
Simulating the Spread of Infectious Disease over
Large Realistic Social Networks using Charm++

Keith R. Bisset∗, Ashwin M. Aji∗†, Eric Bohm‡, Laxmikant V. Kale‡
Tariq Kamal∗†, Madhav V. Marathe∗†, and Jae-Seung Yeom∗†

∗Virginia Bioinformatics Institute
†Department of Computer Science

Virginia Tech, Blacksburg VA 24061, USA
Email: {kbisset,aaji,tkamal,mmarathe,jyeom}@vbi.vt.edu

‡Department of Computer Science
University of Illinois at Urbana-Champaign Urbana, IL 61801, USA

{ebohm,kale}@illinois.edu

Abstract—Preventing and controlling outbreaks of infectious
diseases such as pandemic influenza is a top public health
priority. EpiSimdemics is an implementation of a scalable
parallel algorithm to simulate the spread of contagion, includ-
ing disease, fear and information, in large (108 individuals),
realistic social contact networks using individual-based models.
It also has a rich language for describing public policy and
agent behavior. We describe CharmSimdemics and evaluate
its performance on national scale populations. Charm++ is a
machine independent parallel programming system, providing
high-level mechanisms and strategies to facilitate the task of
developing highly complex parallel applications. Our design
includes mapping of application entities to tasks, leveraging the
efficient and scalable communication, synchronization and load
balancing strategies of Charm++. Our experimental results on
a 768 core system show that the Charm++ version achieves up
to a 4-fold increase in performance when compared to the MPI
version.

Keywords-Computational Epidemiology; Parallel Efficiency
and Scalability; Agent Based Simulation; Programming Mod-
els; Charm++; MPI

I. INTRODUCTION

Contagion (or diffusion) models are pervasive in social

and physical sciences. Three recent global scale contagions

that have received attention in the media as well as aca-

demic circles are: current and past financial contagions,

failure of the coupled infrastructure system caused by the

Northeast blackout of 2003 and, potential pandemics caused

by avian influenza. Developing computational models to

reason about these systems is complicated and scientifically

challenging for at least three reasons. First, often the size and

scale of these systems is extremely large (e.g., pandemic

planning at a global scale requires models with 6 Billion

agents). Second, the contagion, the underlying interaction

network (consisting of both human and technical elements),

the public policies and the individual agent behaviors co-

evolve making it nearly impossible to apply standard model

reduction techniques that are successfully used to study

physical systems. Finally, in practical situations, multiple

contagion processes simultaneously co-evolve. Going back

to our example of epidemiology, we are interested in at least

two separate contagion processes: spread of disease through

the population and spread of fear, influence and information

in response to the epidemic. Developing scientific foun-

dations for practical global-scale problems requires one to

model systems comprising of multiple interacting behaviors,

networks, and contagions.

MPI (message passing interface) [1] is the de-facto stan-

dard for writing efficient parallel programs for distributed

memory environments such as high performance clusters.

As our previous work [2] has shown, EpiSimdemics, our

epidemiological simulation application implemented using

MPI, achieves acceptable scalability for up to 376 processing

elements when simulating a population of 100 million.

However, this requires significant programmer effort to

perform efficient inter-process communication to effectively

hide their latencies with computation. Moreover, good load

balancing and data locality remain hard programming chal-

lenges. On the other hand, Charm++ [3] is a message-

driven parallel programming framework, where high level

object-oriented principles can be used to write efficient

high performance software. A typical Charm++ program

consists of many parallel objects that communicate among

each other via asynchronous messages. The programmer

specifies the decomposition of the problem only in terms

of interacting objects, and the run-time system handles the

mapping of these objects to the processors. Charm++ also

has several other advantages, such as inbuilt load balancing

and communication optimization frameworks, which signif-

icantly improves programmability along with performance.

We explain some of the main features of Charm++ in

Section III.

In this paper, we describe and evaluate CharmSimdemics,

a novel design of the epidemiology simulation algorithm

using Charm++ in section IV. Our design includes mapping

of application entities to tasks, leveraging the efficient and

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

© IEEE 2012. This article is free to access and download, along with rights for full text and data mining, re-use and analysis.

scalable communication, synchronization and load balancing

strategies of Charm++. We show that our algorithm maps

well to the message-driven parallel object programming

model of Charm++. Our experimental results on a 768 core

system show that the Charm++ version achieves more than

a four-fold increase in performance when compared to the

MPI version.

II. THE EPISIMDEMICS ALGORITHM

A brief description of the EpiSimdemcis algorithm is

given below, and summarized in Figure 1. More details

can be found in [2], [4]. The EpiSimdemics algorithm is

based on information diffusion across a social network. The

network is represented as a bi-partite graph, with people and

locations as the nodes, and edges between them representing

a visit of a location by a person. The processing is separated

into iterations that represent simulated days. Each iteration

has the basic following steps:

1) Person entities determine the locations that they are

going to visit, based on a normative schedule, public

policy, and individual behavior and health state. The

person sends a message to each visited location with

the details of the visit (time, duration and health state).

2) Location entities compute the interactions that occur

between occupants. Each interaction may result in

an infection, depending on a stochastic model. For

the Epidemiological model, disease propagation is

modeled by

pi→j = 1− (1− risjρ)
τ (1)

where pi→j is the probability infectious individual i
infecting susceptible individual j, τ is the duration

1: initialize(); � partition data across PEs
2: partition();
3: for t = 0 to T increasing by δt do
4: foreach individual pj ∈ Pi do � send visits to location

PEs
5: computeVisits(j, t to t+Δt);
6: sendVisits(MBi);
7: end for
8: Visits ← MBi.retrieveMessages();
9: synchronize();

10: foreach location lk ∈ Li do � compose a serial DES
11: makeEvents(k, Visits); � turn visit data into events
12: computeInteraction(k); � Process Events
13: sendOutcomes(MBi);
14: end for
15: MBi.retrieveMessages();
16: synchronize();
17: foreach j ∈ Pi do � combine outcomes of multiple

interactions
18: updateState(j);
19: end for
20: end for

Figure 1. A pseudocode version of the EpiSimdemics algorithm.

of exposure, ri is the infectivity of i, sj is the

susceptibility of j, and ρ is the transmissibility, a

disease specific property defined as the probability of

a single completely susceptible person being infected

by a single completely infectious person during one

minute of exposure. A message is then sent to each

infected person with the details of the infection (time

of infection, infector and location).

