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ABSTRACT 

We develop a fast direct reconstruction scheme that re- 
duces the computational effort in solving the periodic 
nonuniform sampling problem for discrete-time band- 
limited signals. This is achieved by exploiting the peri- 
odic structure of the samples and of the DFT matrix. 

1. INTRODUCTION 

The irregular sampling problem consists of reconstruct- 
ing a discrete-time signal of length N given K irregu- 
larly spaced samples. Fast iterative methods in 1D [l] 
and 2D 171 exist which are independent of the sampling 
pattern. Consider an irregular set of samples obtained 
by taking multiple copies of uniform sets but which 
differ by some shifts, i.e. a periodic nonuniform set of 
samples. Periodic nonuniform sampling for multi-band 
signals has been studied in [2, 31. In (21 the problem is 
considered in terms of an M-channel filter bank and is 
solved using a POCs method. In [3] a well-conditioned 
universal sampling pattern is determined for the recon- 
struction of multi-band signals. 
We first define the periodic nonuniform sampling prob- 
lem of discrete-time band-limited signals. We show how 
the problem can be reduced by exploiting the periodic 
structure of the samples and of the DFT matrix. We 
develop a fast direct reconstruction scheme and com- 
pare its complexity to the unstructured direct solving 
method. The motivation in developing a fast direct 
method is to speed up the search when the shifts are 
unknown [5]. 

2. PERIODIC NONUNIFORM SAMPLING 

SIGNALS 
OF DISCRETE-TIME BAND-LIMITED 

2.1. Problem definition 

We begin by recalling the definition of a band-limited 
discrete-time periodic signal. 

T Definition 1 A discrete-time signalx = (20,. . . , XN-1)  

of length N is band-limited to L (in the low-pass sense) 
if the last N - L components of the Discrete Fourier 
Transform 

% = D F T N . x  (1) 

are zero, i.e. 

From Eq. (1) the signal is obtained by inverting the 
DFTN matrix where DFTN’ = $DFT*. Moreover 
the N - L last columns of the DFTN’ are irrelevant 
to the signal and can therefore be omitted. We obtain 
the following system of equations 

= (?0,?1, . . .  , i L - 1 , 0  ,... , o ) ~ .  

1 1 ... 1 [:)=;I: 1 w, : ... ... w;-1 ; I.[!;). 
XN-1 1 w;-1 . . .  wg-” ( L  - 1 )  X L - 1  

Equivalently in a more compact form 

(2) 
1 x(N) = yDFT;V(N, C) . k(C) 

where DFT;V(N, C) = { W $ } n E ~ , l E ~ ,  (WN = eianIN), 
N = ( 0 , .  . . , N - I} is the index set of the signal x and 
C = ( 0 , .  . . , L - l} corresponds to the index set of the 
nonzero components of the spectrum 2. 
The irregular sampling problem for discrete-time band- 
limited signals consists in recovering the signal x from 
K samples ~ ( N K )  where NK = {n~} f==,  is an irregu- 
larly spaced set of indices and a subset of N. This is 
equivalent to solving the following system of K equa- 
tions and L unknowns 2(C) 

(3) x(NK) = -DFT;V(NK, 1 C) . %(C) N 
where K must be greater or equal to L. 
In this paper, we are interested in a particular irregular 
set namely the periodic nonuniform set. The definition 
follows and an example is illustrated in Fig.1. 
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Definition 2 A periodic nonuniform set of samples 
NK is a union of C uniform sets of size Ki = N I T  
differing by a shift si 

C 

NK = U{&; = (7lT -k Si}fLi'} 

where N is the length of the signal and T is the discrete- 
time uniform sampling interval. 
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Figure 1: Example of a periodic nonuniform sam- 
pled discrete-time signal of length N = 32 obtained 
from C = 3  uniform sets with interval T =8, NK, = 
{1,9, 1 7 , 2 5 } , ~ ~ z = { 2 ,  10 ,18 ,26} ,N~,={5 ,  13,21,29}. 

2.2. Direct solving method 

As mentioned in the last subsection to  recover the sig- 
nal x(N) it suffices to solve the system of equations in 
(3) for a(L) and then substitute in Eq. (2). Given that 
the signals are band-limited the K x L matrix in (3) 
is a Vandermonde matrix which assures the existence 
of a solution. A solution 2(L) may be obtained in the 
least squares sense using the generalized inverse of the 
matrix F = &DFT;,(NK, L), i.e. 

?(L> = (F*F)-~F* . x(NK). (4) 
This calculation requires matrix multiplication and in- 
version and may be costly for large values of K and 
L. Iterative methods such as the Papoulis Gerchberg 
method [SI or adapted weights conjugate gradient method 
[l, 71 can also be applied but these do not take into ac- 
count the periodic structure of the samples. We are in- 
terested in exploiting the periodic nonuniform sampling 
pattern so as to  reduce the dimension of the problem 
and speed up the direct method. 

3. FAST RECONSTRUCTION 

In this section we show how the dimension of the prob- 
lem can be reduced by exploiting the periodic structure 
of the samples. We present the fast direct method by 
means of a small example and then describe the general 
case. Finally we compare the computations between 
the structured and the unstructured direct method. 

