkg= 1: (11)

The a posteriori probability of an individual track
event is obtained by summing the a posteriori
probabilities of all joint events containing the track
event. Denote by ¥(t, i) the possibly empty set of
joint events in which track t has been allocated
measurement i (0 denoting no measurement).
The a posteriori probabilities of no measurement
originating from the track t, of the event of target t
existence and nondetectability, of the event of target

t existence and detectability with no measurement
originating from the target, and of the event of target
t existence and detectability with measurement i
originating from the target are, respectively,

PfÂtk,0 j Zkg=
X

e2¥(t,0)
PfÂe j Zkg (12)

PfÂt,nk j Zkg=
PfÂt,nk j Zk¡1g

1¡PtDPtWPfÂt,dk j Zk¡1g
PfÂtk,0 j Zkg

(13)

PfÂtkÂt,dk,0 j Zkg=
(1¡PtDPtW)PfÂt,dk j Zk¡1g
1¡PtDPtWPfÂt,dk j Zk¡1g

PfÂtk,0 j Zkg

(14)

PfÂtkÂtk,i j Zkg=
X

e2¥(t,i))
PfÂe j Zkg: (15)

The a posteriori probability that target t exists and is
detectable is

PfÂt,dk j Zkg= PfÂt,dk Âtk,0 j Zkg+
X

i2f¹(k,t,i)>0g
PfÂtkÂti j Zkg

(16)

where f¹(k, t, i)> 0g denotes the set of measurements
falling in the window of track t at scan k. The
a posteriori probability of target existence of track t is

PfÂtk j Zkg= PfÂt,dk j Zkg+PfÂt,nk j Zkg: (17)

The ¯ data association probabilities [3] for track t are

¯t0 =
PfÂtkÂtk,0 j Zkg
PfÂtk j Zkg

=
PfÂt,dk Âtk,0 j Zkg+PfÂt,nk j Zkg

PfÂtk j Zkg
(18)

¯ti =
PfÂtkÂtk,i j Zkg
PfÂtk j Zkg

, i 2 f¹(k, t, i)> 0g: (19)

The ¯s are used to update track estimates in a
standard PDA manner [3, 8, 12] which is not repeated
here for the reasons of brevity. The last step in the
JIPDAF recursion is calculation of the predicted state
estimate and predicted probability of target existence
for scan k+1. Predicted target existence probabilities
are calculated using (2)—(4).
Formulae for JIPDAF Markov Chain One with

a nonparametric clutter model are obtained from
JIPDAF Markov Chain Two formulae (10)—(19) by
substituting

PfÂt,dk g= PfÂtkg
PfÂt,nk g= 0:

(20)

For JIPDAF Markov Chain Two, with a parametric
clutter model, (10) becomes

PfÂi j Zkg= C¡1
Y
t2Ti0

(1¡PtDPtWPfÂt,dk j Zk¡1g)

£
Y
t2Ti1

µ
PtDP

t
WPfÂt,dk j Zk¡1g

pti
½ci

¶
(21)
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where ½ci = ½
c(zm(i,t)) denotes the a priori clutter

measurement density at the zm(i,t) location. Equations
(11)—(19) remain unchanged. JIPDA Markov
Chain One parametric formulae are again obtained
by applying (20) to JIPDA Markov Chain Two
parametric formulae.

V. SIMULATION

Simulation is used to compare the JIPDAF
algorithm with IPDAF, EB-PDAF, and IJPDAF with
respect to track discrimination and target crossing
performance, in a heavy and nonhomogenous
clutter environment. All algorithms compared are
nonparametric. IPDA and EB-PDA both use the
expected value of the number of selected clutter
measurements, referred to as the “heuristic clutter
density estimator” in [7], for the estimator of the
number of clutter measurements. The tracks are
initiated automatically, using two-point differencing
and initial track probability assignment as described
in [1] and [11]. Two different clutter scenarios were
implemented. In the “lighter clutter environment”
JIPDAF and IJPDAF algorithms are implemented on
all tracks, from initiation onwards. In the “heavier
clutter environment,” JIPDAF and IJPDAF are
applied to confirmed tracks only, and IPDAF and
EB-PDAF, respectively, are applied to nonconfirmed
tracks. In the IPDAF and EB-PDAF experiments,
IPDAF and EB-PDAF are applied to all tracks after
initialization in all scenarios. A two-dimensional
surveillance situation was considered. The area under
surveillance was 1000 m long and 400 m wide. The
clutter measurements satisfied a uniform Poisson
distribution with a base density with two patches
with higher clutter density. The high clutter density
patches are rectangular with corner coordinates
(xmin,xmax,ymin,ymax) of (330, 490, 203, 303) m
and (718, 840, 100, 200) m. The heavier clutter
environment has a base density of 1:0£ 10¡4/scan/m2
with a sevenfold increase in clutter density in the
clutter “patches”; the lighter clutter environment has
a base density of 0:2£ 10¡4/scan/m2 with a fivefold
increase in clutter density in the clutter patches.
The experiments consisted of 1000 and 800 runs