3) Each person who was infected uses all of the infection

messages to determine a new health state.

Object-to-process mapping: Before the simulation be-

gins, all the person and location objects are first read and

processed from the input files. Then, they are randomly

distributed among the available MPI processes, i.e. each

MPI process will contain many person objects and many

location objects. All the messages between any person and

location objects are buffered by the corresponding source

MPI process, and then explicitly communicated with the

target process periodically when the buffer threshold is

reached.

III. THE CHARM++ LANGUAGE AND FRAMEWORK

Charm++ [3] is a distributed object oriented programming

environment, where the programmer writes parallel applica-

tions in terms of chare objects. More importantly, Charm++

is a message driven execution model, where the chare objects

interact with each other by message passing via remote

method invocation. The programmer’s view of the program

will be a collection of interacting chare objects, as shown in

Figure 2. However, the physical location of the chares, the

number of running processes and the details of the physical

resources that are being used are all abstracted away by the

Charm++ runtime system, as shown in the Figure 3. The

programmer may also create regular sequential C++ objects

in the same program, which are instantiated and executed

locally and not known to the Charm++ runtime.

Figure 2. Charm++: User View.

A message in Charm++ triggers the associated compu-

tations in the corresponding remote chare object. These

computations in turn can fire off more messages to other

(possibly remote) processors that trigger more computa-

tions on those processors. The Charm++ runtime system

501501508

Figure 3. Charm++: System View.

comes with a scheduler, which continuously chooses the

next message to be processed from the available pool of

messages, and executes the computations associated with

that message. Message passing is asynchronous by default,

which provides a lot of scope for hiding communication

with computation, which is required for any efficient parallel

program execution. Messages can be invoked on remote

chares by calling their corresponding entry methods, which

are explicitly registered with the Charm++ runtime system

via special interface files.

The resource management in the runtime system allows

the programmer to focus on decomposing the problem into

chares (or concurrent objects), their associated messages (or

communication objects), and the readonly global data of

the program. Any Charm++ program begins execution by

creating a single instance of a main chare on processor 0,

and calls its constructor. The main chare is a unique chare

object that is reserved by the Charm++ runtime to start the

program execution. The main chare can then create a number

of other chares, possibly on other processors, which can

simultaneously work to solve the target problem.

In addition, the Charm++ framework provides the pro-

grammer with several novel inbuilt features for chare man-

agement, object migration, dynamic load balancing and

synchronization, about which we discuss briefly below.

Chare arrays: An indexed collection, in one or more

dimensions, of chare elements. The application can invoke

entry methods either on the individual array elements by

using their globally unique indexes or collectively on all

the elements in the chare array (broadcast), or to a sub-

set (section multicast). The Charm++ runtime treats each

element as an individual chares, which means that each

individual chare element can physically reside on different

processors. If the need arises, the application can directly

access the local array element using the ckLocal method,

which returns a C++ pointer to the element if it exists on

the local processor, and NULL if the element does not exist

or is on another processor. The load balancing framework

of Charm++ can redistribute the chare array elements across

the available processors depending on the degree of load

imbalance. Charm++ provides synchronization mechanisms

(the contribute() reduction routine) for elements within

chare arrays. It also provides support for non-blocking

asynchronous reduction and gather operations.

Chare groups: These are special type of chare collection

which guarantees that there will be a single chare element

per processor. These are declared as Groups in the interface

file, and inherit from the base Group class definition. In this

application, we have used chare groups to perform any per-

process initializations.

Quiescence Detection: The Charm++ definition of quies-

cence [5] is the global state of the system where no processor

is executing an entry point, and no messages are awaiting

processing. To detect quiescence in our program, we can use

either the blocking wait function or register for a callback

that is invoked on quiescence. We use this mechanism to

implement a system wide barrier for our application.

Dynamic Load Balancing: Charm++ allows elements in

a chare array to migrate from heavily loaded processors

to lighter ones. The programmer can specify regular time

intervals for migration, or can explicitly invoke the migra-

tion calls and register a callback upon completion of load

balancing. Charm++ maintains a history of the execution

time of each chare and processor and applies one of the

several inbuilt, or user defined, load balancing strategies

to decide the new processor-chare mapping. Measurement

based periodic load balancing [6] is suitable for iterative

applications such as CharmSimdemics, where different it-

erations have different load characteristics and migration is

done periodically at the end of some iterations. In this paper,

we study the effects of the GreedyLB and RefineLB load

balancing strategies.

Packing/Unpacking framework (PUP): This is a data

serialization framework that is included within the Charm++

framework. It is used extensively to marshal message pa-

rameters across processors, or for serializing chare array

elements during migration/load balancing. It can also be

used to write chare objects to disk if the application state

needs to be check-pointed. All the object elements are

packed at the source, and unpacked at the destination.

Charm++ defines special syntax to write the PUP routines

for the chare objects that need to be migrated or serialized.

502502509

IV. CHARMSIMDEMICS: EPISIMDEMICS ON THE

CHARM++ PLATFORM

In this section, we first describe the different entities

in CharmSimdemics and the features of Charm++ that we

used to develop CharmSimdemics. Next, we introduce the

CharmSimdemics algorithm itself and describe how the

different entities interact with each other. We also explain

how Charm++ can be a better platform for our algorithm,

in terms of programmer productivity and performance.

A. Designing the Chares

The EpiSimdemics algorithm involves iterative message

exchanges between the set of person objects and the set

of location objects, for the desired number of simulation

days. In the MPI implementation, we distributed the person

and location objects among the available MPI processes,

and message passing occurred by explicitly calling the MPI

communication primitives. Each MPI process contains many

person objects and many location objects. This means that a

system-wide collective communication was always required

even if only one group of objects required synchronization.

