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ABSTRACT
Distributed arithmetic structures are an alternative to

the use of conventional multipliers in hardware imple
mentations of digital filters. This paper compares the
various methods of using distributed arithmetic in
implementing fixed point digital filters. We introduce as
a measure of hardware complexity the chip area needed
to fabricate competing designs using nMOS technology.
Comparisons of alternate realizations in hardware are
also made. These comparisons are based on equating the
output signal quality of each design. We show that tradi
tional measures of complexity (such as the number of
multipliers per output sample) do not agree with com
plexity measures based on chip area.

INTRODUCTION
The synthesis of a digital filter includes a number of

steps. These are shown schematically in Figure I. From a
set of design specifications one first obtains an external
characterization of the filter usually in the form of a
transfer function H(z). This process can be carried out by
anyone of several methods and is often done by a compu
ter program. Given the transfer function of the desired
digital filter, the next step is to choose a realization of the
transfer function. A realization is a specification of the
internal structure of the filter and can be given in terms of
a signal flow graph or (assuming there are no delay free
loops) in terms of a state variable model {A,B,C,D} as
defined in (1).

x(k + 1) == Ax(k) + Bu(k)
y(k) == Cx(k) + Du(k) (1)

In (1), x(k) is the vector with components equal to the
contents of the internal storage registers (unit delays) of
the filter.

How does one choose a particular realization for a
given H(z)? In the design of fixed point digital filters the
choice usually is based on minimizing the effects of finite
register lengths. These effects include roundoff noise,
coefficient sensitivity, overflow oscillations, and zero
input limit cycles [1-5]. After synthesizing a particular
realization {A,B,C,D}, one is faced with another design
decision. What hardware implementation should be
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Figure I. The design steps in symthesizing a digital filter
for hardware implementation.
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used? This choice is based on two primary factors: speed
or data throughput and hardware cost or complexity.

Hardware designs which use monolithic multipliers
offer few alternatives beyond rearrangement of the basic
processes of multiplication, addition, and storage. Rec
ognizing that a digital processor is a finite-state machine
leads to another form of hardware implementation called
distributed arithmetic implementation [6-7]. In these
realizations the processes of multiplication and addition
are replaced by a table look-up of precalculated partial
products. This can be viewed as a trade of conventional
multipliers for memory storage.

There are many alternative distributed arithmetic
designs for a given realization {A,B,C,D} [6-7]. The
purpose of this paper is to compare several possible dis
tributed arithmetic implementations against the usual
multiplier designs for a second-order digital filter.

DISTRIBUTED ARITHMETIC IMPLEMENTATIONS
By way of background, consider the basic computation

of an inner product of the form
L

y == ~ aixi (2)
i==1

In any digital implementation of (2), all scalars will be
stored in finite length registers of B bits. If we assume x is
represented in a fixed-point binary representation such as
2's complement, we can write (2) in the form

L B-1
y== ~ ai ~ 2- kxik

i==l k==O

where xik is the k~h bit of xi (either 0 or 1). Interchanging
summations gives

B-1 L
y== ~ 2-k ~ aixik (3)

k==O i==1

The inner sum over i can be interpreted as a function of ¢

of L binary arguments (the Xi
k).

That is,
L

¢ (x ', x-', ... , xL) == ~ aixi k (4)
i==l

the function ¢ takes on 2L possible values which are all
the possible sums of the ai's. We can thus rewrite our
original inner product (1) as

B-1
y== ~ 2- k ¢ (x', x2, ••• , xL) (5)

k==O

Equation (5) has several possible hardware implemen
tations. Perhaps the simplest consists of the following
scheme. The 2L values associated with ¢ are precalcu
lated and stored in memory. The data vector x is used to
generate an address for each of the B bit positions starting
from the lowest order bit. The address is used to obtain
the correct value of ¢ for each bit position. These B
values of ¢ are then accumulated with the appropriate
right shift as dictated by the factor 2-k in (5). After B

accumulations the result is y. Figure 2 is an implementa
tion of (5) for L == 3.