each in the heavier and lighter clutter situations,
respectively. Each run consists of 24 scans. In each
run target one reappears in scan 1 with an initial
state of x0(1) = [130 m 35 m/s 200 m 0 m/s], and
maintains constant speed thereafter. Target two follows
a uniform speed trajectory which intersects the first
target trajectory in scan 19, with a crossing angle of
10±. The true track situation is observed on scan 14
and then again on scan 24 to determine the effects of
target crossing. The target motion model in Cartesian
coordinates is

x(k+1) = Fx(k)+ º(k) (22)

where x(k) consists of the position and the velocity in
each of the 2 coordinates

x0 = [x _x y _y] (23)

with the transition matrix

F =
·
FT 0

0 FT

¸
, FT =

·
1 T

0 1

¸
(24)

where T is the sampling period. The plant noise º(k)
is zero-mean white Gaussian noise with

E[º(k)º(j)0] =Q±(k,j) (25)

Q = q
·
QT 0

0 QT

¸
, QT =

·
T4=4 T3=2

T3=2 T2

¸
(26)

where ±(k,j) is the Kronecker delta function and
q= 0:75. The detection probability was 0.9 and the
sensor introduced independent errors in the x and y
coordinates with an rms error of 5 m. The tracking
estimation filter was a simple Kalman filter based
on the described trajectory and sensor models. The
gate selection probability was PW = 0:9999. All
algorithms used a Markov Chain One target existence
propagation model with

[p111 p121] = [0:98 0]: (27)

The JIPDAF appears to be relatively robust to the
choice of the Markov Chain parameters. Parameter
p(1)11 defines a priori expected length of true track life ¿

¿ =
T

1¡p(1)11
: (28)

After initialization, tracks evolve according to the
algorithm simulated. The tracks are confirmed if
the probability of target existence/perceivability
exceeds the confirmation threshold and are terminated
if the probability falls below the termination
threshold. Thresholds and initial probability of
target existence/perceivability were automatically
optimized separately for each algorithm. For each
algorithm the sum of confirmed false track scans was
kept approximately the same; for the heavier clutter
simulations it was 600 over 24000 scans, and for
the lighter clutter simulations it was 60 over 19200
scans. The false track discrimination comparison is
illustrated in Figs. 1 (heavier clutter) and 2 (lighter
clutter). Each curve shows the number of scans in
which a confirmed track followed target one. The
horizontal axis depicts the time in scans from the start
of the simulation run. The target crossing comparison
is shown in Tables I and II for the heavier and lighter
clutter situation, respectively. Only the cases where
two confirmed tracks were following each of the
two targets at scan 14 were considered. Five possible
outcomes were recognized on scan 24:
a) both tracks continue to follow their original

targets,
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Fig. 1. Target one discrimination comparison–heavier clutter situation (1000 runs).

Fig. 2. Target one discrimination comparison–lighter clutter situation (800 runs).

TABLE I
Trajectory Intersection Results–Heavier Clutter Case

IPDAF JIPDAF EB-PDAF IJPDAF

Total 478 487 271 280
(a) 230 470 186 271
(b) 225 17 84 6
(c) 0 0 0 2
(d) 17 0 1 1
(e) 6 0 0 0

Time(s) 8412 8712 8491 8776

TABLE II
Trajectory Intersection Results–Lighter Clutter Case

IPDAF JIPDAF EB-PDAF IJPDAF

Total 685 747 655 540
(a) 316 738 301 533
(b) 327 9 322 6
(c) 0 0 0 1
(d) 27 0 21 0
(e) 15 0 11 0

Time(s) 400 844 392 6340

b) only one track continues to follow the original
target,
c) both tracks switch targets,
d) one track switches the target, the other track

becomes false or terminated,
e) both tracks become false or terminated.

The JIPDAF clearly improves the IPDAF track
discrimination and track crossing performance. In
this environment they appear to compare favorably
with IJPDAF and EB-PDAF, respectively. Simulation

durations in seconds for the algorithms are also
presented in Tables I and II.

VI. CONCLUSION

This paper presents the joint IPDA algorithm
for tracking multiple targets in clutter. JIPDA is
suitable for automatic target tracking (sub)systems,
as it provides the probability of target existence on
each scan which can then be used as a measure of
track quality useful for false track discrimination.
JIPDAF integrates seamlessly with the IPDAF; a track
can be followed by either of the algorithms as the
situation dictates, and changing from one to the other
requires no change to the track state and incurs no
transient effects. When used in tandem with IPDAF
on confirmed tracks only, JIPDAF can be used to
track a small number of targets in very dense clutter
situations without excessive increase in computational
requirements.