With this approach, different object-to-process mappings can

potentially result in different communication patterns, where

some are more inefficient than the others. On the other

hand, in CharmSimdemics, we first create two types of

chare arrays called LocationManager and PersonManager to

handle location and person objects, respectively, as shown in

Figure 4. We then distribute the person and location objects

among the chare elements of the corresponding chare arrays.

The individual chares in both the chare arrays handle the

computation and communication of their location or person

objects, respectively. The Charm++ runtime intelligently

maps the chares to processes and runs the simulation. In

summary, we follow a two-level hierarchical data distribu-

tion technique – first we assign people/locations to chares,

next we let the Charm++ runtime assign chares to processes.

We later show that the intelligent assignment of chares

to processes, in conjunction with efficient load balancing

strategies, can result in a very efficient communication

pattern amongst the simulation objects.

Initialization routines for modules such as loggers and file

parsers are called at beginning of the simulation. However, it

can be optimized and these modules may be initialized just

once per process rather than once per chare, without losing

correctness. We create a chare group called InitManager

for this purpose, where a single chare group object is

instantiated in every process, as shown in Figure 4. The

per-process initializations are invoked at the beginning of

the simulation in every chare group object, so that all the

other chares of the system can access the required handles

and other resources from their local chare group objects.

The stochastic nature of EpiSimdemics ideally requires a

unique random stream object for each location and person

object in the system to be perfectly repeatable. Repeatability

Person

Person

Person

Location

Location

Location

Person
Manager

Person
Manager

Person
Manager

Location
Manager

Location
Manager

Location
Manager

Main
Chare

…

…

…

…

…

Chare Array Regular C++ Objects

Init
Manager

Init
Manager

Init
Manager

Chare Group

Figure 4. Entities in CharmSimdemics.

is desirable for several reasons: it eases the debugging

burden, it ensures that data can be regenerated in the future

as long as the configuration files are kept, and it allows

branching while keeping the initial portions of the simulation

identical. It would take a significant amount of memory to

allocate a separate stream for hundreds of millions of ob-

jects. To alleviate this problem, the MPI version of EpiSim-

demics creates one random stream per process, so that the

location and person objects within each process can share

random streams. While we can run repeatable simulation

when using the same number of MPI processes, the output

may change when changing the processor count. Similar

limitations apply to CharmSimdemics as well, because we

share random number streams within a Chare array element

object, which contains multiple people or location objects.

With CharmSimdemics, this repeatability is maintained even

when a Charm object migrates to different processor. It is a

trade-off between the flexibility of simulation and efficiency

of memory management. If we maintain the total number

of chares in the system a constant, we can potentially have

the same number of total random number streams for any

number of processors. If the number of processors in the

system is changed, the Charm++ runtime will simply create

different allocation of chares to processors, but the total

chare count (and the total random number streams) remains

constant. Thus, we reduce memory overhead yet can produce

repeatable simulations.

One of the most useful features of Charm++ is dynamic

load balancing via chare migration. Charm++ allows us

to specify the phase in the program during which load

balancing should occur, and also lets us choose the specific

chare arrays that have to be migrated. In CharmSimdemics,

we migrate only LocationManager chares at the end of

some pre-determined iterations (simulation days). The Lo-

cationManager chares send out all the infection messages

as soon as they are computed and do not store any state

information at the end of each iteration. LocationManager

chare elements are the best candidates for migration as they

503503510

are light-weight and the computation varies dynamically as

people change their schedule due to illness or public policy

interventions such as school closure. In comparison, the

load on PersonManager chares is uniform and static, and,

thus, statically distributed. In addition, PersonManager stores

quite a large amount of complex state information through-

out the simulation process, thus making migration costly.

However, even after taking all these points into account,

there may still be benefits of migrating PersonManager

chares as discussed in Section VII.

B. The CharmSimdemics Algorithm

The Main chare first creates the LocationManager and

PersonManager chare arrays. It then creates the InitMan-

ager chare group objects, which are used for per-process

initializations. The proxies (or handles) to all the chare array

objects are defined as global readonly objects (a Charm++

feature), so that any chare can invoke the entry methods

on every other chare in the system. Next, the input files

(locations, persons and visits) are read by the Main chare and

distributed randomly to the appropriate LocationManager or

PersonManager chare objects. Once all the input is read in

to memory, the simulation process is ready to start. The

different stages of a single iteration in the CharmSimdemics

algorithm are shown in Figure 5. At the beginning of

each simulation day, the person objects compute the visit

messages and send them to the location objects, i.e., the

PersonManager chare elements send messages to specific

LocationManager chare elements (Figure 5a). The location

objects compute the infections and send messages to the

person objects about the new infections for the current sim-

ulation day (Figure 5c). The person objects then decide the

locations that have to be visited on the next iteration and the

process continues. The Charm++ runtime system implicitly

handles queuing, dispatch and processing of messages at the

source and destination chares/processes. Moreover all our

messages are sent asynchronously, thereby enabling efficient

overlap of communication with computation.

The CharmSimdemics algorithm has two global synchro-

nization points per iteration. The first is to ensure that every

visit message set from a person object has been received

at the destination location before the computation by the

location is started. The second is to ensure that every inter-

action result message sent by a location has been received

by the destination person before the persons state is updated.

This is done by a combination of a global reduce using the

contribute() method of Charm++ followed by Quiescence

Detection (QD). Using the first synchronization point as an

example, each PersonManager chare calls contribute() when

all of its associated person objects have sent all of their visit

messages. When processing resumes after the contribute, it

is ensured that all of the visit messages have been sent. This

is followed by a QD call. that will finish when there are no

messages in flight across the entire system. This ensures that

every visit message has been received. The second global

synchronization is analogous. It is important to note that both

the reduction and the QD can be asynchronous, so additional

work can be done during the synchronization, as long as no

additional message traffic is generated during the QD. We

show in section V that the time taken for QD is less than

5% of the total execution time.