There are many variations of this basic scheme [7]. The
alternatives are combinations of two simple observa
tions. These are:
(a) The sum of L terms in (2) can be broken down into

several smaller sums, say, k sums of M, terms each,
K

i==l, 2, ... , K, with L == ~ Mi'
i==1

(b) The function ¢ can be addressed with one or more bits
from each data word xi on each clock cycle.

Figure 2. A distributed arithmetic structure for evalua
tion of a single state equation in (6). This implementation
corresponds to realization #1 in Tables 1 and 3.

The partitioning of the sum of L terms into K sums of
M. terms reduces the memory required to store ¢ from 2L

K
words to ~ 2Mi words. This can be a significant savings

i==1
in the storage needed to implement (2). For example,
if L == 10 the storage needed for the direct implementation
of a single sum is 2 10 == 1024 words. If, on the other hand,
the sum is broken into 2 sums of 5 terms each, the storage
needed is 2 x 25 == 64 words. The cost for this partitioning
is an extra addition to add the results of the two sums
together. This requires one additional clock cycle to
obtain the final result.

Addressing the memory storage with more than one bit
from each data sample Xi is another method of implemen
tation. This is effectively pre-computing a larger table of
partial results. The larger table increases the speed of the
processor at the expense of an exponential growth in the
memory size. If we address the memory with p bits from
each data word and there are N groups in each register
(Np==B), the required size of the memory is 2PL words. If
we have also partitioned the original sum of L terms into
K sums of M, terms, i == 1,2, ... , K~ the size of the memory

K K
PM·

is ~ 2 1 words, where L == ~ M, and each address
i==1 i==1

consists of P bits from each data word Xi' Figure 3 depicts
a distributed arithmetic structure for the case L == 3, K ==
2, and P == 2 for the computation in (2).
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Of the many possible implementations .using distrib
uted arithmetic, which implementation is the fastest and
least complex for a digital filter? How does an implemen
tation using monolithic multipliers compare to the dis
tributed arithmetic structures in terms of speed and
complexity?

Figure 3. A distributed arithmetic structure for evalua
tion of a single state equation in (6). This implementation
corresponds to realization # 12 in Tables 1 and 3.

Figure 4. The signal flow graph for a general second
order state variable digital filter.

THE IMPLEMENTATION OF
SECOND-ORDER DIGITAL FILTERS

In order to compare various hardware implementa
tions, let's consider the problem of implementing a
second-order digital filter. The first question we must
answer is what realization {A,B,C,O} should we choose
to implement? The general state-space representation of a
second order digital filter is given in (6), and the corres
ponding signal flow graph is shown in Figure 4.

(6)

whereA== [all a I2],B== [bb l],C==[C
IC2J,O==d.

a2I a22 2
The commonly used direct form is included in this class

by setting a II == 0, a I2 == 1, b I == O. The direct form, in
general, has the smallest number of multipliers. How
ever, finite register effects are the most severe for these
structures. Realizations in the form of (6) can be synthe
sized to minimize roundoff noise, reduce coefficient sen
sitivity, and eliminate autonomous overflow oscillations
[4,8,9]. For these reasons we will base our comparisons
on a realization {A,B,C,O} given by (6) which requires,
in general, 9 noninteger multiplies for each output sample
y(k) instead of the 6 multiplies used by the direct form.

COMPARISONS OF
DISTRIBUTED ARITHMETIC STRUCTURES

In order to determine the best distributed arithmetic
structure and to compare these structures with the more
usual multiplier structure, we must choose a method for
measuring the complexity of a hardware implementa
tion. We have used two methods for measuring the hard
ware complexity of our designs.

