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Abstract–Damping effects are very important in 
MEMS-based sensors and actuators. In this paper we 
use analytical models and finite element (FE) 
computations to quantify the energy losses due to 
viscous fluid damping, acoustic radiation and 
thermo-elastic damping. To treat the case where 
squeeze/slide film models can not be applied, we have 
implemented in a commercial FE package a new 
incompressible flow solver based on a gauge 
formulation. We are thus able to solve for full flows 
around complex 3D geometries in the frequency 
domain and predict viscous damping of resonant 
MEMS structures. The full methodology is 
exemplified on the response of a MEMS silicon 
resonator, including acoustic driving and 
piezoelectric sensing. 
Keywords: MEMS, Damping, Modelling 

1. INTRODUCTION 
MEMS resonators are the main building 

blocks of many types of new tiny devices used in 
a wide range of applications, from RF modules 
to sophisticated inertial sensors. Beyond the 
challenges imposed by every specific application 
and design strategy, there is a common parameter 
of paramount importance for whatever use of the 
resonators; this is the resonator quality factor (Q) 
which describes energy damping effects. 

From this perspective, the main issue is to 
understand and quantify all damping effects 
affecting a vibrating structure; then one needs to 
engineer the resonator for an increased Q factor 
leading to better sensitivity of the device/sensor. 

This paper presents analytical and COMSOL® 
FE models for different kinds of damping 
mechanisms that help the device designer to 
choose the best suited geometry for a particular 
application.  

The working device chosen for this study is a 
silicon tuning fork bulk resonator whose shape is 
presented in Fig. 1. At variance with typical 
MEMS resonators, we do not intend to use the 
device in vacuum, but in air at pressures ranging 
from 0.2bar to atmospheric pressure.  

There are some constraints imposed to this 
resonator by the silicon on insulator (SOI) 
technology that is intended to be used to build it. 
It is supposed that the resonator is realised by 
deep reactive ion etching (DRIE) of a “device” 
side from a SOI wafer. In order to release the 
resonator the underneath buried oxide (BOX) 
must be removed, thus leaving a very narrow gap 
between the resonator beam and the “handling” 
side of the SOI wafer (Fig. 1). The dimension of 
this gap was one of the parameters that our 
simulation did consider in an extensive manner, 
in order to evaluate air friction and squeezing 
effects. 

Different silicon walls surround the tines of 
the tuning fork; the distance between these walls 
and the tuning fork element were also 
considered, in order to evaluate the same effects. 

 

 
 

Fig. 1. Planar SOI T-shape resonator. 
 
We assume that the resonator is driven by an 

acoustic pressure generated by a source that 
looks like a divergent beam along the tuning fork 
tines. Each point on this beam will then act as an 
individual acoustic pressure generator, launching 
pressure waves that hit the resonator’s tines.  

The in-plane resonator movement is detected 
through a 0.5μm thick piezoelectric layer 
deposited on the top of the silicon tines by 
sputtering from a ZnO target, as in Fig. 2. The 
deposition and the patterning of this layer are not 
discussed here.  

There are two strips of piezoelectric layers 
deposited on each half of the two tines of the 
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resonator, in order to collect the positive and the 
negatives charges that are generated through the 
piezoelectric effect when the tines vibrate in the 
fundamental in-plane bending mode. The 
generated current is monitored by a 
transimpedance amplifier that holds the voltage 
across the piezo layer at zero.  

 

 
Fig. 2. Configuration of ZnO thin layer(“device” side only). 
 

Table 1. Parameters used in the modelling 
 

Item Notation Value  Unit 
Bean length L 3 mm 

Beam Thickness t 125 µm 
Beam width w 300 µm 

BOX g 2 µm 
Stem length a 60 µm 

Acoustic beam side d 140 µm 
Acoustic source WL 1.6·10-4 W/m 

Initial waist w0 6 µm 
Waist change λ  1.5 µm 
Sound speed c 332 m/s 

Ambient temperature T 293.15 K 
Viscosity of air µ 2·10-5 Pa·s 

 
Material (anisotropic) parameters for Si and 

ZnO have been taken from COMSOL material 
library; isotropic elastic properties for Si, needed 
for the analytical model, were calculated for the 
(100) direction. 