At the end of each iteration, the PersonManager chare

array elements resolve all the received infection messages

and updates the person state. At the same time, the Lo-

cationManager chare elements can be allowed to migrate

for load balancing purposes, because they do not have any

more computations to perform for the simulation day. The

Charm++ runtime can potentially perform the above two

actions simultaneously, thereby improving performance. The

productivity of the programmer also significantly improves,

because the object oriented nature of Charm++ allows the

programmer to just focus on the implementations of the in-

dividual chare array elements, and leave the communication

optimizations to the framework.

V. EXPERIMENTAL RESULTS

In this section, we first identify the compute-intensive

methods in CharmSimdemics. Then, we evaluate the strong

and weak scaling performances of CharmSimdemics, and

compare them against the MPI implementation of EpiSim-

demics. Next, we evaluate the impact of applying load

balancing on the performance of CharmSimdemics. We also

show the efficacy of the quiescence detection method of

synchronization in CharmSimdemics over the regular MPI

synchronizations of EpiSimdemics.

A. Experimental Setup

Hardware: Our experimental testbed was a high perfor-

mance computing cluster consisting of 96 compute nodes,

where each node had two quad-core Intel Xeon E5440

processors and 16 GB of DDR2 memory. The nodes were

connected by 20 Gb/s InfiniBand interconnects.

Software: For the MPI implementation of EpiSimdemics,

we used the SGI Message Passing Toolkit v1.2 imple-

mentation, which is part of the SGI ProPack (version 6)

suite of performance optimization libraries and tools. For

CharmSimdemics, we use Charm++ v6.3 for most of our

experiments, with the exception of the load balancing experi-

ment where Charm++ v6.2 is used (section V-E). This means

that we do not enable load balancing in CharmSimdemics

by default unless specified otherwise. This is to isolate the

effects of multiple optimizations to gain insightful results.

Data: The algorithms for both EpiSimdemics and Charm-

Simdemics simulate the spread of the H5N1 avian influenza

virus across social contact networks of various US popula-

tions, with sizes between 2.6 million and 244 million. The

population data is organized by the states of US. We may

choose a single state or a group of states to discuss different

504504511

Person

Person

Person

Location

Location

Location

Person
Manager

Person
Manager

Person
Manager

Location
Manager

Location
Manager

Location
Manager

Main
Chare

…

…

…

…

makeEvents

makeEvents computeVisits

(a) Step 1: Computation and transfer of the visit messages.

Person

Person

Person

Location

Location

Location

Person
Manager

Person
Manager

Person
Manager

Location
Manager

Location
Manager

Location
Manager

Main
Chare

…

…

…

…

(Start QD)

(b) Step 2 (Barrier-1): Synchronize with the main chare, wait via Quiescence
Detection for visit messages to be delivered.

Person

Person

Person

Location

Location

Location

Person
Manager

Person
Manager

Person
Manager

Location
Manager

Location
Manager

Location
Manager

Main
Chare

…

…

…

…

storeInfections
computeInteraction

storeInfections

(c) Step 3: Computation and transfer of the infection messages.

Person

Person

Person

Location

Location

Location

Person
Manager

Person
Manager

Person
Manager

Location
Manager

Location
Manager

Location
Manager

Main
Chare

…

…

…

…

(Start QD)

(d) Step 4 (Barrier-2): Synchronize with the main chare, wait via Quiescence
Detection for infection messages to be delivered.

Figure 5. The CharmSimdemics Algorithm: One Simulation Day.

aspects of our experiments. Each test is executed for 120

iterations, where each iteration corresponds to a simulation

day. We configure our simulation such that the attack rate,

i.e. the ratio of the number of infected people to the total

number of people, is roughly 40%.

B. Performance Characteristics

We first investigate which of the CharmSimdemics meth-

ods dominate the overall execution time. Although there is a

non-trivial amount of communication in CharmSimdemics,

it relies on non-blocking communication for exchanging data

and overlaps the communication with computation. As a

result, the cost of the major data exchange which is to

communicate visit schedules is partially hidden except for

the cost of creating and handling messages. Such a hidden

cost is particularly difficult to estimate when the load is

uneven across processors. Here, we focus on analyzing the

fully visible costs, the cost of computation, message creation

and message handling. In addition, we investigate the cost

of synchronization method in Section V-C. In Section V-C

and V-D, we further evaluate the scaling performance to

understand the impact of the exposed overhead on perfor-

mance and the benefit of Charm++ framework over MPI.

For this comparison, we do not employ the load balancing

mechanism provided in Charm++. Finally, we present our

case study to show the impact of load balancing using the

charm++ framework’s built-in methods. Our simulation data

for this test was the population of Virginia (6.8 million

people), and we used 40 processor cores for execution.

We collected the detailed execution time statistics by using

the Charm++ Projections performance analysis/visualization

framework [7]. For this test, we enabled load balancing, but

will defer its analysis and discussion to section V-E.

Figure 6 shows the breakdown of the CPU utilization

among the selected CharmSimdemics methods from the

whole simulation run. Due to the space limitation, we plot

the results only for a subset of the processors used. Loca-
tionManager’s computeInteraction() method takes 46% of the

total utilization, and it is the most time consuming. The

computeVisits() method sends visit messages to Location-
Manager Chares and constitute 22% of the total utilization.

PersonManager’s updateState() method takes 8.2% of the

total utilization for updating the person’s status at the end of

each simulation day. LocationManager’s makeEvents() adds

the messages received from PersonManager Chares to local

data structures and takes 7.8% of the total utilization.

C. Effects of Strong Scaling

In this section we compare the scalability of EpiSim-

demics and CharmSimdemics with a fixed problem size. We

505505512

0 0.2 0.4 0.6 0.8 1

P
ro

ce
ss

in
g

E
le

m
en

t

CPU Utilization
computeVisits updateState makeEvents computeInteraction

Figure 6. The breakdown of CPU utilization identifies compute-intensive
Charm++ methods. On average, computeInteraction() takes 46%, compute-
Visits() takes 22%, updateState() takes 8.2% and makeEvents() takes 7.8%
of CPU utilization.