The first measure is based on the cost of off-the-shelf
IC's (Schottky TTL chips). This analysis is, of course,
dependent on current technology and the pricing struc
ture of various IC's. Since our objective is to obtain an
ordering of the various implementations, the absolute
numbers are not of primary importance. It is rather the
relative size of the numbers that matters. In order to
include the speed of processing of each implementation in
our comparisons, we shall use as a figure of merit F I'
where

F I == (cost of the implementation) •
(time to compute an output sample) (7)

The results of this comparison are summarized in Table
1. All numbers pertain to implementing one of the equa
tions in (6). An implementation of the complete filter is
essentially a replication of the implementation of one
equation (three times).

There are 19 distributed arithmetic structures com
pared in Table 1. The structures are the result of combi
nations of partitioning the sum of three terms into
smaller sums and the use of one or more bits as the
address for the memory storage of the ¢ function. We
assume the word length is 12 bits. P is the number of bits
in a word used to address the memory. N is the number of
groups in each word so that NP is always 12. We have
restricted P to those values that divide 12 with no
remainder. In principle this restriction is not necessary.
One could, for example, address the ¢ function in two
steps; first with 7 bits and then with 5 bits, add the results
with the correct shift, 2-7, to obtain y in two clock cycles.
It is easy to show, however, that this latter method is
more complex than using first 6 bits, followed by 6 bits
again. To address with 7 bits followed by 5 bits requires a
memory of (2 7 + 25) words. If one uses 6 bits, followed by
6 bits to address the memory, the memory required is
reduced to (26 + 26) words. Thus, since both schemes
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require the same amount of time, the scheme using the
smallest amount of memory is better.

The implementations can be subdivided into groups
which are characterized by the number of sums. There are
three possibilities. One sum of three terms (A), three
"sums" of one term (B), and two sums consisting of one
and two terms (C). In addition there are three implemen
tations which are highly parallel and do not fit into the
above three categories. These are entries 17, 18 and 19.

There are some obvious limitations of this analysis
based on a figure of merit that employs cost as a measure
of complexity. Because of our desire to increase speed as
much as possible, we have used high speed Schottky TTL
ROM's. The largest size memory currently available on a
single chip with 50 nanosecond access time has a maxi
mum of 10 address lines.

B
If PL > 10 (where L == k M i) , several memory chips

i==l
must be connected together with an enabling pulse gener-
ated by an address decoder to select the correct memory
address. This arrangement increases memory access time
and the cost over a single chip memory with the correct
number of address lines. Entries 4-6, 11, 15 and 16 in
Table I suffer from this constraint.

F,
RankingConfiguration Speed time. cost

Pkg. (word rate) Cost to compute

No. N P Count MHz $ one word F,

All

12 1 21 2.56 43.40 16.92 I

6 2 22 2.86 68.04 23.81 3

4 3 22 3.08 80.49 26.16 6

3 4 44 3.03 260.00 85.80 15

2 6 603 4.545 13.183.00 2900.00 17

1 12 154xlOo 6.58 3440x 10° 522.8x 10° 19

B{ i
6 2 33 2.86 120.93 36.03 12

4 3 33 4 120.93 30.23 9

3 4 33 5 120.93 24.19 4

10 2 6 36 4.76 140.88 29.58 8

II I 12 102 6.67 716.73 107.51 16

f2
6 2 27 2.38 73.16 30.73 10

13 4 3 28 4.0 97.81 24.45 5

14 3 4 28 5.0 97.81 19.56 2

15 2 6 48 3.97 283.36 71.41 14
C 16 I 12 38xlOJ 8.43 840x 10~ 1.008x10° 18

17 43 8.0 226.74 28.34 7

18 87 7.69 388.50 50.51 13

19 57 7.69 249.78 32.47 II

Table 1

A: I group of 3 registers
B: 3 groups of I register
C: 2 groups containing I and 2 registers, respectively

For IIR digital filters, the recursive nature of the equa
tions in (6) means one must compute an entire word
before reloading the data registers to generate the next
address for the stored ¢ function. Some overlapping of
computations can be accomplished in some of the paral
lel structures by including additional registers in the
adder tree which is needed whenever the sum of three
terms in (6) is broken into smaller sums. By including

these additional registers, the shift and add process can be
performed concurrently with the table look-up. The
details of this pipelining depend on the actual distributed
arithmetic design selected. We've included this pipelining
into the designs presented here.