2. DAMPING  MECHANISMS 
Damping is a key issue in MEMS based 

sensors and actuators, being related to energy 
losses [1, 2]. Quality factor is a quantitative 
indicator of the energy dissipation, due to overall 
damping present in the system. The physical 
definition of Q-factor is: 

 

cycleper  dissipatedEnergy 
storedEnergy 2π=Q  

 

(1)

Equivalently, the Q-factor can be evaluated 
from the frequency response, by taking the ratio 

between the resonant frequency and the -3dB 
bandwidth (given by the energy dissipation rate).  

There are various mechanisms of energy loss 
and each of them can be considered as an 
independent term contributing to the overall Q-
factor, in a first approximation. Broadly 
speaking, the damping mechanisms fall into two 
main categories – fluid and structural: 

structuralfluid
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A supplementary damping mechanism 
appears here due to acoustic reradiation from the 
resonator itself. 
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Assuming negligible intrinsic material losses, 
the main categories of structural damping are: 
thermo-elastic damping (TED) and anchor loss: 
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The lowest individual Q factor (i.e., largest 
energy dissipation) dominates the overall Q. In 
practice, a higher Q means an increased 
sensitivity and lower power consumption. In this 
paper we consider the effects of viscous, TED 
and acoustic radiation on MEMS resonators. 

Table 2. Summary of the viscous effects and characteristic 
numbers showing different regimes of MEMS devices 

Effect 
(number) 

Expression Regimes 

Inertial  
(Reynolds) μ

ωρ
4

Re
2ba=  Re<<1 - inertial 

effects are negligible 

Compressible 
(Squeeze) 

apg
t
2

2

12 ωμσ =  σ<<1, compressibility 
can be neglected 

Rarefaction 
(Knudsen) 

0h
Kn λ

=  

app /00λλ =  

Kn<0.01  continuum  
flow 
0.01<Kn<0.1 slip 
flow 
0.1<Kn<3 transitional 
Kn>3 molecular flow 

 

ρa=gas density; b=characteristic length viscous flow; L= 
characteristic width of the structure; μ=gas viscosity; pa=ambient 
pressure; po=101325 Pa ; λ=mean free path of gas molecules; 
λ0=64nm mean free path at p0 and 250C; ω=resonance angular 
frequency. 

 
The parameter λ is related to the local value 

of the pressure pa as: 
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ap
p 00λλ =     (5) 

where p0=101325Pa and λ0=64nm are the 
pressure and molecular mean free path for air at 
t=250C. 
 

2.1. Squeeze-Film Damping (SFD) 
 

Many dynamic MEMS structures consist in 
moving plates and beams suspended above a 
fixed substrate. A thin fluid layer (air or some 
other gas) is trapped in the gap between the 
MEMS structure and the substrate. The complex 
interaction between fluid and vibrating structure 
results in both damping and stiffening of the 
structure. When the gap thickness is sufficiently 
small compared to the lateral dimensions of the 
structure, the so-called “squeeze-film damping” 
(SFD) dominates. SFD is affected by various 
factors: geometry of the structure, oscillation 
frequency, packaging pressure, thickness of the 
fluid film, boundary conditions. SFD dominates, 
often by one or two orders of magnitude over the 
other damping mechanisms.  

The most popular approach in the literature to 
model SFD effects employs solving Reynolds 
equation. This equation is deduced for isothermal 
systems, under the assumption that the gap 
thickness is much smaller compared to the lateral 
extent of the plates. In addition, inertia and slip 
correction factors (thus extending its validity 
over the entire operating range of MEMS 
devices) must be included. 
A linearized form of the modified Reynolds 
equation, modelling the frequency response of 
MEMS, is as follows [3]: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ+=−∇⋅∇ h

p
hpjhpQh

a
fTTchT f

0
0

3
0 126 μωμ u   (6) 

where pf = film pressure in the gap (unknown that 
is solved for), Qch = relative flow function, that 
accounts for inertial and rarefaction effects, 
Δh=gap deformation (h-h0), uT = tangential 
velocity of the structure (moving above a fixed 
substrate). The tangential operator T∇ refers to 
the fact that equation is solved on a boundary (x-
y plane in the present case). 

The different flow regimes that depend on the 
value of Knudsen number are considered by 
changing the viscosity term with an effective one 
(μeff). Veijola et al [4] provided a simple 
approximation for the effective viscosity: 

159.1638.91 Kneff ⋅+
=

μμ    (7) 

This was achieved by fitting the flow rate 
coefficients to the more complicated expression 
proposed by Fukui and Kaneko [5] which are 
based on Boltzmann transport equation. 