3.1. Example 

Consider a discrete-time signal x of length N = 8, 
band-limited to  L = 4, i.e. 

. ( q (5) 

53 

where Wg = ei2rr/8. 
Suppose the discrete-time uniform sampling interval is 
equal to  T = 4 then the number of samples in the uni- 
form set is K = 2 < L which is insufficient to recon- 
struct the signal (the number of samples to  recover the 
signal must be at least L) .  If we take C = 3 uniform 
sets of samples, for example, at locations NK, = {0,4}, 
JUK~ = { 1,5} and N K ~  = { 2 , 6 }  then we obtain a pe- 

riodic nonuniform set of locations NK = U NK; = 

(0, I, 2,4,5,6}.  We reformulate the problem by parti- 
tioning the system in (5) according to  the uniform sets 
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Notice that [' ] = 2 . DFTT1. By 

multiplying Eq. (6) on each side by the following diag- 
] = [' 1 w,4 1 w2 

onal block matrix, 
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where 0 2  is a 2 x 2 zero matrix we obtain the following 
partitioned system 

As described in Section 2.2 we obtain a solution in the 
least squares sense by means of the generalized inverse 
of the partitioned matrix D in Eq. (9). Hence we ob- 
tain, 

%(L) = (D*D)-~D*Y (10) 

where y = [DFT(x(NK,), . . . , DFT(x(NK,)]~ and 
(D*D)-'D* is also a partitioned matrix whose blocks 
are diagonal matrices. The fast reconstruction scheme 
is illustrated in ~ i ~ . 2 .  Each block of the partitioned matrix in Eq. (8) is a 

diagonal matrix whose values are given by the rows as- 
sociated to  xo,xl,x2 and columns {0,1},{2,3} of the 
matrix in Eq. (6). The fact that the blocks are diagonal 
matrices hints that the number of operations to calcu- 

will be less than the unstructured one. 

3.2. General fast reconstruction scheme 

The key step in the example of Sec. 3.1 which reduces 
the problem is the multiplication of Eq. (6) by the di- 

by the following 

3*3* 

In this section we compare the complexity of the fast re- 

The inverse of a partitioned matrix is obtained from 
Eq. (11) in the Appendix 5.1 where we let A = D*D. 
Note that A is a partitioned R x R matrix where each 
block A,, is Ki x Ki diagonal matrix. Define o p ~ ( R )  
as the number of operations required to  invert A. We 

conquer approach to determine A-' = (D*D)-l (i.e. 
let cy = ( 1 , .  . . , R/2}). We obtain the following recur- 
rence equation 

late the generalized inverse Of the partitioned system construction scheme with the direct unstructured one. 

agonal block DFTZ matrix in Eq. (7). We generalize suppose that is a power Of and use divide and 

o p ~ ( R )  = 100pa(R/2) + 12(R/2)3Ki + 4(R/2)2Ki 
. . . .  

O P A ( ~ )  = Ki 

(F*F)-l 
F* . x ( N K )  

where 

1 1  

L3 11 (D*D)-I Rlogzl0Ki 
L K  II D*v RCKilooKi 

N 

T 

C 

Ki 

NK~ 

si 

K 

L 

Dij 

is the 

is the 

is the 

is the 

y=D.  f (9) and conclude that opa(R) E O(R"g210Ki). In Tab. 1 
we summarize the number of operations (multiplica- 
tion, inversion) required for each scheme. By substi- 
tuting K = CKi and L = RKi in Tab. I, keeping the 
variables C and R constant and letting Ki vary, we 
compare the two schemes in Fig. 3. 

length of the signal, 

discrete-time uniform sampling interval, 

number of uniform sets, 

size of one uniform set of locations 
(= N I T ) ,  

is the i - th  uniform set of locations,i = 1 , .  . . ~ ,c 

Complexity 
Direct scheme Fast scheme 
F*F I L 2 K  1 1  D*D I R2 C Ki 

(= {nT -t Si}n=O,Ki- l ) ,  

is the i-th shift from the uniform set {TLT} ,=~ ,K~-~  
Table 1: Summary of complexity O(operations) for 
both schemes. 

(0 5 si 5 T - l), 

is the size of the periodic nonuniform set 

4. CONCLUSION 

We developed a fast direct method that reconstructs 
a periodic non-uniformly sampled discrete-time band- 
limited signal. An extension to  the 2D case with known 
and unknown shifts is the topic of on-going research. 

(1 CKi), 

is the band-limit 
(= RKi, 1 5 R 5 C) and 

are diagonal matrices$ = 1 , .  . . , C, j = 1 , .  . . R 
( = diag ( { w; I E { ( j - 1 ) Ki , . . . ,jK; - 1 } ). 
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Figure 2: Fast reconstruction scheme for periodic nonuniform sampling 

2.5 

Comparisw~ 01 the two schemes 
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I ~ a 2 1  -22J 

where a is a subset of (1,. . . , R} and a' is the com- 
plement index set of a. For instance if R = 4 and 
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