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Algebraic Two-Satellite TOA/FOA Position Solution
on an Ellipsoidal Earth

A direct algebraic solution is given for estimates of

the ambiguous locations of an RF emitter on the surface

of an ellipsoidal Earth given time-of-arrival (TOA) and

frequency-of-arrival (FOA) measurements at two satellites.

I. INTRODUCTION

Geolocation systems employing a constellation
of satellite-based receivers or bent-pipe relays can
use time-of-arrival (TOA) and frequency-of-arrival
(FOA) measurements to locate RF emitters. These
systems can compute position “fixes” using iterative
linearization techniques based on Newton’s method
to solve, in a least-squares sense, overdetermined
systems of the governing equations [1]. When the
emitter is observed by only two satellites, however,
a three-dimensional fix cannot be computed. In
this case the emitter location can be estimated
ambiguously by assuming the emitter is stationary on
the surface of the Earth. The solution is ambiguous
because generally more than one location on Earth
can produce the same TOA and FOA at the two
satellites. The ambiguous source location makes
Newton’s iteration an unsatisfactory approach,
as this procedure converges to just one of the
solutions.
When ambiguous solutions are expected, a direct

algebraic procedure for all solutions is desirable.
Schmidt [2] provided the first algebraic solution for
the two-satellite TOA/FOA problem with a procedure
that requires a one-dimensional search to produce
solutions of the desired altitude. More recently Ho and
Chan [3] have derived a direct algebraic procedure
for all solutions on a spherical Earth and provide an
iterative procedure to correct these solutions for an
ellipsoidal Earth. Note that the solutions would need
to be iterated separately since they would, generally,
be at different latitudes.
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We derive a new direct algebraic procedure for
all emitter locations on the surface of an ellipsoidal
Earth that are consistent with the TOA and FOA
measurements observed at two Earth-orbiting
satellites of known position and velocity. Note that
the algorithm could also be used to locate a stationary
receiver on the Earth using two transmitter-equipped
satellites, such as GPS.
In Section II we derive a system of five nonlinear

equations that define the two-satellite ellipsoidal-Earth
problem. Simultaneous solution of these equations
will produce an estimate of the emitter’s position,
transmit time, and frequency. In Section III we solve
the system by eliminating the position variables giving
two polynomials in transmit time and frequency.
These two polynomials are solved by finding the roots
of their resultant [4]. This resultant is an eighth-order
polynomial whose roots provide all solutions of the
system plus extraneous solutions. In Section IV we
show the results of a numerical example. In Section V
we derive the position error variance.

II. PROBLEM STATEMENT

The equation that relates the emitter position
coordinates in an inertial frame at the time of
transmission x= [x y z]T, a column vector, the ith
satellite position si = [xi yi zi]

T at the TOA, the
transmit time, t, and the TOA at the ith satellite, ti,
is

Ri(x,si) = c(ti¡ t)´ ¿i¡ ¿ (1)

where c is the speed of light, ¿ is scaled transmission
time, ¿i is the scaled TOA defined by inspection of
(1), and Ri is the emitter-to-satellite range given by

Ri = jx¡ sij ´
q
(x¡ si)T(x¡ si): (2)

Squaring and expanding (1) for i= 1 gives TOA1

xTx¡ 2sT1x+ r21 = ¿21 + ¿2¡ 2¿1¿ (3)

and for i= 2 gives TOA2

xTx¡ 2sT2x+ r22 = ¿22 + ¿2¡ 2¿2¿ (4)

where
r2i ´ sTi si: (5)

Subtracting (3) from (4) gives the time difference of
arrival (TDOA) equation which is linear in x

2(s1¡ s2)Tx= r21 ¡ r22 ¡ ¿21 + ¿22 +2(¿1¡ ¿2)¿: (6)

The equation relating the transmitted frequency f, the
Doppler-shifted FOA fi, and range rate

_Ri, the time
derivative of Ri, is

_Ri = ¸(f¡fi)´ º¡ ºi (7)

where ¸ is the nominal RF wavelength and º and
ºi are scaled emitter frequency and scaled FOA,
respectively, defined by inspection of (7). Expanding

_Ri in (7) using (2) gives

_Ri =
(x¡ si)T( _x¡ _si)