10
1

10
2

10
3

10
4

Number of PEs

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

MPI
Charm++

Figure 7. The comparison of strong scaling performance between two
different implementations of EpiSimdemics. The MPI version peaks at 192
PEs while the Charm++ version scales up to 512 PEs.

use the Arkansas population of 2.6 million people as it is

the largest data that a single compute node can accommodate

in our experimental setup. Figures 7 and 8 show the total

execution time and the speedup, respectively, for the two

implementations. We use the runtime of the serial version of

EpiSimdemics as the basis for calculating speedup. For this

experiment and the one discussed in V-D, load balancing

is not enabled and we assign one chare of each type per

processor. For EpiSimdemics, the simulation scales only

up to 256 PEs, and gains a speedup of up to 82 which

is 32% of the ideal speedup. However, the scalability of

CharmSimdemics extends to more PEs (peaks at 512 PEs),

and achieves a speedup of 229 which is 45% of the ideal

speedup. Beyond these scaling peaks, using more PEs does

not achieve better performance. As the data set is split

among more and more processors, it comes to a point

where each processor will not have enough data to generate

a sufficient amount computation to amortize the costs of

communication and synchronization [8].

Figure 8 and 9 shows that CharmSimdemics achieves

2.8X speedup compared to the best gained by EpiSimdemics,

32 128 256 384 512 640 768
0

100

200

300

400

500

600

700

800

Number of PEs

R
el

at
iv

e
S

pe
ed

up

ideal
Charm++
MPI

Figure 8. Strong Scaling comparison of EpiSimdemics and Charm-
Simdemics for Arkansas data. CharmSimdemics achieves 2.8X speedup
compared to the best gained by EpiSimdemics, and shows up to 3.9X
speedup with 768 PEs used.

0 200 400 600 800
1

1.5

2

2.5

3

3.5

4

Number of PEs

R
at

io
 [T

M
P

I /
T C

ha
rm

]

Strong
Weak

Figure 9. The improvement of CharmSimdemics over EpiSimdemics.
CharmSimdemics achieves up to 3.9x performance of EpiSimdemics with
Arkansas data of 2.6 millions, and 2.4x performance with 200 million
population data.

and shows up to 3.9X speedup with 768 PEs used. This

improvement mostly comes from the more efficient synchro-

nization mechanism (contribute() and QD) and the improved

communication.

Figure 10 shows the synchronization cost of both imple-

mentations relative to the total execution time. As discussed

in Section IV, CharmSimdemics relies on contribute() and

QD for synchronization. Note that the synchronization cost

of CharmSimdemics does not increase as the MPI synchro-

nization cost does with increasing number of PEs. The MPI

synchronization cost increases linearly with the number of

PEs used while the ‘contribute() and QD’ method does not.

The synchronization overhead using contribute() and QD
method takes at most 4.23% of the total execution time while

the MPI synchronization cost increases up to 14.5%.

D. Effects of Weak Scaling

To study the scalability of the Charm++ implementation

for large social contact network data, we increase the input

data size as we increase the number of PEs such that the

506506513

Table I
DATA CHOSEN FOR THE WEAK SCALING EXPERIMENT SHOWN IN FIGURE 11. AS WE INCREASE THE NUMBER OF PES, WE USE THE DATA OF LARGER

POPULATION SUCH THAT EACH PE SIMULATES ROUGHLY 314,360 PEOPLE.

States PEs
Individuals

Locations Visits
Execution Time (sec)

Charm++
Improvementtotal per-PE

pre-normalized normalized
MPI Charm MPI Charm

ar 8 2,605,954 325,744 683,978 14,376,852 1,013 908 978 876 1.12
ut,ia 16 5,029,760 314,360 1,314,623 27,627,997 1,158 887 1,158 887 1.31
tn,mn 32 9,333,984 331,524 2,362,346 51,478,432 1,238 854 1,335 920 1.45
tx 64 20,345,848 317,904 4,482,514 111,372,662 1,412 957 1,396 947 1.48
tx,il,nc 128 40,279,841 314,686 9,664,024 220,882,205 1,582 986 1,580 985 1.60
tx,il,nc,ga,wa,mo 192 59,469,571 309,737 14,800,992 326,457,893 1,739 1,062 1,765 1,078 1.64
tx,il,nc,ga,wa,mo,mi,nj,ct 256 80,287,853 313,624 20,012,407 439,186,388 2,523 1,373 2,529 1,377 1.84
tx,il,nc,ga,wa,mo,mi,nj,ct,

384 119,871,849 312,166 30,160,072 656,422,335 2,459 1,266 2,476 1,275 1.94
tn,mn,sc,ky,md,az,wi,in,id
tx,il,nc,ga,wa,mo,mi,nj,ct,

512 159,402,940 311,334 40,231,107 873,877,636 2,946 1,644 2,975 1,660 1.79
tn,mn,sc,ky,md,az,wi,in,id,
ut,ks,ms,ma,ia,ok,or,co,al,
la,wv,nm
me,tx,il,nc,ga,wa,mo,mi,nj,

640 200,633,822 313,490 49,299,145 1,062,782,842 4,146 1,734 4,158 1,738 2.39
ct,tn,mn,sc,ky,md,az,wi,in,
id,ut,ks,ms,ma,ia,ok,or,co,
al,la,wv,nm,ca,va
me,tx,il,nc,ga,wa,mo,mi,nj,

768 243,425,288 316,960 60,951,207 1,268.675,372 4,906 2,120 4,866 2,102 2.31
ct,tn,mn,sc,ky,md,az,wi,in,
id,ut,ks,ms,ma,ia,ok,or,co,
al,la,wv,nm,ca,va,ny,fl,oh

 1 4 8 16 32 64 128 192 256 384 512 640 768
0

2

4

6

8

10

Number of PEs

P
or

tio
n

of
 E

xe
cu

tio
n

T
im

e
(%

)

Charm++ QD
MPI Synchronization

Figure 10. The synchronization cost using contribute() and QD method
takes at most 4.23% of the total execution time while the MPI synchro-
nization cost linearly increases up to 14.5% as the number of PEs used
increases for simulating Arkansas population.

