Abstract:
Using a GaN nanorod template in a hydride vapor phase epitaxy (HVPE) system can manufacture a freestanding GaN (FS-GaN) substrate with threading dislocation densities dow...Show MoreMetadata
Abstract:
Using a GaN nanorod template in a hydride vapor phase epitaxy (HVPE) system can manufacture a freestanding GaN (FS-GaN) substrate with threading dislocation densities down to ~ 107 cm-2. In this letter, we report InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) grown on this FS-GaN substrate. The defect densities in the homoepitaxially grown LEDs were substantially reduced, leading to improved light emission efficiency. Compared with the LED grown on sapphire, we obtained a lower forward voltage, smaller diode ideality factor, and higher light-output power in the same structure grown on FS-GaN. The external quantum efficiency (EQE) of LEDs grown on FS-GaN were improved especially at high injection current, which brought the efficiency droop phenomenon greatly reduced at high current density.
Published in: IEEE Photonics Technology Letters ( Volume: 23, Issue: 12, June 2011)