APPENDIX. JIPDA NONPARAMETRIC MARKOV
CHAIN ONE DERIVATION

The derivation of JIPDA with Markov Chain One
target existence and propagation model, and with
the nonparametric clutter model, is presented here.
JIPDA with Markov Chain Two target existence and
propagation model and/or parametric clutter model
derivation follows in a similar manner and is not
presented here for reasons of brevity. The derivations
here assume that tracks have validated measurements
and that clusters of tracks have been formed. Only one
cluster is observed.
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Let T denote the number of the tracks in the
cluster, let mk, m

t
k, and V

t
k denote the total number

of measurements in the cluster, the number of
measurements in the validation gate of track t and
the validation gate volume of track t, respectively.
The cluster area is formed as a union of validation
gates of individual tracks and from then on, the cluster
area becomes the common validation gate for each
truck in the cluster. It should be noted here that the
pdf of measurement position for each track is zero
outside its individual validation gate; thus joint events
should not be formed by allocating to tracks the
measurements from outside its individual validation
gate. An approximate expression for the cluster area

Vap =
mkPT
t=1m

t
k

TX
t=1

Vtk (29)

is exact in the case of infinitely dense and uniform
clutter measurements within the cluster area. The
approximation appears to function well in the
simulated environment. For mk = 0, cluster volume
is not used and (29) is not calculated. The correction

Vk ¼max(Vap,maxt (V
t
k )) (30)

ensures Vk to be at least as big as the biggest
validation gate in the cluster. Each measurement in the
cluster may have originated from one or more tracks.
With respect to one track t, the measurement i is a
clutter measurement if it has not originated from this
track. The a priori probability of measurement i not
originating from track t is

Ptc,i =
µ
1¡ P

t
DP

t
WPfÂtk j Zk¡1g

mtk

¶¹(k,t,i)
(31)

where PtD is the probability of target detection, P
t
W

is the selection probability, and PfÂtk j Zk¡1g is the
a priori probability of target existence for track
t. Expression ¹(k, t, i) is one if measurement i is
selected by track t at scan k and zero otherwise. The
event of measurement not originating from track is
independent across tracks and the a priori probability
that measurement i is clutter becomes

Pc,i =
TY
t=1

Ptc,i: (32)

The a priori expected number of clutter measurements
in the cluster is obtained by

m̂k =
mkX
i=1

Pc,i =
mkX
i=1

Ã
TY
t=1

µ
1¡ P

t
DP

t
WPfÂtk j Zk¡1g

mtk

¶¹(k,t,i)!
:

(33)

To find the a posteriori probability of a joint event Âe,
first separate cluster tracks in two sets:
1) set Te0 of tracks with no allocated

measurements,

2) Set Te1 of tracks with one allocated
measurements under the joint event Âe. The number of
tracks in this set is denoted by Ne1 . Denote with m(e, t)
the measurement allocated to track t under the joint
event Âe.
The a priori probability that no selected measurement
originated from target t is,

PfÂtk,0 j Zk¡1g= 1¡PtDPtWPfÂtk j Zk¡1g: (34)

The a priori probability that no selected measurement
is the target detection, and the target exists

PfÂtk,Âtk,0 j Zk¡1g= (1¡PtDPtW)PfÂtk j Zk¡1g: (35)
The a priori conditional probability that allocated
measurements are the correct target detections, given
that these targets exist is

P

8<:\
t2Te1

Âtk,m(e,t)

¯̄̄̄
¯ \
t2Te1

Âtk,mk,Z
k¡1

9=;
=

Ne1Y
i=1

1
(mk +1¡ i)

Y
t2Te1
(PtDP

t
W)

=
(mk ¡Ne1 )!

mk!

Y
t2Te1
(PtDP

t
W): (36)

Thus, the a priori probability of joint event Âe is

PfÂe j Zk¡1g

= P

8<:\
t2Te

0

Âtk,0

\
t2Te

1

Âtk,Â
t
k,m(e,t)

¯̄̄̄
¯Zk¡1

9=;
=
Y
t2Te

0

(1¡PtDPtWPfÂtk j Zk¡1g)

£P

8<:\
t2Te

1

Âtk,m(e,t)

¯̄̄̄
¯\
t2Te

1

Âtk,Z
k¡1

9=;P
8<:\

t2Te
1

Âtk

¯̄̄̄
¯Zk¡1

9=;
=
Y
t2Te

0

(1¡PtDPtWPfÂtk j Zk¡1g)
(mk ¡Ne

1 )!
mk!