population per PE remains constant (which we denote as

POPtarget). We also want to make sure that POPtarget to

be as large as possible while not exceeding the size of the

memory of a single processing element. Since the Arkansas

data of 2.6 million fits on a single node and there are 8 cores

per node, we choose to use POPtarget = 314, 360 which is

roughly close to 2.6×106/8. For a given number of PEs, we

pick a certain set of states such that the total population from

the chosen states is close to POPtarget×NPE , where NPE

is the number of PEs used. Since the size of the data from

the different states is not likely a multiple of POPtarget, the

population per PE varies within 5.6% as we pick a different

number of PEs and different set of data to run. Thus, for

comparing the performance with data of different sizes, we

normalize an execution time Torg taken to run POPactual

sized data by calculating the representative execution time

as Trep = Torg ×POPtarget/POPactual. Further details of

data sets are listed in Table I. It lists the total population of

data, POPactual, Torg , Trep as well as the ratio of execu-

tion time of EpiSimdemics to CharmSimdemics in the last

column. Figure 11 shows the weak scaling performance of

MPI and Charm++ implementations, and Figure 9 compares

them. When we use 768 PEs (96 nodes), the problem size

is 96 times larger than when we use 8 PEs (1 node). As

the per-PE population is the same, ideally, the execution

time should be constant. We calculate this constant ideal

time Tideal from the serial execution time Tserial of EpiSim-

demics for Arkansas data. Since the Arkansas data contains

roughly eight times larger population than POPtarget, we

calculate Tideal to be 811 seconds by the normalization as

Tserial×POPtarget/POPactual. CharmSimdemics executes

2.6 times longer than Tideal using 768 PEs, EpiSimdemics

takes 6 times longer. As a result, CharmSimdemics executes

2.3 times faster than EpiSimdemics with 768 PEs.

E. Effect of Load Balancing

The Charm++ framework migrates compute-intensive

tasks (chare objects) from heavily loaded processors to less

utilized processors. In Charm++, load balancing can be done

in a centralized, fully distributed or hierarchical fashion.

With the centralized approach, the machine’s load and

communication structure are accumulated to one processor,

followed by a decision process that determines the new

distribution of Charm++ objects at given synchronization

points. We are using a centralized approach, as it best suits

507507514

32 128 256 384 512 640 768
0

10

20

30

40

50

60

70

80

90

Number of PEs

E
la

ps
ed

 T
im

e
(m

in
ut

es
)

MPI
Charm++
ideal

10 40 80 120 160 200 243
Population (millions)

Figure 11. While CharmSimdemics executes 2.4 times longer than the
ideal using 768 PEs, it shows 2.3× improvement in execution time when
compared to EpiSimdemics (MPI) with 768 PEs.

1 2 3 4 5 8 10 16 32
0

20

40

60

80

100

120

140

E
la

ps
ed

 T
im

e
(s

ec
on

ds
)

Number of Location Chares per PE

Figure 12. Impact of the number of chares per PE used on load balancing.
For simulating the North Carolina population, the execution takes 98
seconds using total 128 PEs and a single chare per PE (without load
balancing). With two chares per PE, it takes 78 seconds which is about
81% of that without load balancing.

to applications that iterates over multiple phases. We use

the Greedy and Refine centralized load balancing strategies

in our experiments. GreedyLB uses a greedy algorithm to

assign chares to processors. It does not attempt to minimize

the amount of chare migration that occurs. On the other

hand, RefineLB limits the number of chares migrated by

shifting chares from highly utilized processors to under

utilized processors. As our first step of load migration in

our application, we are migrating LocationManager chares

only, as they are lightweight and easy to migrate. There

should be several chares on one processor for the migration

to happen from one processor to another. At the same

time, some overhead is incurred with increasing the number

of chares on processor. Figure 12 shows the increase in

execution time for increased number of chares. For our load

balancing experiments we use two LocationManager chares

per processor.

Figure 13 shows the effect of load balancing strategies

applied when simulating the Arkansas population data. This

diagram is again collected using the Charm++ Projection

tool [7]. The horizontal bars show PEs, while the colors

show methods and idle times. Since there is a large overhead

with GreedyLB, we apply it only once after the first iteration

and follow it up by a RefineLB step after every third

iteration. The dark orange color shows the time taken by

computeInteraction() and the white following it show the

idle time. Three out of twelve processors in the first iteration

have extended idle times (white lines) which mean that the

computational loads of computeInteraction() is not even and

other PEs are waiting on them to finish their compute step.

At the beginning of the second iteration, GreedyLB (shown

by red color) is applied, which aggressively migrates objects

from heavily loaded processors to less utilized processors. In

the second iteration the load is more balanced compared to

the first iteration (small wait times after computeInteraction).

We further apply RefineLB after every third iteration to

reduce load imbalance through the iterations.

Figure 15 shows the CPU utilization by CharmSimdemics

methods, the load balancing overhead and idle times over

two simulation days. Note that the communication of com-
puteVisits() overlaps the computation of makeEvents() meth-

ods. The remote entry method makeEvents() called within

computeVisits() to send visit messages from PersonManger
to remote LocationManager is a non-blocking call and put

into the runtime queue until the CPU resource becomes

available on the remote processors. There are also less

compute intensive methods, but because of their smaller

proportion to total utilization they are not visible. We can

see the overhead from GreedyLB step (shown by red color)

after the first iteration. We can also notice in the iteration

after the GreedyLB is applied, that the computeInteraction()
load is more balanced across all the processors. The black

color show the overhead associated with GreedyLB and the

unaccounted time taken by Charm++ framework. The gaps

(white in color) between utilization sections show the idling

during synchronizations. Figure 10 shows the time taken by

Quiescence detection (synchronization), running Arkansas

data with one chare of each type per process. The QD time

is maximum (4.3%) when running on 348 processors. This

shows that QD is not taking a lot of time even when running

large number of processors.