Formula (7) extends the validity of modified 
Reynolds equation to the range 0<Kn<880 (from 
continuum to molecular flow), with an accuracy 
of 5%. 

Assuming a gap thickness h0=10μm and 
using the definition of Kn from Table 2 and the 
equation (5), one gets the minimum packaging 
pressure for which approximation (6) is still 
valid: 

Pa 737.0max
0

00min ≅=
Knh
ppa
λ    (8) 

When the resonance frequency and the gap 
thickness are high enough (10’s of kHz and 10’s 
of μm, respectively), inertial effects become 
important and the relative flow function becomes 
a function of frequency. Veijola [6] provided a 
low-frequency, first-order approximation for Qch. 
Including the gas inertial and rarefaction effects, 
the expression for Qch to be used in equation (6) is: 
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ρω

       (9) 

Expressions correcting for the end effects 
(supplementary pressure drop at the margin of 
the plate) have also been proposed in the 
literature–they consist in artificially increasing 
the dimensions of the plate with a length 
proportional to the gap. 
 

2.2. Gauge Finite Element Method for 
Harmonic Hncompressible Viscous Flows 

 

Faced with this bewildering choice of squeeze 
film models based on various approaches, 
approximations and limitations, a MEMS 
designer would greatly benefit from a full flow 
simulation around the entire vibrating structure, 
at least as a mean to check various assumptions 
underlying the SFD models. The first difficulty 
is that all Navier-Stokes numerical solvers that 
we are aware of do not propose a harmonic 
solver. The second difficulty is the high 
computational cost of 3D flow simulations 
around a complex MEMS structure. At variance 
with the wide-held belief that such flow 
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simulations are not practical, we will show that 
the use of the gauge finite element method (as 
proposed by E and Liu [7] and closely related to 
the impulse formulation of the Navier-Stokes 
equations) will permit us to obtain by direct 
harmonic simulation the damping of a complex 
structure. Due to space constraints, we will 
discuss here only the incompressible case.  

The Navier-Stokes equations are given by: 
0;)( =⋅∇Δ+−∇=∇⋅+

∂
∂ uupuu

t
u μρ      (10) 

where u is the velocity, p the pressure, ρ the 
density and μ the dynamic viscosity of the fluid. 
Assuming that the amplitude of vibration is 
small, we can then neglect the nonlinear 
convection term; assuming further harmonic 
expressions for velocity and pressure: 

),exp( tjuu ω=  )exp( tjpp ω= , one obtains: 
0; =⋅∇Δ+−∇= uupuj μωρ       (11) 

Following E and Liu [7] we now introduce 
auxiliary variables a andϕ (gauge variable) by: 

ϕ∇+= au                   (12) 
When introduced in the previous equations, 

we obtain the following system of equations: 
aaja ⋅−∇=Δ=Δ ϕω ;      (13) 

and the pressure can be determined after solving 
for the auxiliary variables by: 

ωρϕϕμ jp −Δ=         (14) 
 

The advantage of this gauge formulation is 
that we can fix arbitrary the gauge ϕ  by 
choosing freely the boundary conditions for it, 
contrary to other numerical implementation 
where the determination of correct boundary 
conditions for some auxiliary variables (like 
pressure for projection methods or vorticity for 
stream-vorticity methods) poses big problems. E 
and Liu [7] have proposed to use either Dirichlet 
or Neumann boundary conditions for the gauge 
variable; our numerical tests have shown an 
advantage for the latter: 

τ
τ
ϕτϕ

⋅=
∂
∂

+⋅⋅=⋅=
∂
∂

bb uanuna
n

;;0      (15) 

 
This condition is applied on a boundary 

where the velocity 
buu = is imposed with n the 

boundary normal and 21, ττττ ==  the boundary 
tangential directions. 

In practice, one has to solve the system (15) 
of elliptic equations, coupled only at the 

boundary or through volume terms. One can use 
an iterative strategy, where one solves in turn 
each equation separately (and where one can 
accelerate the overall convergence by using the 
extrapolation strategy for the gauge variable as 
proposed in E and Liu [7]) or directly the 
coupled system.  