Ri
= º¡ ºi (8)

where _x is the emitter velocity, and _si is the ith
satellite velocity. If we assume that the emitter is
stationary on the surface of the Earth then, in an
Earth-centered inertial (ECI) frame, the emitter
velocity is given by the laws of circular motion as

_x=

264 0 ¡! 0

! 0 0

0 0 0

375
264xy
z

375´ Px (9)

where ! is the rotation rate of the Earth, and the
matrix P is defined by inspection of (9).
Putting (1), the TOA equation, into (8), the FOA

equation, and expanding, gives

xT _x¡ sTi _x¡ xT _si+ sTi _si = (¿i¡ ¿)(º¡ ºi): (10)

Using (9) and xT _x= 0 in (10) gives the equations
FOATOA1

(_sT1 + s
T
1P)x= º¿ ¡ º1¿ ¡ ¿1º+ ¿1º1 + sT1 _s1 (11)

and FOATOA2

(_sT2 + s
T
2P)x= º¿ ¡ º2¿ ¡ ¿2º+ ¿2º2 + sT2 _s2: (12)

We digress momentarily to note that we can write the
TOA equation, (1), explicitly showing a time epoch t0
from which the TOAs are measured, giving

R1(x,s1) = c((t1¡ t0)¡ (t¡ t0)) (13)

R2(x,s2) = c((t2¡ t0)¡ (t¡ t0)): (14)

We are free to choose any convenient epoch from
which the TOAs t1 and t2 are measured. By choosing
t0 = t1 or t0 = t2 the TOA data appears in the equations
as a TDOA and as a reference for t, the transmission
time. The computed location therefore depends on the
TDOA, while the estimated transmission time depends
on the TOAs.
Explicitly showing a frequency reference f0 in (7)

gives

_Ri = ¸((f¡f0)¡ (f1¡f0)) (15)

_Ri = ¸((f¡f0)¡ (f2¡f0)): (16)

A similar argument shows that the computed location
depends on the frequency difference of arrival
(FDOA) while the frequency of transmission f
depends on the FOAs. I do not explicitly show the
reference time and frequency hereafter.
We now add an emitter radius, or altitude (ALT),

equation to the system of governing equations. The
ALT equation is

xTQx= r2e (17)
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where

Q=

2641 0 0

0 1 0

0 0 r2e =r
2
p

375 (18)

where re and rp are the equatorial and polar radii of
the ellipsoid, or oblate spheroid, on which we assume
the emitter lies.
We now have five independent equations, TOA1

(3), TDOA (6), FOATOA1 (11), FOATOA2 (12),
and ALT (17), which we desire to solve for emitter
position and the scaled time and frequency of
transmission, x, y, z, ¿ , and º.

III. SOLUTION METHOD

Our approach will follow [3] in the use of matrix
notation to compute coefficients of polynomials whose
roots will provide our solutions. We begin the solution
of the system of model equations by putting TDOA
(6), FOATOA1 (11), and FOATOA2 (12), into matrix
form264 2(s1¡ s2)

T

(_s1 +P
Ts1)

T

(_s2 +P
Ts2)

T

375x=
26401
1

375º¿ +
2642(¿1¡ ¿2)¡º1

¡º2

375¿

+

264 0

¡¿1
¡¿2

375º+
264r

2
1 ¡ r22 ¡ ¿21 + ¿22
¿1º1 + s

T
1
_s1

¿2º2 + s
T
2
_s2

375 :
(19)

We solve this system for x which we put into TOA1
and ALT giving two equations in ¿ and º which we
solve simultaneously.
The matrix on the left side of (19) and the four

vectors on the right side are given the names A, g, h,
p, and q, respectively, giving

Ax= gº¿ +h¿ +pº +q (20)

where the new variables are defined by equating terms
in (19) and (20). Solving for x gives

x=A¡1gº¿ +A¡1h¿ +A¡1pº +A¡1q

´ zº¿ +u¿ + vº+d (21)

where vectors z, u, v, and d are defined by equating
terms in (21).
Putting (21) in to TOA1 (3) gives

(zº¿ +u¿ + vº+d)T(zº¿ +u¿ + vº +d)