Comparisons Based on the Figure of Merit F1

An examination of Table I indicates that the best
distributed arithmetic structure is the design that
employs a single bit from each of three data registers to
address a stored ¢ function of 23 == 8 entries. The designs
that use more than one bit from each data register to
increase the data throughput cannot make up in speed for
the more complex hardware needed.

Entries 17, 18 and 19 deserve a special word of explana
tion. These three realizations are highly parallel imple
mentations and offer the designer the highest word rates
with a slight premium in complexity. (Entry 16 is also
very fast, but much too costly. We've included it only to
indicate the large variations that are possible with dis
tributed arithmetic structures.) If one is interested prim
arily in data throughput without regard to cost, these
realizations are good candidates. Entries 17 and 18 are
shown in Figure 5 and 6, respectively. Entry 19 is similar
except that 2 bits from each register go to each ROM,
resulting in 6,64 x 12 ROM's.

One obvious question at this point is how do these
distributed arithmetic structures compare to a more con
ventional multiplier structure? Again assuming we
wished to realize the recursive equations (8) with a 12 bit
word length, we could realize the state equations in two
ways. One method would be to employ three multipliers
working in parallel. Disregarding the control circuitry,
this realization would result in a figure of merit of
F I == 84.15 - five times as poor as the best distributed
arithmetic structure. Using one multiplier multiplexed in
time increases the figure of merit to 94.5. In either case,
the distributed arithmetic structures are more attractive.
The multiplier structures do offer one very important
advantage - they are more flexible. The flexibility of
distributed arithmetic structures is enhanced by using
RAlvl instead of ROM. We have asumed the use of ROM
to increase speed and reduce complexity.

Chip Area as a Measure of Hardware Complexity
As a second method of comparing hardware struc

tures, we propose to measure complexity of hardware
implementations by the chip area needed to fabricate
competing designs in an nMOS process. This measure of
complexity has the appealing feature that all designs are
reduced to their essential building blocks. This measure
of complexity depends on the particular technology used
in fabrication. However, relative sizes of the areas are
approximately the same for different technologies. Table
2 summarizes the amount of chip area needed for various
functions in nMOS. We've added 40% of the area for
interconnections. (This is a standard design rule-of
thumb for interconnection area.)
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nMOS Area Needed to Implement Some Typical Hardware Functions

Table 2

Figure 6. A distributed arithmetic structure correspond
ing to realization # 18 in Tables 1 and 3. This structure
contains 12 RO M's of 8 x B bits each. The total memory
is 96 x B bits. (This structure implements a single state
equation in (6).)

Speed Chip Rankings
Configuration Word rate Area F2

No. N P (MHz) (mm-) Time. area (F 2) (F,)
f-----

A l I 12 I 2.56 .84 .3276 I I
2 6 2 2.86 1.3125 .4594 4 3
3 4 3 3.08 5.0925 1.655 12 6
4 3 4 3.03 35.3325 11.66 16 15
5 2 6 4.545 2213 486 17 17
6 I 12 6.58 579x 106 88xl06 19 19

8 {

7 6 2 2.86 1.8785 .6575 7 12
8 4 3 4. 1.98 .4950 6 10
9 3 4 5. 2.1825 .4365 3 4

10 2 6 4.76 3.3975 .7135 8 8
II I 12 6.67 36.3375 5.45 14 16

c{
12 6 2 2.38 1.4438 .4043 2 10
13 4 3 4. 1.8825 .4706 5 5
14 3 4 5. 3.9525 .7905 9 2
15 2 6 3.97 36.375 9.1665 15 14
16 I 12 8.43 141xlO3 16. J7xJ03 18 18
17 8. 19.425 2.4281 13 7
18 7.69 6.435 .8366 II 13
19 7.69 6.255 .8132 10 II