Once the solution is found, the total force 
acting on a body of with boundary S can be 
readily determined from: 

 

dS
n
anjF

S
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The merit of this expression lies in the use of 

precisely those terms that are determined with 
higher precision in a finite element solution (like 
for example the normal derivative at a boundary 
of a primary variable). Similar expressions have 
been found for the total moment acting on rigid 
body and also for the total mechanical work done 
by fluid forces on a flexible vibrating structure.  

The gauge method has been implemented in 
COMSOL® and validated using a series of 
simple problems with analytical solutions.  We 
note that slip conditions typical for rarefied flows 
with Knudsen number 0.01<Kn<0.1 are also 
easily implemented in the gauge formulation; on 
the contrary compressibility effects pose a much 
more difficult challenge and will be discussed 
elsewhere.  
 

2.3 Thermo-Elastic Damping (TED) 
 

Thermo-elastic damping (TED) is a source of 
intrinsic damping in MEMS, driven by the 
coupling between thermo-elasticity and elasto-
dynamics. When a cyclic stress is applied to a 
structure, it leads to an oscillatory deformation. 
Some parts of the structure will be compressed 
(and heated-up) while other parts will be 
stretched (and cooled-down). These induced 
temperature gradients will generate a heat flow 
and an irreversible loss of energy. A 
characteristic time scale of this phenomenon is 
the thermal relaxation time constant - the 
effective time that the material requires to relax 
after an applied constant stress or strain. When 
the vibration frequency is close to the thermal 
relaxation frequency, the TED dissipation effect 
is most pronounced. 

The coupled equation of heat conduction in 
terms of normal strains is: 
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where ρ = material density, Cp = heat capacity at 
constant pressure, κ = thermal conduction,  α = 
thermal expansion coefficient, εi = normal 
strains, E = Young’s modulus, ν= Poisson’s 
ratio, T0 =nominal equilibrium temperature 
(ambient). Consider a harmonic variation of 
temperature tjeTT ω~

= , where λω −=j is the 
complex angular frequency. Then, the heat 
conduction equation can be expressed as: 

( ) ( )elastp STTCjT 0
~~
+−=∇∇− ρωκ      (18) 

where the right-hand side is the heat-source term 
and Selast is the elastic entropy per unit volume. 
 

2.4. Other Losses 
 

When a mechanical element moves it can 
generate sound waves that will lead to another 
potential damping mechanism-acoustic radiation.  

There are two distinct regimes for acoustic 
radiation, characterized by mechanical 
frequencies either smaller or larger than the 
“coincidence” frequency. At this frequency, the 
characteristic wavelength of the mechanical 
structure becomes comparable to the wavelength 
of pressure waves, and this marks the onset of 
strong acoustic radiation, with high energy losses 
that may dominate other damping mechanisms. 
Many vibrating MEMS structures operate well 
below the coincidence frequency, where acoustic 
damping is generally negligible compared to 
other damping mechanisms. However, operation 
at higher modes at ultrasonic frequencies will 
approach coincidence.  

Support losses arise from resultant shear 
forces and moments at the end supports, which 
transfer energy from the vibrating element to the 
substrate, by exciting elastic waves; these waves 
carry part of the vibration energy that will be 
dissipated into the substrate. For example, the 
resonator (Fig.1) is clamped to the lateral wall by 
a stem. The resonator is symmetric and vibrates 
in a balanced way without moving its center of 
mass. In this case, the shear forces and moments 
cancel and the support (stem) losses are 
minimized. 

 
3. ACOUSTIC  PRESSURE  DRIVE 

 

As discussed In each plane perpendicular to 
the generating beam, we suppose that the source 
is Gaussian; the waist of this Gaussian increases 

along the generating beam but the total acoustic 
energy transferred in each plane is a constant WL. 

The acoustic harmonic drive of the device is 
modelled by the following equation in 
cylindrical coordinates centered on the acoustic 
beam axis: 

2

2

2
2

)(
2exp

)(
22

zw
r

zw
W

jpcpj L −
=Δ+

π
ωω  

 
(19)

where WL=1.65×10-4 W/m represents the total 
acoustic power in each plane perpendicular on 
the z axis and w the waist that is given by: 

( )[ ] 2/122
00 /1)( wzwzw πλ+=  (20)

 
4. ANALYTICAL  MODEL 

 

When operated in an open environment with 
no walls and substrate effects, our device is 
amenable to a full analytical solution; because of 
space constraints we present here only the main 
steps. Radiation damping will be neglected in the 
present analytical model.  