¡ 2sT1 (zº¿ +u¿ + vº+d) + r21 ¡ ¿21 ¡ ¿2 +2¿1¿ = 0:
(22)Expanding (22) gives

a1º
2¿2 + a2º¿

2 + a3º
2¿ + a4¿

2 + a5º
2

+ a6º¿ + a7¿ + a8º+ a9 = 0 (23)

where

a1 = z
Tz a2 = 2z

Tu a3 = 2z
Tv

a4 = u
Tu¡ 1 a5 = v

Tv a6 = 2v
Tu+2zT(d¡ s1)

a7 = 2u
T(d¡ s1)+2¿1 a8 = 2v

T(d¡ s1)
a9 = d

T(d¡ 2s1)+ r21 ¡ t21 :
Putting (21) into ALT, (17), gives

(zº¿ +u¿ + vº +d)TQ(zº¿ +u¿ + vº+d)¡ r2e = 0
(24)

which can be written as

b1º
2¿2 + b2º¿

2 + b3º
2¿ + b4¿

2 +b5º
2

+ b6º¿ + b7¿ + b8º +b9 = 0 (25)

where

b1 = z
TQz b2 = 2z

TQu b3 = 2z
TQv

b4 = u
TQu b5 = v

TQv b6 = 2v
TQu+2zTQd

b7 = 2u
TQd b8 = 2v

TQd b9 = d
TQd¡ r2e :

In order to simultaneously solve (23) and (25) using
the resultant [4] we write them as polynomials in º
with coefficients that depend on ¿ giving

(a1¿
2 + a3¿ + a5)º

2 + (a2¿
2 + a6¿ + a8)º

+(a4¿
2 + a7¿ + a9) = 0 (26)

and

(b1¿
2 + b3¿ + b5)º

2 + (b2¿
2 + b6¿ + b8)º

+(b4¿
2 + b7¿ +b9) = 0: (27)

We write (26) and (27) compactly as

c1º
2 + c2º + c3 = 0 (28)

and
d1º

2 + d2º +d3 = 0 (29)

where the new variables are defined by comparing
terms with the original equations.
By multiplying (28) and (29) by º, we create

two new polynomials that have the same roots as
the original equations plus the additional root º = 0.
Writing the old and new equations in matrix form
gives 26664

0 c1 c2 c3

c1 c2 c3 0

0 d1 d2 d3

d1 d2 d3 0

37775
26664
º3

º2

º

1

37775=
26400
0

375 : (30)

The system of equations in (30) can have solutions
only if the determinant of the matrix is 0. The
determinant of the matrix in (30) is called the resultant
of the polynomials P1(¿ ,º) in (28) and P2(¿ ,º) in (29),
and is itself a polynomial in ¿ . The vanishing of the
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Fig. 1. iso-TDOA and iso-FDOA contours that pass through transmitter location.

TABLE I
TOA (s) and FOA (Hz) Data for Numerical Example

TOA 1 FOA 1 TOA 2 FOA 2 TDOA FDOA

0.067319449 ¡0:02860 0.080104907 ¡218:84675 0.012785458 ¡218:81814

TABLE II
Time, Frequency, Location Solutions and Total Errors for Numerical Example

t (sec) f¡f0 (Hz) Latitude (deg) Longitude (deg) Altitude (km) Total Error

0.15702186 1955.945 46.09915 84.44358 0.000 70871.1
8516.116 34.48395 37.08321 29073.9 76943.2

0.175988360 574.288 14.77693 164.16476 0.000 86895.4
9127.911 40.91563 38.34555 33954.0 93637.8

¡0:019026354 ¡1862:320 50.47372 ¡69:44022 0.000 2.4637e-11
7495.202 ¡27:87497 23.81673 35754.4 35780.7

0.000000000 0.000 0.00000 0.00000 0.000 6.2898e-12
6840.019 ¡23:27652 24.49375 29796.3 29812.0

resultant is shown in [4] to be both necessary and
sufficient that polynomials P1 and P2 have a common
root. So to find all the ¿ and º that solve both P1 and
P2 we can find all the ¿ that make the determinant
of the matrix in (30) vanish and then compute the
corresponding º from (28) or (29).
Setting the resultant equal to zero gives¯̄̄̄

¯̄̄̄
¯
0 c1 c2 c3

c1 c2 c3 0

0 d1 d2 d3

d1 d2 d3 0

¯̄̄̄
¯̄̄̄
¯= 0: (31)