To get a good view of the benefits of load balancing and

show the individual contribution of Greedy and Refine step,

we show time per iteration for simulation running over 60

iteration days. For this experiment we used GreedyLB and a

combination of GreedyLB and RefineLB. Figure 14 shows

the time/iteration performance of load balancing strategies

compared to not using it. All the results in this figure are

collected for North Carolina data (6.8 million population)

on 128 processors with two chares per process. ‘No LB’

508508515

Simulation Iteration

P
ro

ce
ss

in
g

E
le

m
en

t

Iteration 1 GreedyLB Iteration 2 Iteration 3

Figure 13. Effect of Load Balancing: heavily imbalanced in Iteration-1 (three PEs have more load than the others). GreedyLB at the start of second
iteration reallocates chares to processes with lighter loads. Iteration-2 shows better load distribution.

means that no load balancing is happening. ‘Greedy once’

means GreedyLB is applied once after the first iteration.

‘Greedy+Refine’ means that GreedyLB applied after the first

iteration followed by RefineLB every 10th iteration. The

longer times for the second iteration show the overhead

associated with GreedyLB step. Notice the reduction in

time per iteration when GreedyLB is applied at the second

iteration. In case of GreedyLB, load balancing happens only

once in the entire simulation. However, for Greedy+Refine,

the GreedyLB in second iteration is followed by refine steps

every tenth iteration. This can be seen at the start of 11th

iteration when there is visible drop in time per iteration after

that. The same refine step effect can be seen in iterations

21, 31, 41 and 51. Cumulative timings show that GreedyLB

when used only once after the first iteration gives about 20

percent performance improvement compared to not using

the load balancing (No LB). Similarly, the performance

improvement of GreedyLB+RefineLB scheme compared to

not using load balancing is more than 24 percent.

The overall contribution of CharmSimdemics load balanc-

ing to improvement on the weak scaling performance over

that of EpiSimdemics is shown in Figure 16. We use the

GreedyLB+RefineLB combination among those supported

by the Charm framework. Enabling the load balancing fea-

ture of CharmSimdemics further improves the performance

by 10% on average and up to 15% compared to that of

EpiSimdemics implemented in MPI without load balancing.

The load balancing helps especially when load distributed

by the initial static method is not even. In our case, it helps

especially when we use 256 PEs making additional 15%

improvement. On the other hand with 64 PEs, the load

balancing makes minor contribution less than 1% additional

improvement. When the improvement by CharmSimdemics

peaks with 640 PEs, the load balancing brings 8.5% addi-

tional improvement.

0 10 20 30 40 50 60
2

2.5

3

3.5

4

4.5

5

5.5

Simulation Iteration

T
im

e
(s

ec
on

ds
)

No LB
Greedy+Refine
Greedy Once

Figure 14. Performance gain for different load balancing strategies for
NC data on 128 PEs. Total simulation time when not using load balancing
is 240 seconds, GreedyLB applied only once after the 1st iteration is 191
seconds and GreedyLB followed by refine steps every 10th iteration is 181
seconds

VI. RELATED WORK

Among many epidemiological ABS platforms are those

developed by Eubank et al. [9], [10], Longini et al. [11], Fer-

guson [12], and Parker et al. [13]. The system described by

Ferguson is implemented to be executed on a shared memory

platform and, thus, is limited by the amount of available

shared memory. Emulated shared memory machines can

be used, but very few machines at present exist that can

store very large social networks in such a form. The work

of Longini et al. is a parallel simulation that uses a very

simple and structured social contact network. The locations

in these social contact networks are not real but simply

surrogates for simple location types such as school, home,

etc. This results in a structured social contact network that is

more amenable to efficient parallel computation, but which,

arguably, is less representative of real-world social networks.

The simulator developed by Parker et. al. is implemented

509509516

Time (seconds)

U
til

iz
at

io
n

(%
)

48.7 49.7 50.7 51.7 52.7 53.7 54.7 55.7

100

80

60

40

20

0

4

computeInteraction
computeVisits
makeEvents
receiveMigration
checkVisitDataCount
idle
overhead

Figure 15. Waterfall graph shows CPU utilization across all processes by
methods. Red shows the load migration while the Black shows the overhead
from load migration plus the unaccounted time used by the Charm++
framework. The white areas show processor idle times.

0 200 400 600 800
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Number of PEs

R
at

io
 [T

M
P

I /
T C

ha
rm

]

with LB
without LB

Figure 16. Enabling the load balancing feature of CharmSimdemics further
improves the weak scaling by 10% on average and up to 15% compared
to that of EpiSimdemics implemented in MPI without load balancing.

in Java with numerous optimizations. It is a combination

of spatial model (dividing the region into pixels) and agent

model with randomly constructed contact networks. While it

quite efficiently simulates very large populations, it currently

does not support necessary interventions required in practical

public health studies.

There has also been a wealth of recent work on general-

purpose simulators that utilize a range of dynamics mod-

els. Among these are AnyLogic, Aurora2, BRACE, μsik,

NetLogo, Repast SC++, SASSY, and Swarm [14]–[18].

These simulators span the range of smaller-scale ones with

accompanying visual tools (e.g., NetLogo) to some of the

largest simulations in terms of computing resources used

(as many as 65000 processing cores [19], [20]). Graphics

processing units (GPU) have also been used [21]–[23],

simulating hundreds of millions of agents.

VII. CONCLUSIONS AND FUTURE WORK

We have developed a scalable system that models the dif-

fusion of diseases through an evolving social network. The

initial version of this system out-performs the MPI based

code when the number of cores is increased. Our short-term

scaling goal is to efficiently simulate the entire country (300

million people) on 5000 processors. In long term, we plan to

intelligently map persons and locations to chares to reduce

the communication load, migrate the PersonManager’s load

for the purpose of load balancing and do dynamic load

balancing at run-time that takes advantage of both compu-

tation load and communication patterns observed. We also

intend to use Charm++ structured daggers to remove global

synchronization barriers and overlap iterations.

ACKNOWLEDGMENT

We thank our external collaborators and members of the Net-

work Dynamics and Simulation Science Laboratory (NDSSL)

and Parallel Programming Laboratory (PPL) for their suggestions

and comments. This work has been partially supported by NSF

Nets Grant CNS-0626964, NSF HSD Grant SES-0729441, NSF

PetaApps Grant OCI-0904844, NSF NETS Grant CNS-0831633,

NSF REU Supplement Grant CNS-0845700, NSF Netse Grant

CNS-1011769, NSF SDCI Grant OCI-1032677, DTRA R&D

Grant HDTRA1-0901-0017, DTRA CNIMS Grant HDTRA1-07-

C-0113, DOE Grant DE-SC0003957, US Naval Surface War-

fare Center Grant N00178-09-D-3017 DEL ORDER 13, NIH

MIDAS project 2U01GM070694-7 and NIAID & NIH project

HHSN272201000056C.