Petra et al. [8] have provided an analytical 
solution for the acoustic pressure generated by a 
constant waist beam in infinite space. In our 
case, the waist varies only slowly with z, and 
their solution can be used in each plane 
perpendicular to the acoustic beam axis: 
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where  J0 and Y0 are Bessel functions, crs /ω=  
and: 
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The free vibrations of each tine can be 

modelled by a clamped-free beam with the first 
eigenmode given by: 

( )
)()(
)()(()()()()(

asash
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+
+

−+−=Φ  

where x is the position along the beam 
normalized by the length L, c,s,ch,sh are the 
trigonometric and hyperbolic cos and sin 
functions and a solves 1+c(a)ch(a)=0, while the 
corresponding eigenfrequency is given by: 

A
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L
a

ρ
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2

0 =  

where E is Young modulus, A, I  are cross-
section area and moment of inertia and ρ  is the 
solid density. 
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When the free modes are well separated and 
damping is small, one can solve the damped 
vibrations around a mode by supposing that the 
beam movement is proportional to the 
eigenmode Φwith an unknown amplitude A. 
Using the weak formulation of the structural 
equations with test function equal to the complex 
conjugate of Φ , one easily obtains: 
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22
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where the integrals represent the mechanical 
work done by drive or damping forces and the 
kinetic energy respectively. Noting  

ir
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      (21) 

the normalized mechanical work of the damping 
forces, one can follow Sader [9] to show that the 
amplitude |)(| ωA  dependence is similar to that 
of a standard resonator if one defines the 
resonance frequency rω  and quality factor Q by: 

i
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12
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2 +
=

+
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For a beam vibrating in an open viscous gas, 

one can use the methodology proposed by Sader 
[9] to estimate the viscous damping. One 
supposes that the flow around the beam at a 
certain position along the beam is well 
approximated by the flow around a rigid beam of 
the same section having a harmonic displacement 
equal to that of the original beam at the said 
position. One can show that in general, the 
hydrodynamic loading force is: 

UbF ahydro )(
4

22 ωωρπ
Γ=  

where b is the nominal width of the beam 
section, U is the amplitude of the movement 
perpendicular to the beam axis and )(ωΓ  is a 
dimensionless “hydrodynamic function”. For a 
beam with circular cross-section of diameter b, 
the analytical solution is well-known [9]: 
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where K0,K1 are modified Bessel functions. In 
our case, the beam has a rectangular cross-
section with width T; we approximate it with a 
cylinder with diameter b=1.4T. 

Thermoelastic damping for a clamped-free 
beam has been analytically evaluated by Lifshitz 
and Roukes [10]: 
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where α  is the thermal expansion coefficient, 
κ the thermal conductivity and Cp the volumetric 
heat capacity. 

Because the eigen-mode is known, we can 
easily calculate the strains at the top surface of 
the beam, transform them to surface charge 
density eρ  (using conditions of zero voltage on 
top and bottom surfaces of the ZnO layer) and 
calculate the generated current and the effective 
piezoelectric coupling constant: 

)1(/Φ== ∫ IdAI e βρω  

The above equations have been implemented 
in Octave. The theoretical eigenfrequency was 
36.6kHz. The theoretical Q-factor for 
thernoelastic damping was 142000 and will be 
further neglected; the effective piezoelectric 
coupling constant was 18µC/m (including both 
tines). We also obtained the following viscous 
damping and mass loading in open air: 

 
Table 3. Analytical model results 

 

Pressure 
[atm] 

Quality 
Factor 

Frequency shift 
[Hz] 

Current 
[pA] 

1 10734 -7.9 107 
0.5 15428 -4.3 153 
0.2 23771 -1.9 238 
 

5. FE  SIMULATIONS 
 

The FE results have been obtained by using 
COMSOL® Multiphysics, a widely used 
commercial package that implements the finite 
element discretization scheme. We applied it for 
the following problems: 

(1) Undamped eigenmodes and piezoelectric 
sensing 

(2) Acoustic pressure generation and drive 
(3) Acoustic re-radiation 
(4) 2D hydrodynamic function using the 

gauge solver 
(5) Viscous damping using SFD and 3D 

gauge solver 
(6) Thermoelastic damping  
Solving the eigenfrequencies of the 

undamped system provided the target values 
around which the complex eigenfrequencies of 
the damped system were searched for. The 
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complex eigenvalue ωλ j−= of a damped system 
contains information about both the resonant 
eigenfrequency and the Q-factor: 

( )
( )λ
λλω

Re2
Im|,Im| == Qr

 

In cases where this method was not feasible in 
COMSOL (like the gauge solver), we used the 
method described for the analytical model and 
based on expression (21-22). 