£
Y
t2Te

1

(PtDP
t
WPfÂtk j Zk¡1g): (37)

If the number of false measurements follows a
Poisson distribution [13], the a priori probability of
mc clutter measurements occurring in the window on
scan k is

Pcfmc j Zk¡1g= e¡m̂k
(m̂k)

mc

mc!

=
1

mc!(m̂k)mk¡mc
mk!Pcfmk j Zk¡1g

(38)
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and the a priori probability of mk measurements in the
cluster, given Ne1 target measurements is

Pcfmk ¡Ne
1 j Zk¡1g= e¡m̂k

(m̂k)
mk¡Ne1

(mk ¡Ne
1 )!

=
1

(mk ¡Ne
1 )!(m̂k)

Ne
1
mk!Pcfmk j Zk¡1g:

(39)
The a priori pdf of each clutter measurement is

pc(zk,i j Zk¡1) = V¡1k : (40)

The a priori pdf of the measurements given that Ne1
measurements originated from the Te1 targets is

p(zk j Âe,mk,Zk¡1) = V¡mkk

Y
t2Te1

(Vkp
t(zm(e,t) j Zk¡1))

(41)

where pt(z j Zk¡1) denotes the conditional pdf of the
target measurement at the point of measurement z
given that the measurement is selected by track t at
scan k. The a posteriori probability of joint event Âe is

PfÂe j Zkg= c¡1k p(zk j Âe,Zk¡1,mk)
£Pfmk j Âe,Zk¡1gPfÂe j Zk¡1g

= C¡1k
Y
t2Te

0

(1¡PtDPtWPfÂtk j Zk¡1g)

£
Y
t2Te

1

µ
PtDP

t
WPfÂtk j Zk¡1gpt(zm(e,t) j Zk¡1)

Vk
m̂k

¶
:

(42)
Joint events are mutually exclusive and form a
complete set, therefore

XX
j=1

PfÂj j Zkg= 1: (43)

DARKO MU²SICKI
ROBIN EVANS
Cooperative Research Centre for Sensor
Signal and Information Processing

Dept. of Electrical and Electronic Engineering
University of Melbourne
Parkville VIC 3010
Australia
E-mail: (d.musicki@ee.mu.oz.au)

REFERENCES

[1] Bar-Shalom, Y., Chang K. C., and Blom, H. A. P. (1990)
Automatic track formation in clutter with a recursive
algorithm.
Multitarget-Multisensor Tracking, Vol. I, Norwood, MA:
Artech House, 1990, 25—42.

[2] Bar-Shalom, Y., Li, X. R., and Kirubarajan, T. (2001)
Estimation with applications to tracking and navigation.
Wiley, 2001.

[3] Bar-Shalom, Y., and Tse, E. (1975)
Tracking in a cluttered environment with probabilistic
data association.
Automatica, 11 (Sept. 1975), 451—460.

[4] Dezert, J., Li, N., and Li, X. R. (1998)
Theoretical development of an integrated JPDAF for
multitarget tracking in clutter.
In Proceedings of Workshop ISIS-GDR/NUWC, ENST,
Paris, 1998.

[5] Dezert, J., Li, N., and Li, X. R. (1999)
A new formulation of IPDAF for tracking in clutter.
Presented at the European Control Conference (ECC99),
Karlsruhe, Germany, Sept., 1999.

[6] Fortmann, T. E., Bar-Shalom, Y., and Scheffe, M. (1983)
Sonar tracking of multiple targets using joint probabilistic
data association.
IEEE Journal of Oceanic Engineering, 8, 3 (July 1983),
173—183.

[7] Li, N., and Li, X. R. (2000)
Integrated real-time estimation of clutter density for
tracking.
IEEE Transactions on Signal Processing, 48, 10 (2000),
2797—2805.

[8] Li, N., and Li, X. R. (2001)
Tracker perceivability and its applications.
IEEE Transactions on Signal Processing, 49, 11 (2001),
2588—2604.

[9] Mu²sicki, D. (1994)
Automatic tracking of maneuvering targets in clutter
using IPDA.
Ph.D. dissertation, University of Newcastle, New South
Wales, Australia, Sept 1994.

[10] Mu²sicki, D., and Evans, R. (2002)
Joint integrated probabilistic data association–JIPDA.
In Proceedings of the Fifth International Conference
on Information Fusion, Fusion 2002, Annapolis, MD,
1120—1125.

[11] Mu²sicki, D., and Evans, R. (2004)
Clutter map information for data association and track
initialization.
IEEE Transactions on Aerospace and Electronic Systems,
40, 3 (2004).

[12] Mu²sicki, D., Evans, R., and Stanković, S. (1994)
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