REFERENCES

[1] Message passing interface forum. [Online]. Available:
http://www.mpi-forum.org

[2] C. L. Barrett, K. R. Bisset, S. G. Eubank, X. Feng, and M. V.
Marathe, “Episimdemics: an efficient algorithm for simulating
the spread of infectious disease over large realistic social
networks,” in SC ’08: Proceedings of the 2008 ACM/IEEE
conference on Supercomputing. Piscataway, NJ, USA: IEEE
Press, 2008, pp. 1–12.

[3] L. V. Kale and G. Zheng, “Charm++ and AMPI: Adaptive
Runtime Strategies via Migratable Objects,” in Advanced
Computational Infrastructures for Parallel and Distributed
Applications, M. Parashar, Ed. Wiley-Interscience, 2009,
pp. 265–282.

[4] K. Bisset, X. Feng, M. Marathe, and S. Yardi, “Modeling
interaction between individuals, social networks and public
policy to support public health epidemiology,” in Proceedings
of the 2009 Winter Simulation Conference, Dec. 2009, pp.
2020–2031.

[5] L. Kalé and S. Krishnan, “CHARM++: A Portable Concurrent
Object Oriented System Based on C++,” in Proceedings of
OOPSLA’93, A. Paepcke, Ed. ACM Press, September 1993,
pp. 91–108.

[6] G. Zheng, A. Bhatele, E. Meneses, and L. V. Kale, “Periodic
Hierarchical Load Balancing for Large Supercomputers,” In-
ternational Journal of High Performance Computing Appli-
cations (IJHPCA), March 2011.

510510517

[7] Charm++ projections: A performance analysis/visualization
framework. [Online]. Available: http://charm.cs.uiuc.edu/
manuals/html/projections/manual.html

[8] G. M. Amdahl, “Validity of the single-processor approach
to achieving large scale computing capabilities,” in AFIPS
Conference Proceedings, vol. 30, 1967, pp. 483–485.

[9] S. Eubank, “Scalable, efficient epidemiological simulation,”
in SAC ’02: Proceedings of the 2002 ACM symposium on
Applied computing. New York, NY, USA: ACM, 2002, pp.
139–145.

[10] S. Eubank, H. Guclu, M. V. Marathe et al., “Modelling
disease outbreaks in realistic urban social networks,” Nature,
vol. 429, no. 6988, pp. 180–184, May 2004.

[11] I. Longini, A. Nizam et al., “Containing pandemic influenza
at the source,” Science, vol. 309, no. 5737, pp. 1083–1087,
2005.

[12] N. M. Ferguson, M. J. Keeling et al., “Planning for smallpox
outbreaks,” Nature, vol. 425, no. 6959, pp. 681–685, 2003.

[13] J. Parker, “A Flexible, Large-Scale, Distributed Agent Based
Epidemic Model,” in Proceedings of the 2007 Winter Simu-
lation Conference, 2007, pp. 1543–1547.

[14] K. Perumalla, “μsik: A Micro-Kernel for Parallel/Distributed
Simulation Systems,” in Proceedings of the 19th Workshop
on Principles of Advanced and Distributed Simulation, 2005,
pp. 185–192.

[15] M. Hybinette, E. Kraemer, Y. Xiong, G. Matthews, and
J. Ahmed, “SASSY: A Design for Scalable Agent-Basd
Simulation System Using a Distributed Discrete Event In-
frastructure,” in Proceedings of the 2006 Winter Simulation
Conference, L. Perrone, F. Wieland, J. Liu, B. Lawson,
D. Nicol, and R. Fujimoto, Eds., 2006, pp. 926–933.

[16] A. Park and R. Fujimoto, “Efficient Master/Worker Parallel
Discrete Event Simulation,” in Proceedings of the 2009
ACM/IEEE/SCS 23rd Workshop on Principles of Advanced
and Distributed Simulation, 2009, pp. 145–152.

[17] M. North and C. Macal, “Foundations of and Recent
Advances in Artificial Life Modeling with Repast 3 and
Repast Simphony,” in Artificial Life Models in Software,
A. Adamatzky and M. Komosinski, Eds. Springer, 2009,
pp. 37–60.

[18] G. Wang, M. Salles, B. Sowell, X. Wang, T. Cao, A. De-
mers, J. Gehrke, and W. White, “Behavioral Simulations in
MapReduce,” Proceedings of the VLDB Endowment, vol. 3,
no. 1, pp. 952–963, 2010.

[19] K. Perumalla and S. Seal, “Reversible Parallel Discrete-
Event Execution of Large-Scale Epidemic Outbreak Models,”
in Proceedings of the 24th ACM/IEEE/SCS Workshop on
Principles of Advanced and Distributed Simulation, 2010.

[20] C. Carothers and K. Perumalla, “On Deciding Between Con-
servative and Optimistic Approaches on Massively Parallel
Platforms,” in Proceedings of the 2010 Winter Simulation
Conference, 2010.

[21] R. D’Souza, M. Lysenko, and K. Rahmani, “SugarScape on
Steroids: Simulating over a Million Agents at Interactive
Rates,” in Proceedings of the Proceedings of Agent2007
Conference, 2007.

[22] B. Aaby, K. Perumalla, and S. Seal, “Efficient Simulation
of Agent-Based Models on Multi-GPU and Multi-Core Clus-
ters,” in Proceedings of the 3rd International ICST Confer-
ence on Simulation Tools and Techniques, 2010.

[23] W. Hwu, GPU Computing Gems. Elsevier Morgan Kauf-
mannnce, 2011, see “Chapter 21. Template-Driven Agen-
Based Modeling and Simulation with CUDA” by P. Richmond
and D. Romano.

511511518