 
5.1. Undamped Modes and Piezo Sensing 

 

The un-damped eigenmodes are purely piezo-
mechanical, neglecting any other potential 
interactions. All the boundary conditions were 
set “free”, except the bottom face of the Si wafer 
that was “fixed”. 

 

 
Fig. 3. Top-view of driving/sensing mode at 37658 Hz; also 
shown the surface charge density on top of the ZnO layer. 

 
 

The symmetrical in-plane bending mode (see 
Fig. 3) has a frequency of 37.7kHz and a total 
piezoelectric coupling constant of 15.1µC/m, 
smaller than the theoretical value of 18µC/m 
(this is due to the fact that ZnO layers do not 
reach the margins of the tines, where strains are 
the largest). The unsymmetrical mode is at 
30.2kHz and has zero coupling constant. 
Changing the stem length does alter this last 
frequency, but does not affect the symmetric 
mode. This provides a design mean to effectively 
separate the two modes, valid also at lower Q 
factors. 

 
 
5.2. Acoustic Pressure Drive and  

Re-Radiation 
To model acoustic pressure drive and re-

radiation, we have modelled the air around the 
device; silicon walls were considered as hard 
sound boundaries. The top was considered open 
and modelled as a half cylinder with radiation 
boundaries eliminating the reflection of acous-tic 
outgoing waves. The same approach can be 
applied to package that replaces the open top.  

 

 
 

 
Fig. 4. Amplitude and phase of acoustic drive pressure 
along the tines - upper curve corresponds to the tine’s 

boundaries facing the acoustic beam, lower curve  
to the distant ones. 

 
 
Fig.4 shows the amplitude and phase of the 

acoustic pressure along the tine lateral faces. The 
pressure difference between the top and bottom 
curves in Fig. 4 is the actually driver of the 
resonator; the small phase difference will slightly 
change this pressure difference. It is also clear 
that an improved design will position the 
acoustic pressure source such that the maximal 
pressure acts on the tine tip. Because the waist of 
the acoustic source increases strongly with 
distance along the tines, the pressure drive is 
almost zero at the other tine tip; a collimated 
acoustic source will probably increase the 
driving force. The lateral wall and the substrate 
enhance the acoustic pressure by reflecting back 
acoustic waves. For example, the acoustic 
pressure close to the substrate is 50% larger than 
that close to the top face. 
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Fig. 5. Acoustic pressure drive (top) and radiation (bottom). 
 

To model acoustic re-radiation we need to 
couple the structural and acoustic physics– 
acoustic pressure acts on the tine boundaries 
while the tine normal accelerations are acoustic 
sources. We have used the damped eigenvalue 
solution corresponding to the structural free 
mode and obtained a radiation Q factor of 
858752 and a frequency shift of -9Hz. Fig. 5 
shows the difference between acoustic drive and 
re-radiation at the resonant frequency–while in 
the first case only one tine tip is practically 
driven by the acoustic pressure, in the second 
case both tine tips contribute equally to the re-
radiation, each being equivalent to a dipole 
source. In the sequel we will neglect the acoustic 
radiation damping.  
 

5.3. Viscous Damping Using  
2D Gauge Solver 

 

Passing now to the viscous damping, we first 
consider some 2D flow simulations that can 
strongly improve the predictions of the analytical 
model. Indeed, the most drastic approximation 
was to replace the rectangular cross-section of 
the real device with a circular one, in order to use 
some analytical expression of the hydrodynamic 
function. For the case of a ribbon, Sader has used 
earlier results obtained by Tuck [11] and 
presented them under the form of a fitted 
correction function that multiplies the circular 
hydrodynamic function. Actually, the same 
solution could be applied to an arbitrary cross-
section but the methodology is rather complex–
one needs to solve an integral equation posed on 
the cross-section boundary, equation obtained by 
Tuck [11] with the help of the vorticity-potential 
formulation of incompressible harmonic flow. 