Expanding this determinant gives an eighth-order
polynomial in ¿

w1¿
8 +w2¿

7 +w3¿
6 +w4¿

5 +w5¿
4 +w6¿

3

+w7¿
2 +w8¿ +w9 = 0 (32)

where w1 to w9 are long expressions in a1 to a9 and
b1 to b9, best calculated using a symbolic algebra
or computer algebra system (CAS). The eight roots
of (32) are candidate emitter transmission times
scaled by the speed of light. We are only interested
in real transmission times so for each real ¿ we
calculate º from (28) or (29). Solving one of these
quadratic equations will produce both a desired and
an extraneous solution for º. Only real frequencies
are of interest so the solution can be discarded if the
discriminant is negative. From each real ¿ and real
º we calculate x using (21). Eliminating spurious
solutions is now accomplished by plugging the trial
solutions into the original system of equations. Trial
solutions, ¿ , º, and x, that satisfy (1), (7), and (17)
are the solutions we seek. Solutions that do not solve
the original equations are spurious and are discarded.
A numerical example of the procedure is given in the
next section.
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IV. NUMERICAL EXAMPLE

We now show results of a numerical example. A
1 GHz transmitter is simulated at 0± latitude and 0±

longitude on the surface of a WGS84 [6] ellipsoidal
Earth. At the time of transmission t= 0, one satellite
is at 0± latitude and 0± longitude and the other is at
0± latitude and 60± longitude. Both satellites are in
circular orbits of radius 26560 km in planes inclined
55±. Both satellites are at their ascending nodes at
the time of transmission. This geometry produces the
TDOA and FDOA contours shown in Fig. 1 which
pass through the emitter location at 0± latitude and 0±

longitude.
All points on the dashed contour have a TDOA

of approximately 0.0128 s and all points on the solid
contour have an FDOA of approximately ¡219 Hz.
More accurate values are given in Table I where
times are relative to the transmission time t= 0
and frequencies are relative to the nominal system
frequency, and in this example the actual transmission
frequency f = f0 = 1 GHz.
To estimate the position of the emitter, assumed

to lie on the surface of the WGS84 ellipsoid, the
polynomial in (32) is formed. Time variables t, t1,
and t2, are measured with respect to the first TOA, t1,
and frequency variables are measured with respect to
the nominal system frequency. Satellite positions and
velocities are expressed in a convenient nonrotating
frame. I use the inertial frame that is coincident
with the rotating Earth-centered Earth-fixed (ECEF)
frame at the time of the first TOA. The eight roots of
(32), divided by the speed of light, are the candidate
emitter transmission times. Four of these roots are
complex and four are real. The real roots are shown
referenced to the original time epoch in column 1 of
Table II.
Each of the real candidate transmission times are

put into (28) which then gives a quadratic equation
in the scaled transmission frequency v. Solving this
equation gives the two emitter frequency solutions
shown in column 2 of Table II as an offset from
the nominal system frequency in Hz. Putting the
scaled time and frequency solutions into (21) gives
the emitter location estimate x which is converted to
WGS84 geodetic latitude, longitude, and altitude, and
shown in columns 3-5 of Table II.
Total square model error is the root of the sum of

the squares (RSS) of TOA1, TOA2, FOA1, FOA2,
and ALT model errors. Model error equations are
obtained by slightly modifying (1), (7), and (17) such
that all terms of the equations are moved to one side.
Evaluating the modified equations at the candidate
t, f, and x solutions gives the error in the fit of the
measured data and the candidate solution. Column 6
of Table II is the RSS of the modified (1) and (17)
in units of kilometers and the modified (7) in units
of Hertz. Since the numbers in column 6 are sums

of numbers with different units we attach only the
following meaning to these sums. When the RSS error
is small, as in lines 5 and 7, we are assured that each
of the individual terms are small. Using an acceptance
threshold of 0.001, for example, guarantees that
accepted solutions produce the observed TDOA, or
equivalently the range difference, and the assumed
altitude to within a meter and the observed FDOA to
within a milli-Hertz.
The solutions in lines 5 and 7 of Table II have