A: I group of 3 registers
B: 3 groups of I register each
C: 2 groups containing I and 2 registers, respectively

Table 3

COMPARISONS OF
DIGITAL FILTER STRUCTURES BASED ON F2
We have compared the implementation of state varia

ble structures as given by (6) using monolithic multipliers
and distributed arithmetic. There are any number of
digital filtering structures we could use as a basis for
comparison. We could ask which structure among all
structures implemented using distributed arithmetic has
the best figure of merit F2? This question cannot be
answered without some additional constraints. The
essential problem is this: the realizations one wishes to
implement have varying internal noise properties (caused
by finite realization length). Thus given two realizations
one should adjust the word lengths so they have the same
output noise caused by finite register length. These two
realizations (with perhaps different word lengths)
implemented using distributed arithmetic (or some other
method) give a fair comparison of the hardware complex
ity of the two realizations.

Table 3 summarizes the comparisons in terms of the
figure merit F2 where

F2 == (time to compute one word) •
(chip area in nMOS) (8)
There are some changes in the orderings of the top

distributed arithmetic realizations. However, the changes
are minor. The N == 12, P == I realization is the best
implementation under both figures of merit. The top five
realizations as a group under both measures are the same,
but for one exception. Interestingly, it appears that the
off-the-shelf price of a chip is closely related to the chip
area. Entries 5, 6 and 16 indicate that there can be very
large variations in complexity using distributed arith
metic structures.

nMOS Area Needed

.002 mrn

.031 mrri

.09 mrn

.045 mrri

.29 mrn-'

.36 mm2

1.96 mm2

Function Description

Inverter
1 Bit Full Adder
Bonding Pad
8 Bit Parallel Register
8 Bit Full Adder
32 Bit ROM
16 x 16 Bit Multiplier

Figure 5. A distributed arithmetic structure correspond
ing to realization # 17 in Tables 1 and 3. This highly
parallel structure contains 4 ROM's which store 29 x B
bits resulting in a total memory of 4608 x B bits. (B is the
number of bits in a data word. This structure implements
a single state equation in (6).)
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Table 4

The number of bits saved as a function of filter
bandwidth for low-noise structures as compared
to the direct form structure

nMOS area == 1.388 mm
word rate == 270 nsec

:. F2 (Low Noise Form) == .375
And so, even though the direct form has three fewer

multipliers, the difference in word lengths means the
low-noise structure is less complex (in terms of chip area).
This advantage will disappear as the bandwidth of the
filter is increased. The crossover point in complexity
between these two different realizations occurs for a
bandwidth of approximately 5% of the foldover fre
quency. The complexity advantage of the low-noise
structures vis-a-vis direct forms is reduced as bandwidth
increases because the internal roundoff noise is less

This method of comparison will depend on the exter
nal specifications of the filter. We know that finite regis
ter effects become more severe as the poles of the filter are
brought closer together. A narrowband low pass filter is
the most difficult filter to implement in terms of finite
length register effects [1,2]. For example, let's assume we
wish to build a sixth-order Butterworth filter with a
bandwidth of 2% of the foldover frequency fs/2. Let's
compare a cascade of second-order direct forms with a
cascade of second-order optimal low-noise forms [1,2].
(These structures have the same topology as those in (6).)
Assuming a word length of 12 bits for the direct form, the
corresponding low-noise forms can use 4 bits/ register
less and obtain the same noise performance. (This figure
can be obtained from the graphs in [2].)

The direct form is simpler in terms of the number of
multipliers used. However, the word lengths are longer.
The word length difference increases as the bandwidth of
the filter decreases. Using F2 as a figure of merit for the
direct form we obtain

nMOS area == 1.478 mm
word rate == 390 nsec

:. F2 (Direct Form) == .576
The above figure of merit is for a single isolated second
order section implemented using distributed arithmetic.

The corresponding figure of merit for the low-noise
structure is
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