We propose a much simpler solution that uses 
the 2D gauge formulation to solve numerically 
for the flow around an arbitrary cross-section. 
Fig. 6 shows the real and imaginary parts of the 
hydrodynamic functions obtained for the 
cylinder, ribbon and rectangle, all with the same 

characteristic length of 125µm. The analytical 
result for the cylinder is not included, as it is 
virtually the same as the numerical one (relative 
errors around 0.1%). It appears clearly that both 
the mass loading and viscous damping are much 
larger for our rectangle than for both cylinder 
and ribbon.  
 

 
Fig. 6. Hydrodynamic functions for several cross-sections, 

obtained using the gauge harmonic solver. Reynolds 
number was varied by changing the frequency. 

 
But we can do much better – we can actually 

include the surrounding walls, gaps, etc., as 
shown in Fig. 7, to obtain the “best” 
hydrodynamic function to be used with the 
analytical model. It appears that while the 2µm 
gap respects as expected all suppositions of a 
slide film model, the flow in the lateral gaps is 
far from that predicted by squeeze film model. 
Indeed, the pressure should be constant across 
the film, while Fig. 7 shows that is not at all true. 
Also, shear deformation on the top will add to 
the friction, and will become comparable to the 
gap friction when the gap is increased to large values. 
 

 

 
Fig. 7. Flow around a tine section vibrating horizontally, 
obtained with the 2D gauge solver. The gap and lateral 
walls are included. Top: pressure; bottom: shear rate. 
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5.4. Squeeze-Film and 3D Viscous 
Damping 

 

We next consider the full 3D structure. It is 
rather easy to include squeeze/slide film 
damping, using the pre-defined COMSOL® 
mode “Solid Stress-Strain with Film Damping” 
with a frequency response analysis, in which the 
frequency was derived from the eigenvalue. Full 
Reynolds model equation (6) with flow rate 
expression (9) was implemented.  The bottom of 
the tines experiences slide film damping in the 
gap, while the lateral faces experience squeeze 
film damping. The limits of SFD models appear 
when we increase the substrate gap – it is then 
unclear what edge condition to apply for the 
squeeze film on the lateral faces. Indeed, for 
small gaps, the substrate acts as a wall and the 
entire fluid must enter/exit through the top, as 
seen in Fig. 7. For large gaps, the bottom edge 
becomes an open one while for intermediate 
values, gas will escape through the gap itself and 
this is difficult to model. 

 

 
Fig. 8. Flow simulation using 3D gauge solver. Top: shear 

rate in the gap; bottom: pressure on the lateral face.  
 

We have therefore run a full 3D simulation 
for the harmonic flow of air around the entire 
structure. Fig.8 shows that end effects are 
important both in the gap and the lateral face, 
with damping forces decreasing close to the tip 
with maximal displacement – these effects are 
missing in both the 2D hydrodynamic function 
and the SFD models.  

 
5.5. Thermoelastic Damping 

 

The damped eigenmodes due to TED have 
been calculated by coupling the thermal and 
structural physics. A damped eigenfrequency 
analysis provides a Q-factor of 127674, less than 
the theoretical value of 142000 (see a possible 
explanation in [12]). Still, TED can be neglected 
compared to viscous damping. 
 

5.6. FE Results 
 

Table 4 shows the Q-factors for viscous 
damping models. It appears that even for this 
simple geometry, SFD overestimates the Q-

factor; the analytical model combined with FE 
evaluation of the hydrodynamic function is 
closer to the full 3D simulation. If the entire 
substrate is removed beneath the tuning fork, 
then the total Q-factor combining all damping 
mechanisms is 4520 giving a current of 40 pA at 
atmospheric pressure. 

 
Table 4. FE model results 

 

Design 3D Flow Analytical + 2D SFD 
2 µm gap 2204 2911 5819 
5 µm gap 2841 3821 11014 
9 µm gap 2913 4188 14916 

100 µm gap 3672 5438 28342 
300 um gap 4687 7642 N/A 

Free 5515 7996 N/A 
 

6. CONCLUSIONS  AND  FURTHER 
DEVELOPMENT 

 

Damping effects are important in MEMS 
based sensors and actuators. Energy loss 
mechanisms like radiation, viscous and 
thermoelastic damping in complex structures can 
be well handled in 3D FEM in different regimes, 
including corrections for rarefaction, inertial and 
slip-boundary effects. At variance with the wide-
held belief that full flow simulation for a 
complex MEMS structure are not practical, we 
have shown that the use of the gauge finite 
element method (implemented in COMSOL®) 
permits the full 3D modelling of real structure.  
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