RSS errors many orders of magnitude less than this
threshold. The small residual RSS error in the desired
solutions is the result of rounding - not measurement
noise. For example, adding 1 ¹s to TOA1 and 0.5 Hz
to FOA1 to simulate measurement noise increases the
error in the computed solution manifold to 5.8 km
while the residual errors in column 6 of Table II do
not change significantly. The residual errors indicate
only the consistency of the equations being evaluated.
Similarly, a 10 km error in the assumed emitter
altitude gives a 15 km location error but no increase
in RSS error. The two solutions in lines 5 and 7 of
Table II are the two intersections of the TDOA and
FDOA contours in Fig. 1.
It is possible for measurement noise to create a

system of equations that has no real solutions. The
contours in Fig. 1 in this case do not intersect. When
this happens, one can increase the assumed altitude
which generally increases the arc lengths of the two
contours and can create real solutions. For example,
a TDOA defines a hyperbolic sheet that may not
even intersect the Earth ellipsoid due to measurement
noise. The sheet would however intersect concentric
ellipsoids that are large enough. Increasing the radii
of the ellipsoid that we assume the emitter lies on,
therefore, can create real solutions. The intersection
of the TDOA hyperboloid and the ellipsoid is the
dashed curve in Fig. 1. By increasing the assumed
altitude we have changed the equations to a system
having real solutions, where the original did not.
Another approach is to use only the real parts of the
roots of (32) and then accept candidate solutions
whose transmission time, frequency, and altitude are
plausible. Note that the spurious solutions in Table II
could have been rejected using these tests as they have
either a noncausal transmission time (later than the
TOAs) or violate the altitude assumption. RSS error
can be used here but the thresholds would need to
be set higher than if only numerical rounding were
determining the total error.

V. SOLUTION ERROR VARIANCE

We now derive the expression for the solution
error variance as in [3] but with some new terms
involving _x reflecting our use of an ECI frame. The
solution error variances along the three orthogonal
axes can be used to convey the orientation of the
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spatial distribution of expected error in a computed
location. See [5] for an analysis of the effects of
uncertainties in the satellite positions and velocities,
emitter motion, and geometric dilution of precision
(GDOP). We include the effect of errors in our
estimate of the emitter altitude rather than consider
this an exactly known constraint.
Solution error variance can be evaluated by

linearizing the model equations about the solution
point, assumed near the true emitter location. We
begin by eliminating the time and frequency of
transmission leaving three equations in the three
principle solution variables, the emitter position
coordinates. Subtracting (1), with i= 1 from (1) with
i= 2 gives

R2(x,s2)¡R1(x,s1) = ¿2¡ ¿1: (33)

Similarly subtracting (7), with from (7) with gives

_R2¡ _R1 = º2¡ º1: (34)

We also have p
xTQx= re (35)

from (17).
Linearizing these governing equations to relate

small variations in the TDOA, FDOA, and assumed
emitter equatorial radius re, to small solution
displacements ¢x, gives

J¢x=

264¢(¿2¡ ¿1)¢(º2¡ º1)
¢re

375 (36)

where J is the matrix whose rows are gradients of
(33), (34), and (35), respectively,

J=

264rR2¡rR1r _R2¡r _R1
r
p
xTQx

375 : (37)

Computing the required gradients evaluated at the
solution point x0 we obtain

rRi =
(x0¡ si)T

Ri
(38)

from (2). Using (8) and (9) gives

r _Ri =
Ri(x

T
0P+ x

T
0P

T¡ sTi P¡ _sT)¡ (Ri _Ri)(rRi)
R2i

=
(x0¡ si)TP

Ri
+
(_x0¡ _si)T

Ri
¡
_Ri(x0¡ si)T

R2i
(39)

and from (35) we have

r
p
xTQx=

xT0Q
jxT0Qx0j

: (40)

Using (36) the covariance of the emitter position is
then the expectation

§x = EfxxTg= J¡1§d(J¡1)T =K§dKT (41)

where K= J1 and §d is the covariance of the errors in
the data, which are the components on the right-hand
side of (36). These data errors are usually assumed to
be zero mean and independent, making §d diagonal.
Note that the first and second elements on the
diagonal of §d are the variances of the TDOA and
the FDOA rather than of the TOAs and FOAs.

VI. CONCLUSIONS

An algorithm for the computation of the
ambiguous emitter location on an ellipsoidal Earth has
been given for the two-satellite TOA/FOA geolocation
problem. Prior art [3] was to determine all solutions
on a spherical Earth each of which could then be
iterated to produce a solution on the ellipsoidal Earth.
The algorithm presented here finds all solutions on the
ellipsoidal Earth.
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